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ABSTRACT

We first briefly recall how to model occlusion and scaling
in natural images through the use of a stochastic model, the
scaling dead leaves model. Then we give a statistical es-
timator for its scaling parameters, which are related to the
regularity of images. Last we show how this model can be
used as an a priori for image denoising, in the framework of
wavelet coefficients thresholding.

1. GENERAL CONTEXT

This communication is concerned with the regularity of natu-
ral images. It is well known that important features of natural
images are scaling behaviour, strong discontinuities and rela-
tively flat regions. These features are adequately modeled by
a stochastic model involving the occlusion phenomena, the
dead leaves model, when equipped with power law distribu-
tions ([13], [2], [8]). Roughly speaking, it may be seen as the
result of the superimposing of objects with arbitrary scale.
More recently, the existence of a limit at small scales for this
model as well as its Besov regularity has been established
([7]). In this communication, we introduce an estimator for
the scaling parameters of this model, therefore enabling to
estimate its regularity. Then we investigate the use of such
an estimation in the framework of denoising.

Two common approaches to wavelet based signal denois-
ing are non parametric and Bayesian methods. The first ones
usually rely on regularity assumptions and wavelet threshold-
ing ([5]), whereas the second ones try to capture the specific
shape of the distribution of wavelet coefficients for a given
type of signal. Various type of priors have been considered
for the marginals of wavelet coefficients. Being able to deal
with the strongly non-Gaussian nature of these marginals,
generalized Gaussian distributions have been widely used
([14]). Other priors include scale mixture of normal distri-
butions ([12]) and Bessel K-forms ([6]). In Section 4, we
investigate the use of the scaling dead leaves model to de-
rive the specific shape of wavelet marginals to be used in a
bayesian approach. Wavelet methods do not allow to take full
advantage of the geometry of the model especially since we
will only focus on marginals. Nevertheless, as shown in [1]
(in the framework of non-parametric denoising), specifying
ana priori on wavelet marginals can be related to regularity
assumptions. Here, for similar reasons, the waveleta priori
will inherit the regularity of the model as established in [7].

2. A MODEL FOR REGULARITY AND ITS
WAVELET COEFFICIENTS

In this section, we sketch the construction of a model for nat-
ural images, omitting technical details. The interested reader

Figure 1: Left : a dead leaves model constructed from
squares with a uniform distribution. Right : the limit at
small scales of a dead leaves model with size distribution (1),
α = 2.9.

is referred to [7]. We first consider a family of independent
and identically distributed (i.i.d.) random objects : compact
subsetsXi of R2, equipped with random variablesUi , their
gray levels. For the sake of simplicity, we will assume that
theUi are uniformly distributed. Then, we consider the ran-
dom image that is obtained when these objects are put at ran-
dom positions in the plane, one by one, and such that any
object may hide previously laid ones if it happens to be on
the top of it. To be more precise, we consider the limit of
the Markov chain obtained this way. Figure 1, left, illustrate
such a construction when the objects are all squares with a
uniformly distributed radius. This simple model, first intro-
duced by G. Matheron ([11]), has been shown to be adequate
for image modeling when objects have a power law distri-
bution of their size ([13], [2], [8]), that is whenXi = R.Y, R
being a random variable with density

f (r) ∝ r−α . (1)

The main interest of this model is its ability to handle
many statistics of natural images with few parameters (see
the aforementioned works). However, Equation (1) imposes
small and large sizes’ cut-offs, respectivelyr0 andr1, for the
model to be well defined. In particular, the minimum ob-
jects’ size, parameterr0, influences the small scale regularity
of the model and would obviously need to be taken into ac-
count within a denoising procedure. However, whenα < 3
(a reasonable range to model natural images, as will be seen
later) it may be shown (see [7]) that there exists a limit model
I0 whenr0 → 0. In what follows, we will refer toI0 as the
Scaling Dead Leaves model (SDL). This model exhibits in-
teresting geometrical structures, as may be seen from the two
dimensional distribution ofI0. Indeed, the model is station-
ary and, for anyx∈ R2, (I0(0), I(x)) is distributed as a mix-



ture of (U ,U ) and (U ,U ′), whereU andU ′ are inde-
pendent uniform variables, with respective weightsp(x) and
1− p(x). The interpretation of this mixture is that two points
at distancex will be in the same objects with probabilityp(x)
and in different independent objects otherwise. Even though
the limit model is not piecewise constant (in particular there
are small objects everywhere), this distribution reflects the
presence of weakly uniform regions, as may be seen on Fig-
ure 1, right. Moreover, it may be shown that

p(x)∼ 1−Cx3−α asx→ 0, (2)

whereC is a constant depending on the geometry of objects
Xi . From this mixture, it is easily seen that the distribution of
”jumps” in the image,I0(x)− I0(0), consists of the mixture of
a point mass at 0 and a symmetrical distribution correspond-
ing to the difference between to uniformly and independently
distributed uniform variables. This distribution is in agree-
ment with the general shape observed for the distribution of
such jumps in an image, highly peaked at 0 and slowly de-
creasing away from zero towards the extreme values. This
behaviour together with the power law in (2) inherited from
the distribution of the size of objects (1) allows to show that
the Besov regularity ofI0 is mainly driven by the parameter
α, see [7].

In Section 4, in the framework of wavelet-based image
denoising, we approximate the distribution of coefficients
with this same mixture, therefore neglecting an averaging
phenomenon for which it is difficult to derive analytic for-
mulas. We will see in the experiments a drawback of this
approximation. Letwη

k, j
be the wavelet coefficients of the

image (inL2 normalization),η being the orientation,k the
location andj the octave. Let us specify that in our notation,
j = 0 corresponds to the entire image and that asj increases,
one goes toward the pixel size. We assume that

wη

k, j
∼ g j(w)(δ0 +λ )(dw), (3)

whereδ0 is the Dirac mass at 0,λ the Lebesgue measure,
andg j(w) denotes thea priori density ofwη

k, j
with respect to

the measureδ0 +λ , and is defined for allw as

p j 1(w = 0)+(1− p j)M−1
j (1−|w|/M j)+ 1(w 6= 0) , (4)

wherey+ := y∨0, p j = p(2− j) andM j = M2 j−1, whereM
is the maximum of gray level of the modelI0 (so thatM j
is the theoretical maximum of wavelet coefficients at octave
j). Although the above mixture, (3), is an idealization, it is
easily seen that it yields a correct formula for the variance of
the wavelet coefficients of the model up to a multiplicative
constant independent of the octavej. This last point is to be
used in Section 3.

3. ESTIMATION OF THE SCALING PARAMETERS

In this section, we define an estimator for the parametersα

andC. The first interest of such an estimator is to provide a
parametric estimation of Besov regularity. This is an alter-
native to the method presented in [4], based on compression
performances. This estimator will be validated on simula-
tions of the SDL model. Our second interest is related to
Bayesian image denoising. In order to compute the MAP es-
timator ŵη

k, j
, one needs to estimateα andC of the a priori

model, the so-calledhyper-parameters. On most natural im-
ages we have observed thatα ranges between 2 and 3, values
which are in agreement with the theoretical model (see [7]).
Note thatα ∼ 3 corresponds to highly textured images while
α ∼ 2 corresponds to more flat images. Here we propose
an estimator based on a contrast computed from the empir-
ical variance of the wavelet coefficients. Indeed, from (3)
and (6), we compute (recall thatσ2 is assumed to be known)

Var(xη

k, j
) = C2 j(α−3) M2

j /6+σ
2 =: v j(α,C) .

Observe also that the coefficients have zero mean. Define

C (α,C) = ∑
j,k,η

xη 2
k, j

v j(α,C)
+ ∑

j,k,η

logv j(α,C) ,

where the two sums are computed for all availableη , j,k up
to some cut-offj ≤ J. We then define the contrast estimator

(α̂,Ĉ) := argmin
α,C

C (α,C). (5)

Let us briefly justify whyC can be interpreted as a contrast,
yielding a reasonable estimator(α̂,Ĉ) (although we do not
provide any proof). Letα∗ andC∗ denote the true parame-
ters. As the number of wavelet coefficients increases, up to
some renormalizing factor,C (α,C) behaves as its expecta-
tion

EC (α,C) = ∑
j,k,η

v j(α
∗,C∗)

v j(α,C)
+ ∑

j,k,η

logv j(α,C) .

Now observe thatEC (α,C)−EC (α∗,C∗) equals

∑
j,k,η

[(
v j(α

∗,C∗)

v j(α,C)
−1

)
− log

v j(α
∗,C∗)

v j(α,C)

]

which is minimized atα = α∗ andC = C∗ sincex− 1−
log(x) is minimized atx = 1 overx > 0. For computing (5),
we used a standard gradient minimization approach within a
bounded domain for(α,C). Experiments have shown quite
robust estimates even in the presence of noise. The function
C (α,C) is represented in Figure 2, left, for the Lena image
with additive Gaussian noise (σ = 10).

4. BAYESIAN WAVELETS THRESHOLDING

Suppose that we observe an image polluted by an indepen-
dent Gaussian additive white noise with known varianceσ2.
Let us denote bywη

k, j
its true wavelet coefficients and bynη

k, j
the wavelet coefficients of the additive noise. We let

xη

k, j
:= wη

k, j
+nη

k, j
(6)

denote the observed wavelet coefficients. We adopt a
Bayesian approach by defining ˆwη

k, j
as the MAP (maximum

a posteriori) estimator corresponding to thea priori defined
as follows;{wη

k, j
, η , j,k} are independent and their marginal

distributions are given by (3). Observe that the independence
is not a property of the model introduced in Section 2 but a
technical simplification for deriving a simple denoising pro-
cedure. In particular, using this independence assumption,
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Figure 2: Left:C (α,C) (level curves) on a gridα ∈ (2,3.5)
(horizontal) andC∈ (0.05,1.55) (vertical). The∗’s represent
the trajectory of a gradient descent (on the well-known Lena
image). Right: The Bayesian threshold functionTj with α =
2.8, C = 1.0, σ/M = 0.2 and j = 8; horizontal axis:x/M,
vertical axis:Tj(x)/M (plain), T(0)

j
(x)/M (dashes) andx/M

(dots).

the resulting MAP estimator consists in thresholding the co-
efficientsxη

k, j
, namely

ŵη

k, j
= argmax

w
f j(w|x

η

k, j
) =: Tj(x

η

k, j
) , (7)

where f j(·|x) denotes the conditional density ofwη

k, j
given

xη

k, j
= x with respect to the measureδ0+λ . Let us now com-

pute the resulting thresholding functionTj . Using usual con-
ditional density formula, since that givenwη

k, j
= w, xη

k, j
is a

N (w,σ2) r.v., we have that

f j(w|x) ∝ exp

(
− (x−w)2

2σ2

)
g j(w) . (8)

DefineT(0)
j

(x) := argmaxw6=0 f j(w|x). Using (4), straightfor-
ward computations then yield

T(0)
j

(x) =
sign(x)

2

[
M j + |x|−

√
(M j −|x|)2 +4σ2

]
+

(9)

Tj(x) = T(0)
j

(x)1
{

f j(T
(0)
j

(x)|x) > f j(0|x)
}

. (10)

As may be seen in Figure 2, right,Tj is similar to a hard
threshold function. This follows from the point mass com-
ponent of thea priori distribution. Therefore it will suffer
from the same drawbacks as hard thresholding denoising (see
[10]). It is also interesting to note that the true wavelet coeffi-
cients distribution of the SDL model, whose precise compu-
tation is an open question, would not have such a point mass
component, and would lead to a soft-like thresholding.

Collecting (4), (7), (8), (9) and (10) allows to compute
ŵη

k, j
from xη

k, j
in a few simple computations.

5. EXPERIMENTAL RESULTS

As a first experiment, we validate the estimator of Section
3 on simulations of the SDL model for two different values
of α (2.3 and 2.8) and various noise levels, see Figure 3. In
these simulations, objects are disks with distribution given
by (1),r0 = 1, r1 = 2048 and images are of size 1024×1024.
From this experiment, we see that the procedure is quite ro-
bust to noise, and thatα is correctly estimated with a bias of
about+0.1.
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Figure 3: Boxplots for the estimation ofα on synthetic im-
ages. Top :α = 2.3, bottom :α = 2.8.
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Figure 4: Comparison of the averagedL2 errors of the oracle
methods for hard, soft and multi-scale, and of the multi-scale
method with estimated coefficients (Lena image).

Next we compare the denoising with a SDLa priori with
two other usual wavelet thresholdings, namely the so-called
hard and soft thresholdings (see [10]), using Daubechies
wavelets of order 3. We first compare oracle performances.
This means that we compare the lowest errors obtained over a
large sample of hyper-parameters(α,C) or thresholdst. We
obtain slightly lower errors for our method than with hard
thresholding (see Figure 4, obtained for the Lena image) at
large noise variances. This is easily explained by the fact that
we optimize the error over a two-dimensional parameter in
our method and a one-dimensional one for the usual thresh-
oldings and this is more effective for strong noise as more
scales are involved in denoising. However, this is no longer
true for the comparison with the soft thresholding oracle, see
also the discussion at the end of Section 4.

Oracle estimations are not realistic in practice as hyper-
parameters are computed by using the original image which
is not at hand. On the same figure, 4, we also display



Figure 5: Top left : original image; top right : SDL denoising
(translation invariant) after adding Gaussian noise (σ = 10);
bottom right : detail of SDL denoising, bottom right : detail
of oracle hard threshold denoising (translation invariant).

the performance of the proposed method when the hyper-
parameters are estimated as in Section 3. Of course results
are slightly degraded, but stay reasonably close. Finally we
provide a visual comparison of multi-scale (with estimated
hyper-parameters) and oracle hard thresholding on a high
resolution image in Figure 5 (note that images may be ex-
tracted from the pdf file of this paper, e.g. by using the
”pdfimages” command on Linux systems). We used trans-
lation invariant wavelet transform for a better visual result,
a usual additional step of wavelet denoising methods (see
[10]). Parameters are estimated as explained in Section 3. On
this figure, we can see that the SDLa priori allows to better
preserve the presence of flat zones than the hard threshold,
which result in less artefacts. This will also be the case with
a multi-sure soft thresholding method.

6. CONCLUSION

In this communication, we introduced an estimator for scal-
ing parameters of a geometrical model for natural images.
Then we investigated the use of such a geometricala priori
in the context of denoising. This approach gives raise to a
Bayesian thresholding method along the same lines as recent
ones based on empirical studies of wavelet coefficient statis-
tics. However, in the latter approaches, parameters of the
Bayesiana priori have to be estimated at each scale whereas
we only need to specify two parameters for all scales. From a
practical point of view, this allow more robust estimations of
hyper-parameters, in particular at scales (the more important
ones for denoising) where the signal/noise ratio is low.

We do not claim to achieve results better to state of the
art methods, and one of the aims of this paper is to provide
a sanity check for the model presented in [7] in the frame-
work of denoising. In particular, we do not take into account
dependences produced by discontinuities or textures, better

dealt with using methods such as [3] or [9]. Possible exten-
sions of our approach could be to use over-complete bases to
better preserve textures.

From a theoretical point of view, the studied estimation
problem is important since, as in [1], the hyper-parameters
α andC can be related to the regularity of the model (es-
tablished in [7]). In other words, although the statisticala
priori is limited to wavelet marginals, the regularity proper-
ties are inherited from the geometrical model and therefore
bears some physical justifications. An interesting perspective
could be to compare the regularity estimated through com-
pression performances, as in [4], with the estimation proce-
dure presented in this paper.
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Technical report, CMM, 1968.

[12] J Portilla, V Strela, M Wainwright, and E P Simoncelli.
Image denoising using scale mixtures of gaussians in
the wavelet domain.IEEE Trans. Image Processing,
12(11):1338–1351, 2003.

[13] D. L. Ruderman. Origins of scaling in natural images.
Vision Research, 37(23):3385–3398, 1997.

[14] E. P. Simoncelli. Statistical model for images: Com-
pression, restoration and synthesis. In31st Asilomar
Conference on Signal, Systems and Computers, 1997.


