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Abstract

This paper introduces a generic way to incorporate
color information into local, SIFT-like descriptors, in
view of image matching. First, a new color descriptor,
relying on local hue histograms, is introduced. Second,
we describe a procedure permitting the automatic set-
ting of matching parameters when matching images us-
ing both geometric and color information. Experiments
on a color image database show that our SIFT+Hue
combination performs significantly better than classical
color descriptors.

1 Introduction

Local image descriptors are ubiquitous computer vi-
sion tools that are routinely used in applications ranging
from image matching to scene understanding. Among
those descriptors, SIFTs [7] and its many variants are
known for having both strong invariance properties and
discriminative power. These descriptors encode the lo-
cal geometric information through histograms of (gray
level) gradient orientation and therefore disregard color
information. Even though the luminance channel of a
color image arguably conveys most of its geometric in-
formation, it is of interest to investigate how SIFT-like
descriptors may be enriched by color information and
to what extent this is useful for image matching.

Several approaches have been proposed in this di-
rection. A first trend is to compute SIFT descriptors
directly on color channels of images: HSV decompo-
sitions [3] or invariant color channel [4, 1, 12]. An
alternative approach is to enrich the geometrical SIFT
descriptor with some color information extracted in its
neighborhood, typically through local statistics. This is
the case in [2], where it is suggested to use cooccur-
rence histograms on normalized RGB channels, in [9],
where a local Luv descriptor is used or in [13], where,
among others, a local hue histogram is combined with
the SIFT descriptor. Performances of both these trends
highly depend on the considered database, on the type

of considered images and on the acquisition conditions.
However, a recent state of the art paper [12] concludes
to the superiority of the OpponentSIFT descriptor, ob-
tained by computing the original SIFT descriptor on the
opponent color channels of the image (see Section 2),
confirming a tendency already shown in a previous re-
view paper [4].

The goal of the present paper is twofold. First, we
show that by localizing the extraction of hue histograms
to the sectors of a SIFT-like descriptor, we get a very ef-
ficient yet simple to compute local color descriptor. In
particular, we show in an experimental section that this
descriptor compares favorably with OpponentSIFT for
image matching. Second, we show how to combine the
geometrical information (coded through SIFT-like de-
scriptors) and color information in the context of image
matching. This step is non-trivial, in particular because
the respective contribution of geometry and color may
strongly vary depending on the image or the particular
keypoint at hand. To the best of our knowledge, this
is the first proposition of a generic matching procedure
enabling an efficient combination of such features. It
relies on the a contrario methodology [5], and follows
the approach from [10]. For a given query descriptor,
the matching threshold is computed automatically and
adapts to the variety of geometric and chromatic simi-
larities between both the query and the database.

The plan of the paper is as follows. In Section 2,
we introduce geometric and color local descriptors. In
Section 3, we define the generic matching procedure for
the combination of geometry and color. Eventually, in
Section 4, we validate the proposed procedure through
experiments on a large color image database, involving
about three million comparisons between descriptors.

2 Local color descriptors

In this section, we introduce the local descriptors to
be considered in the paper. These are: a variation on the
classical SIFT descriptor, introduced in [10], the recent
OpponentSIFT [12] and a new hue-based descriptor.
SIFT-like descriptor In order to code the geometric
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information, we rely on the SIFT-like descriptors pro-
posed in [10], that are very similar to the original de-
scriptor from [7]. These are extracted from the lumi-
nance channel of the considered image. Descriptors are
computed around local keypoints (extrema of the Lapla-
cian pruned by a multi-scale Harris criterion). To each
keypoint, a circular region made of 9 concentric sectors
is considered. On each sector, a histogram of gradi-
ent orientations weighted by the gradient magnitude is
computed. The final descriptor is made of the concate-
nation of the 9 histograms. More details about these
descriptors may be found in [10].
OpponentSIFT The so-called OpponentSIFT have
been shown recently to be the most efficient for a
generic categorization application [12]. These are ob-
tained from the opponent color channels, defined as

O1 =
R−G√

2
, O2 =

R+G− 2B√
6

, O3 =
R+G+B√

3
.

(1)
Two opponent descriptors are obtained by computing
SIFT descriptors independently on channelsO1 andO2.
The descriptor computed on O3 is identical to the ge-
ometrical descriptor. In order for the descriptor to be
robust to a change in the color temperature of the il-
luminant, the R, G and B values from which opponent
are computed are locally normalized. For each chan-
nel, values are divided by their average over the descrip-
tor. This yields invariance with respect to any diagonal
transform of the RGB values, a reasonable approxima-
tion for a change of illuminant [13].
Hue descriptor In this paragraph, we introduce a new
local color descriptor obtained from the distribution of
hue values. This descriptor shares similarities with the
hue descriptor from [13], but is more local. To each
sector of the luminance SIFT-like descriptor, a hue his-
togram is computed. Hue values are weighted by satu-
ration values. The whole descriptor is the concatenation
of the resulting 9 histograms, as for geometric descrip-
tors. The interest of using 9 local histograms instead of
a global one will be demonstrated in the experimental
section.

We now specify the definitions of hue and satura-
tion that we use to build the descriptor. In the usual
HSV space [11], saturation is defined as 1− min(R,G,B)

max(R,G,B) .
This definition, whose normalization aims at keeping
the same dynamic whatever the luminance value, is un-
stable when the luminance is small. To overcome this
issue, we use a HSL-type space, similar to the one pro-
posed in [6], obtained by converting RGB coordinates
into cylindrical ones. In this space, saturation is defined
as S = max(R,G,B) − min(R,G,B) and hue is the
angle between the opponent color channels O1 and O2,
that is, H = arctanO2

O1
. In order to be robust to illu-

minant changes, the R, G and B values are first locally
normalized as for the opponent descriptors.

Observe that an advantage of this definition is that
hue is invariant under multiplication of the luminance
by a constant value. This quantity, and therefore the
corresponding local histograms, are thus rather inde-
pendent from the information conveyed by the SIFT de-
scriptors. This, as we will see in the next section, is an
important asset for multi-modality image matching.
Descriptor terminology The descriptors introduced
previously will from now on be denoted by ag for the
geometrical (SIFT-like) descriptor, ao1 and ao2 for the
OpponentSIFT and ah for the hue descriptor.

3 Combining descriptors for A contrario
matching

A generic method for matching descriptors In this
section, we recall the matching procedure introduced
in [10] for the matching of SIFT-like features. This
approach draws on the a contrario methodology [5]
to compute thresholds on the distances between local
descriptors, thereby automatically selecting which de-
scriptors should be matched. Thanks to a simple learn-
ing procedure, this matching methodology adapts to the
number and types of descriptors. This enables the exact
same procedure to be applied to a wide variety of im-
ages, in a more stable way (see [10]) than the classical
ratio of distances to the first and second neighbors [7].
Another asset of this approach is that no restriction of
matches to the nearest neighbor is required.

We consider Q a query image, from which NQ local
descriptors {aj}j=1...NQ

have been extracted. We also
consider a candidate image C from which Nc local de-
scriptors {bl}l=1...NC

have been extracted. We assume
that the distance D(aj ,bl) between a query and a can-
didate descriptors may be written as a sum of distances:

D(aj ,bl) =

M∑
k=1

dk(a
j , bl), (2)

where the dk, k = 1, . . . ,M rely on subparts of the de-
scriptors (for instance, in SIFT-like descriptors, dk is a
distance between gradient histograms of the kth sectors
of aj and bl).

In order to automatically set matching thresholds the
idea is then, for a given query descriptor aj , to com-
pute the probability law of the distance from aj to a
generic random candidate descriptor b. We then choose
a matching threshold T so that Pr(D(aj ,b) ≤ T ) is
small. In a nutshell, we match descriptors whose prox-
imity is hardly due to chance.

More precisely, the notion of generic descriptor is
defined as follows. For a given query descriptor aj , a
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random descriptor b is said to follow the null hypothe-
sis Hj

0 if distances dk(aj , b) are mutually independent
random variables, for k = 1, . . .M . Under this hypoth-
esis, the probability of observing a distance D(aj ,b)
smaller than a given threshold T is then∫ T

0

M∗
k=1

pjk(x)dx,

where ∗ refers to the convolution product and where pjk
is the probability density for the variable dk(aj , b). In
order to compute this integral, these probability den-
sities are learned as the empirical histograms of sub-
distances dk(aj , bi) when bi spans the candidate de-
scriptors (descriptors of the candidate image). The last
step to set the threshold is to define a number of false
alarms. It is given, for two given descriptors (aj ,bl)
by

NFA(aj ,bl) = NCNQ ·
∫ D(aj ,bl)

0

M∗
k=1

pjk(x)dx. (3)

It may be shown that if these quantities are uniformly
thresholded by ε, then, under the hypotheses Hj

0, the
average number of false matchings when testing the Nq

queries against the Nc candidates is bounded by ε. As
shown in [10], thresholding the NFA is more robust than
directly thresholding distances or distances ratios.
Geometry+color matching In what follows, we take
advantage of this generic formalism to combine geo-
metric (SIFT-like) and color information in view of im-
age matching. The previous approach relies on the hy-
pothesis that distances dk(aj , b) can be viewed as mutu-
ally independent random variables when b is a random
descriptor. The choice of the color-geometry represen-
tation should follow this hypothesis. It is reasonable
to assume that the hue information is independent from
the geometry. More precisely, we claim that hue de-
scriptors, as described in Section 2, are fairly indepen-
dent from the derivative distributions contained in the
SIFT and OpponentSIFT descriptors. On the contrary,
the gradient information of the luminance and oppo-
nent channels are clearly highly correlated and should
be treated as such.

For these reasons, the distance D is defined as a sum
of M = 10 distances dk chosen in the following way.
For k = 1, . . . 9,

dk(a, b) = w1

∑
s∈g,o1,o2

(cemd(as(k), bs(k)) , (4)

where as(k) denotes the kth gradient histogram of the
descriptor as, cemd is the circular earth mover’s dis-
tance introduced in [10] and w1 is a weighting parame-
ter. These distances represent gradient information av-
eraged on the luminance and opponent channels. Ob-
serve that in a random noise image, these distances,

computed on different subregions, can be seen as in-
dependent random variables. For k = 10, we define

d10(a, b) = w2

 9∑
j=1

cemd(ah(j), bh(j))

 . (5)

That is, we average hue distances on the differ-
ent sub-regions of the descriptor spatial support. This
choice is mainly heuristic and comes from the fact that
independence between sectors is generally less valid for
hue information than for geometric information. On the
other hand, as claimed before, this distance d10 is rea-
sonably independent from the dk, k = 1, . . . , 9.

Matches can then be validated by thresholding the
quality measure defined in Equation (3). As already
said, the learning of distance distributions yields a
matching procedure adaptive to both the query descrip-
tor and the candidate image. This is a fundamental
advantage for combining color and geometry. Indeed,
for a given query descriptor aj , learning pj10 enables to
adapt to the amount of saturated color this descriptor
contains. For instance, if it contains few or no color,
distribution pj10 will contain a strong mass at 0 (because
all gray descriptors in the candidate image will be at
a small distance d10). Therefore, the hue component
will have little influence on the value NFA(aj , .). Such
a descriptor will therefore be compared to other gray
descriptors mostly relying on geometry. On the other
hand, its large d10 distance to other colored descriptors
will penalize such matches.

4 Experiments

This section presents several image matching exper-
iments, in which the performances of various descriptor
combinations and various matching criteria are com-
pared. Experiments rely on a database made of 708
generic1 color photography, also used in [10]. Our
experimental protocol is similar to the one introduced
in [10]. Each image A of the database is matched with
A′, a modified version of itself undergoing an affine
transformation and a simulated change in the color tem-
perature of the illuminant, and B, an independent im-
age. A match between keypoints 2 inA andA′ is said to
be correct if the surface of the corresponding descriptors
overlap enough with the surface of the correct descrip-
tor (more than 50 %), a similar procedure as in [8, 10].
A match betweenA andB is always considered as false.
The total number of false matches is obtained as the ad-
dition of false matches in A′ and B. Performances are

1Images and can be found at http://perso.
telecom-paristech.fr/˜gousseau/db/imageDB.zip

2Since we wish to evaluate descriptors and matching procedures,
and not keypoints, these are extracted for each image A and then pro-
jected in A′.
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then evaluated through ROC-curves, plotted from the
overall number of good and false matches over the com-
plete image database, therefore involving several mil-
lion comparisons.
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NNAC SIFT+Hue

NNDR SIFT+Hue

NNDT SIFT+Hue

NNAC Opp.SIFT+Hue

NNDR Opp.SIFT + Hue

NNDT OppSIFT+Hue
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SIFT+Hue
Opp.SIFT+Hue

Figure 1. Comparison of several descrip-
tor combinations and matching criteria.

We use several combinations of descriptors and
matching criteria. Descriptors combinations are called
SIFT 3, SIFT + Hue and OpponentSIFT (using all three
opponent channels, that is, including the usual SIFT de-
scriptor). We also consider the concatenation of SIFT
and a hue descriptor, obtained by associating only one
weighted hue histogram to each descriptor region (in-
stead of one per sector) as proposed in [13]; the re-
sulting combination will be called SIFT + GlobalHue.
Eventually, we consider the simultaneous use of Op-
ponentSIFT + Hue. All histograms are quantized on
12 bins. In the sum (2), each descriptor is given the
same weight. In the case of OpponentSIFT + Hue, this
reads w1 = 1/36 (1/4 for each opponent descriptor,
each made of 9 sub-descriptors) and w2 = 1/4. In the
case SIFT+Hue, this yields w1 = 1/9 and w2 = 1/2.
We also consider the following matching criteria : the a
contrario criterion proposed in this paper (called AC), a
simple threshold on distances (called DT) and the clas-
sical threshold on the ratio between the first and second
match, introduced by D. Lowe [7] (called DR). Match-
ing results involving these different choices may be seen
on Figure 1.

Several conclusions may be drawn from these
curves. For image matching and with the proposed
protocol (relatively strong affine transforms and color
temperature changes) the combination SIFT + Hue per-
mits to consequently improve the performances of SIFT

3We rely in these experiments on our SIFT-like descriptors, de-
scribed in Section 2. For the sake of simplicity, we refer to them as
SIFT all the same.

alone for image matching. Second, the combination
SIFT + Hue yields significantly better results than both
OpponentSIFT and SIFT + GlobalHue. Last, the pro-
posed a contrario matching criteria is more stable than
the classical DT and DR criteria, which may be seen
from the global ROC curves. To conclude, we first
have introduced a new color descriptor relying on local
hue histograms, whose capacity to enrich SIFT as well
as Opponent SIFT descriptors has been demonstrated.
This is shown by using a generic matching procedure,
relying on the a contrario methodology and some in-
dependence assumptions between descriptors. Strong
assets of the resulting procedure are its adaptivity as
well as its ability to automatically set thresholds on dis-
tances.
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