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Abstract This paper is devoted to the study of the Monge-
Kantorovich theory of optimal mass transport, in the special
case of one-dimensional and circular distributions. More
precisely, we study the Monge-Kantorovich problem be-
tween discrete distributions on the unit circle S1, in the case
where the ground distance between two points x and y is de-
fined as h(d(x, y)), where d is the geodesic distance on the
circle and h a convex and increasing function. This study
complements previous results in the literature, holding only
for a ground distance equal to the geodesic distance d . We
first prove that computing a Monge-Kantorovich distance
between two given sets of pairwise different points boils
down to cut the circle at a well chosen point and to com-
pute the same distance on the real line. This result is then
used to obtain a dissimilarity measure between 1-D and cir-
cular discrete histograms. In a last part, a study is conducted
to compare the advantages and drawbacks of transportation
distances relying on convex or concave cost functions, and
of the classical L1 distance. Simple retrieval experiments
based on the hue component of color images are shown to
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illustrate the interest of circular distances. The framework is
eventually applied to the problem of color transfer between
images.
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1 Introduction

The theory of optimal transportation was first introduced by
Monge [27] in its Mémoire sur la théorie des déblais et des
remblais (1781) and rediscovered by Kantorovich [19] in
the late ’30s. The Monge-Kantorovich problem can be de-
scribed in the following way. Given two probability distri-
butions f and g on X and c a nonnegative measurable cost
function on X ×X, the aim is to find the optimal transporta-
tion cost

MKc(f, g) := inf
π∈Π(f,g)

∫∫
x,y

c(x, y) dπ(x, y) (1)

where Π(f,g) is the set of probability measures on X × X

with marginals f and g (such measures are called trans-
portation plans). The existence, uniqueness and behavior of
optimal transportation plans has been thoroughly studied in
the last decades [1, 13, 24, 25, 44, 45].

This framework is nowadays widely used in many fields
of research, such as cosmology [10], meteorology [7], fluid
mechanics or electromagnetic (see [1] for a complete re-
view).

The use of the Monge-Kantorovich framework in image
processing and computer vision has been popularized by
Rubner et al. [40] for image retrieval and texture classifi-
cation with the introduction of the so-called Earth Mover’s
Distance (EMD). Although the definition of the EMD is
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slightly different from the original Monge-Kantorovich for-
mulation, these are equivalent when considering distribu-
tions having the same total weight. In the following years
and up to now, a large body of works has relied on the use
of such distances for image retrieval, see e.g. [12, 15, 20,
23, 34, 48]. This extensive use of transportation distances is
largely due to their robustness when comparing histograms
or discrete distributions. For the same reason, these dis-
tances are also successfully used to compare local features
between images, see [21, 33–36]. Other uses of transporta-
tion distances for images include: image registration [16],
image morphing [49] or junction and edge detection [39].

A strong limitation of transportation distances is their
computational cost. Standard approaches quickly become
intractable when dealing with a large amount of data in di-
mensions more than two. Indeed, the simplex algorithm, in-
terior point methods or the Hungarian algorithm all have a
complexity of at least O(N3) (N being the size of the data,
either the number of samples or the number of histogram
bins). Therefore, several works have proposed to speed up
the computation or the approximation of optimal transport,
in particular in the field of image processing, where the
amount of data is often massive, see [11, 17, 21, 42]. One
particular case in which the computation is elementary and
fast is the case of one-dimensional histograms, for which it
is well known that optimal transport, in the case of a con-
vex cost function, is equivalent to the pointwise difference
between cumulative distribution functions [44]. A question
that arises is then the possibility to perform such simple and
efficient computations in the case of circular histograms, i.e.
histograms in which the first and last bins are neighbors.

Indeed, circular histograms are especially important in
image processing and computer vision. First, the local ge-
ometry is often efficiently coded by the distribution of gra-
dient orientations. Such representations offer the advantage
of being robust to various perturbations, including noise and
illumination changes. This is in particular the case for the
well known SIFT [22] descriptor and its numerous variants.
In such a situation, the comparison of local features reduces
to the comparison of one-dimensional circular histograms.
Other local features involving circular histograms include
the so-called Shape Context [3]. Second, the color content
of an image can be accounted for by its hue, in color spaces
such as HSV or LCH. In such cases again, information is
coded in the form of circular one-dimensional histograms.
Several works in the field of computer vision have explicitly
addressed the use of transportation distances in the case of
circular histograms, either using thresholded concave cost
functions [33, 34] or L1 cost functions [33, 35, 36].

Contributions The first contribution of this paper is to
give a general formulation of the optimal transportation cost
when the ground cost is a convex function of the Euclidean

distance on the circle. This formulation gives a practical way
to compute distances in linear time in this case. This study
extends previous results holding for L1 cost functions, ei-
ther between sets of points [4, 5, 43, 46, 47] or between
discrete histograms [33–36]. Second, we provide various
experiments dealing with image manipulation or retrieval,
for which the interest of circular transportation distances is
shown. We conclude with a discussion (that actually applies
to both circular and non-circular cases) on the respective in-
terest of transportation distances with either convex or con-
cave cost functions and the classical L1 bin-to-bin distance.1

It is shown that the choice between these three family of dis-
tances should essentially be driven by the type of perturba-
tion the histograms are likely to suffer from.

Outline The paper is organized as follows. In Sect. 2, the
optimal transportation flow of the Monge-Kantorovich prob-
lem is investigated in the circular case for any convex cost
function. The definition of this problem being recalled, a
new formula is introduced and a sketch of the proof is pro-
posed (details of the proof are provided in the Appendix).

In Sect. 3, several experiments are performed to analyze
the practical interest of such a dissimilarity measure for var-
ious cost functions described in Sect. 3.1. First, a compari-
son of time complexity with other algorithms proposed in
literature is given in Sect. 3.2. Then, in Sect. 3.3, a dis-
cussion about the robustness and the limitations of Monge-
Kantorovich distances for histogram comparison is given,
along with some simple experiments of image retrieval.
Eventually, an application to hue transfer between images
is proposed in Sect. 3.4.

2 The Monge-Kantorovich Transportation Problem on
the Circle

In this section, we present some results on the Monge-
Kantorovich transportation cost between two circular his-
tograms. In particular, we give an analytic formulation of
this cost when the ground cost between points on the circle
can be written as an increasing and convex function of the
Euclidean distance along the circle.

2.1 Definitions

Consider two discrete and positive distributions

f =
N∑

i=1

f [i]δxi
and g =

M∑
j=1

g[j ]δyj
, (2)

1The term “bin-to-bin” coins the fact that with such a distance, only
bins having the same index are compared.
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where {x1, . . . , xN } and {y1, . . . , yM} are two sets of points
on a subset Ω of R

K . Assume that these distributions are
normalized in the sense that

∑N
i=1 f [i] = ∑M

j=1 g[j ] = 1.
Let c : Ω × Ω �→ R

+ be a nonnegative cost function (called
ground cost), the quantity

MKc (f, g) := min
(αi,j )∈M

N∑
i=1

M∑
j=1

αi,j c(xi, yj ), with (3)

M =
{
(αi,j ) ∈ R

N × R
M ;αi,j ≥ 0,

∑
i

αi,j = g[j ],

∑
j

αi,j = f [i]
}
, (4)

is called the optimal transportation cost between f and g for
the ground cost c. Matrices (αi,j ) in M are called transport
plans between f and g. If (αi,j ) is optimal for (3), we say
that (αi,j ) is an optimal transport plan.

Let d be a distance on Ω and assume that the ground
cost can be written c(x, y) = d(x, y)λ, with the convention
d(x, y)0 = 1x �=y . It can be shown [44] that

• when λ ∈ [0,1[, MKdλ is a distance2 between probability
distributions;

• when λ ∈ [1,∞[, (MKdλ(f, g))
1
λ is also a distance be-

tween probability distributions.

These distances are called Monge-Kantorovich distances, or
Wasserstein distances. For λ = 1, MKd is also known as the
Kantorovich-Rubinstein distance, or in computer vision as
the Earth Mover’s Distance (EMD), as introduced by Rub-
ner in [40].3

Computing optimal transportation costs is generally time
consuming. The main exception is the case of the real line: if
Ω = R, and if the cost c is a convex and increasing function
of the Euclidean distance |x − y|, then the optimal transport
plan between f and g is the monotone rearrangement of f

onto g, which sends the mass starting from the left. This
result is usually false if c is not a convex function of the
Euclidean distance on the line.

In the following, we take interest in the case where Ω

is a circle S1 of perimeter 1, and where c is an increasing
function of the geodesic distance d along the circle. In par-
ticular, we will see that the previous result on the line can be
adapted in this case. As mentioned in the introduction, the
interest for the circle S1 is motivated by its common use to
describe images, e.g. to represent color or orientation.

2Throughout this paper, a “distance” function is a function that satis-
fies the three following properties: positive definiteness, symmetry and
triangle inequality.
3Observe that the EMD has been introduced by Rubner [40] for unbal-
anced problems, for which f and g do not necessarily have the same
total weight.

2.2 Optimal Transportation for Convex Functions of the
Distance

The main result of this section is an analytic formulation
of the optimal transportation cost between the discrete dis-
tributions f and g on the circle S1 when the ground cost
c can be written c(x, y) = h(d(x, y)), with h : R → R

+
an increasing and convex function and d the geodesic dis-
tance along the circle. This formulation generalizes to con-
vex cost functions different results presented in [4, 5, 33–36,
43, 46, 47]. In the following, we use the same notations for
points on the circle and their coordinates along the circle,
regarded as variables taking their values on the reduced in-
terval [0,1[ (modulo 1). It follows that d can be written

d(x, y) = min(|x − y|,1 − |x − y|). (5)

The distributions f and g on S1 can be seen equivalently as
periodic distributions of period 1 on R.

Let us define the cumulative distribution function of f on
[0,1[ as

∀y ∈ [0,1[, F (y) =
N∑

i=1

f [i] · 1{xi∈[0,y[}. (6)

F is increasing and left continuous, and can be extended on
the whole real line with the convention F(y + 1) = F(y) +
1. This boils down to consider f as a periodic distribution
on R. We define also the pseudo-inverse of F as F−1(y) =
inf{t; F(t) > y}. The interest of these definitions lies in the
next result.

2.2.1 An Analytic Formulation of Optimal Transportation
on the Circle

Theorem 1 Assume that d is given by (5) and that the
ground cost c can be written c(x, y) = h(d(x, y)), with
h : R → R

+ an increasing and convex function. Let f and g

be two discrete probability distributions on the circle, with
cumulative distribution functions F and G, and let Gα de-
note the function G − α. Then

MKc (f, g) = inf
α∈R

∫ 1

0
h(|F−1 − (Gα)−1|) . (7)

Idea of the proof This result is a generalization of the real
line case, where it is well known [44] that the global trans-
portation cost between two probability distributions f and g

can be written

MKc (f, g) =
∫ 1

0
h(|F−1 − G−1|) . (8)

Figure 1 illustrates this formula for the special case c(x, y) =
|x − y|. A proof of (7) in a continuous setting has been
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proposed very recently in [8], where it is shown that this
equation holds for any couple of probability distributions.
However, this proof involves some complex notions of mea-
sure theory which are not needed in the discrete setting.
For the sake of completeness and simplicity, we provide in
the Appendix a simpler proof of these theorem in the case
of discrete distributions. The proof first focus on the case
where f and g can be written as sums f = 1

P

∑P
k=1 δxk

,

and g = 1
P

∑P
k=1 δyk

, where {x1, . . . , xP } and {y1, . . . , yP }
are discrete sets of points on the unit circle S. When the
points are all pairwise different, we show that the circle can
always be “cut” at some point, such that computing the op-
timal transport between f and g boils down to compute an
optimal transport between two distributions on the real line
(see Fig. 2). This result is proven first for strictly convex
functions h and for any optimal transport plan, then for any
convex function h and a well chosen optimal plan. Once the
problem has been reduced to the real line, formula (7) fol-
lows from the fact that the optimal transport on R is given by
the ordering of the points. The generalization of this formula
to any kind of discrete distribution results from the continu-
ity of the global transport cost MKc (f, g) in the values of
the masses and their positions on the circle.

In practice, formula (7) can be computed for any convex
function h at a precision ε with a complexity in O((N +
M) log 1

ε
) [8], where N and M are the respective numbers

of points in the distributions f and g (i.e. the number of
masses in the distributions).

Fig. 1 Using c(x, y) = |x −y| on the real line, the optimal transporta-
tion plan between two discrete histograms f and g is the L1 distance
of the difference between the cumulative histograms F and G (for-
mula (8))

2.2.2 The Case c(x, y) = d(x, y)

If h is a power function x �→ xλ, with λ ≥ 1, Theorem 1
gives us a way to compute Monge-Kantorovich distances
between f and g:

(MKdλ (f, g))
1
λ =

(
inf
α∈R

∫ 1

0
|F−1 − (Gα)−1|λ

) 1
λ

. (9)

Observe that the infimum of (9) is obtained for a value α̂

which depends on λ. Moreover, the optimal cut on the circle
α̂ is shown in the Appendix (see (27)) to belong to the set of
N values {F(x) − G(x), x ∈ [0,1[}.

In the case λ = 1 (i.e. when the ground cost c is the dis-
tance d along the circle), this result can be rewritten

MKd (f, g) = inf
α∈R

‖F − G − α‖1 = inf
α∈R

∫ 1

0
|F − G − α|,

(10)

where we denote by ‖.‖1 the L1 norm on [0,1[.
In practice, since F −G is piecewise constant for discrete

distributions, the infimum of (10) can be computed easily
by computing the weighted median of the (finite number
of) values F(t) − G(t) when t ∈ [0,1[, the weights being
the lengths of the intervals on which F − G is constant. In
practice, this yields a O(N) exact algorithm to compare two
normalized distributions of N points with different masses
using linear time weighted median algorithms (see [14] for
a review).

To the best of our knowledge, formulation (10) has been
known since [46], where it is proved for sets of points
with unitary masses on the circle. A similar result is shown
in [4, 5] for the Kantorovich-Rubinstein problem, which is
known to be equivalent (see [44], chapter 1) to the Monge-
Kantorovich problem when the cost c(x, y) is a distance,
which is true for λ = 1 (but false for λ > 1). All of these
papers notice that computing (10) can be done with a O(N)

algorithm.
In the case of circular histograms, i.e. discrete circular

distributions living on a uniform grid of N bins, bins 0 and
N − 1 are neighbors. If the cost c is c(i, j) = min(|i −

Fig. 2 When the distributions
are sums of unitary different
masses, and when the ground
cost is a nonnegative, increasing
and convex function of the
distance along the circle, there is
a (non-necessarily unique) “cut”
on the circle such that the
optimal transportation on S1

boil down to optimal
transportation on the real line
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j |,N − |i − j |) along the circle, formula (10) can be rewrit-
ten

MKd (f, g) = inf
α

N−1∑
i=0

|F [i] − G[i] − α| = ‖F − G − μ‖1,

(11)

where ‖.‖1 is the discrete L1 norm and where μ is the me-
dian of the set of values {F [i] − G[i],0 ≤ i ≤ N − 1}. This
median value can be computed in linear time. The corre-
sponding linear algorithm is presented in particular in [33],
where the distance between histograms is designed by the
acronym EMDMOD.

An equivalent distance is proposed independently of [33]
in [35, 36] and designed by the acronym CEMD, for Circu-
lar Earth Mover’s Distance. Indeed, it is easily checked that
the distance defined by formula (11) is equivalent to CEMD,
defined as

CEMD(f, g) = min
k∈{0,...,N−1} ‖Fk − Gk‖1, (12)

where Fk[i] is defined as F [i] − F [k] if i ∈ {k, . . . ,N −
1} and F [i] − F [k] + 1 if i ∈ {0, . . . , k − 1} (the definition
being similar for Gk by replacing f by g). In other words,
the distance MKd(f, g) is also the minimum in k of the L1

distance between Fk and Gk , the cumulative histograms of
f and g starting at the kth quantization bin.

2.3 Optimal Transportation for Concave Functions of the
Distance

In practice, it may be useful to choose the ground cost c

as a nonnegative, concave and increasing function h of the
ground distance d . For instance, for the task of image re-
trieval, several authors [15, 39, 40] claim that good results
can be achieved with a function

h(t) = 1 − e−τ t . (13)

Notice that if h is increasing, concave and such that h(0) =
0, it is easy to show that c = h(d) is also a distance, and
thus MKc is also a distance between probability distribu-
tions. Another property of concave costs is that they do not
move the mass which is shared by the distributions [44]: if
f and g are histograms, the problem is reduced to the trans-
port of (f − g).1f −g≥0 onto (g − f ).1f −g<0, which have
disjoint supports.

However, in the case of such concave functions h, Theo-
rem 1 does not apply, and there is no general and fast al-
gorithm to compute corresponding optimal transportation
costs, either on the real line, or on the circle. In most cases,
we are reduced to use linear programming, i.e. simplex
or interior point algorithms, which are known to have at

best a O(N2.5 log(NCmax)) complexity to compare two his-
tograms on N bins [2, 29] (where Cmax is the maximal cost
between two bins). We describe in the following some spe-
cial cases of concave function h for which this complexity
can be reduced.

2.3.1 L1 as a Monge-Kantorovich Distance

If the distributions f and g are discrete histograms on N

bins, and if h(t) = 1t �=0 (one everywhere except at 0), then
the Monge-Kantorovich distance between f and g is [44]

MK1d �=0(f, g) = 1

2

N∑
i=1

|f [i] − g[i]| = 1

2
‖f − g‖1. (14)

Indeed, since h is a concave function, an optimal plan (αi,j )

between f and g do not move the mass shared by the distri-
butions, which means that αi,i = min(f [i], g[i]). Now, ob-
serving that

∑
j αi,j = f [i] for (αi,j ) ∈ M,

MK1d �=0(f, g) = min
(αi,j )∈M

∑
i,j

αi,j d(i, j)

= min
(αi,j )∈M

∑
i

∑
j �=i

αi,j

=
∑

i

(f [i] − αi,i)

=
∑

i

(f [i] − min(f [i], g[i]))

=
∑

i

(f [i] − g[i])1f [i]≥g[i] = 1

2
‖f − g‖1.

In other words, the L1 distance between two normalized
histograms f and g is proportional to a Monge-Kantorovich
distance for the concave function 1t �=0.

2.3.2 Thresholded Distances

In [33, 34], Pele and Werman consider thresholded ground
distances, using h(t) = min(t, T ), with T a given threshold.
Up to a multiplicative factor, this function h can almost be
seen as a discrete version of (13), where τ is chosen pro-
portional to T . They show that in this case, the computation
of the optimal cost can be solved by a min-cost-max-flow
algorithm, whose complexity is smaller than classical linear
programming algorithms. Observe that T = 1 corresponds
to the case studied in Sect. 2.3.1. This thresholded distance
is used in [33] with T = 2 to compare unbalanced circu-
lar histograms (in the sense that their total masses are not
necessarily equal). In order to take into account the posi-
tive difference Δ of total mass between two non normalized
histograms f and g, a new point is added to the smallest
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histogram f , with weight Δ. The ground distance between
this point and all other points is set to a constant β times
the maximum ground distance. This variant of the Earth
Mover’s Distance is denoted by ÊMD in [33]. In what fol-
lows, we show the connection between this distance and the
classical L1 bin-to-bin distance.

Using the thresholded distance min(d,2), the cost c(i, j)

can take only three values: 0 if i = j , 1 if i and j are neigh-
bors, and 2 in other cases. If we note αi,j the quantity of
mass going from bin i of f to bin j of g in the optimal
transport plan, then

ÊMD(f, g)

=
N∑

i=1

{( ∑
|j−i|≥2

2αi,j

)
+ αi,i+1 + αi,i−1

}
+ 2βΔ. (15)

Now, the thresholded distance is a concave function of d ,
which implies that all the shared mass remains in place: for
a given i,

∑
j �=i αi,j = (f [i] − g[i])1f [i]≥g[i]. This implies

that

ÊMD(f, g) = 2
N∑

i=1

(f [i] − g[i])1f [i]≥g[i]

−
N∑

i=1

(αi,i+1 + αi,i−1) + 2βΔ. (16)

Observe that for unbalanced histograms f and g, ‖f −
g‖1 = 2

∑N
i=1(f [i] − g[i])1f [i]≥g[i] + Δ. It follows that

ÊMD(f, g) = ‖f −g‖1 −
N∑

i=1

(αi,i+1 +αi,i−1)+Δ(2β −1).

(17)

If β = 0.5 or if f and g have the same total mass, then

ÊMD(f, g) = MKmin(d,2)(f, g)

= ‖f − g‖1 −
N∑

i=1

(αi,i+1 + αi,i−1). (18)

Now, notice that αi,i+1 is different from 0 only if f [i] ≥
g[i] (otherwise, all the mass in i stay in place) and f [i +
1] < g[i +1] (otherwise the mass g[i +1] is already “filled”
by a part of f [i + 1]). In other words, the only points where
the quantities αi,i−1 or αi,i+1 are different from 0 are the
points where the densities of f and g are crossing.

It follows that, when the histograms are normalized, the
thresholded distance ÊMD = MKmin(d,2) is often very close
to L1, in particular when N is large and when histograms
are crossing at only a few places, as we will see in the ex-
periments of Sect. 3.3.

In order to allow larger ground displacements, the use of
values of T larger than 2 is proposed in [34]. The authors
of this paper propose an algorithm that can handle any cost
function and multi-dimensional histograms. This is made at
the price of a non-linear time complexity and necessitates a
compromise in the tuning of T (smaller values yield faster
computations). We will come back on the use of such con-
cave cost functions in the experimental section.

In the next section, we investigate the practical interest of
circular Monge-Kantorovich distances over the classical L1

bin-to-bin distance.

3 Experiments

This section is devoted to an experimental analysis of the
previous optimal transportation framework. At this point it
should be underlined that the following experimental study
is proposed to illustrate the differences between various cost
functions, and is not meant to demonstrate the superiority
of a particular one. On the contrary, it will be shown in
the experiments that performance may vary considerably de-
pending on the dominant perturbation on histograms and the
ground distance chosen.

In the following, we first introduce (Sect. 3.1) the cost
functions compared in this section. We then investigate the
practical time complexity involved by the computation of
the Monge-Kantorovich measures according to the ground
distance chosen (Sect. 3.2). A synthetic experiment is pro-
posed in Sect. 3.3 to compare the relative robustness of con-
vex and concave cost functions to various perturbations on
histograms, followed by some illustrations on small exam-
ples from color image retrieval. An application to the hue
transfer between images is finally studied in Sect. 3.4.

3.1 Cost Functions

The following cost functions are displayed on Fig. 3:

• Monge-Kantorovich measures with convex ground func-
tions
◦ MKdp , the Monge-Kantorovich measure4 using dp

ground cost with p = 1, 2 and 3. The case p = 1
is equivalent to the Circular Earth Mover Distance
(CEMD) defined in formula (11);

◦ MKHτ , the Monge-Kantorovich measure using a Hu-
ber cost function with parameter τ = 10:

c(x, y) =
{

d(x, y)2 if d(x, y) ≤ τ

τ(2d(x, y) − τ) otherwise
. (19)

4We refer to MKdp transportation cost as “measure”, since a normal-
ization is required (see (9)) to get a distance.
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Table 1 Comparison of average computation times for various Monge-Kantorovich measures between circular and one-dimensional histograms
with N ∈ {10,100,1000} bins

Distance L1 CEMD (MKd ) MKd2 MKd2 MKd2 MKT 10 MKT 2

Formulation Eq. (14) Eq. (11) Eq. (10) [41] [30] [30] [31]

N = 10 bins

Average CPU time (in seconds) 5 × 10−8 3 × 10−7 1.6 × 10−6 2.7 × 10−5 1.1 × 10−4 1.1 × 10−4a 1.45 × 10−7

CPU time ratio (w.r.t L1) 1 6 32 1740 2200 2200 3

N = 100 bins

Average CPU time (in seconds) 6 × 10−7 5 × 10−6 1.9 × 10−5 4.6 × 10−3 2.5 × 10−2 3.8 × 10−3 1.2 × 10−6

CPU time ratio (w.r.t L1) 1 8.3 32 7.7 × 103 4.2 × 104 6.3 × 103 2

N = 1000 bins

Average CPU time (in seconds) 7 × 10−6 6 × 10−5 3.4 × 10−4 3.2 �100 0.37 1.2 × 10−5

CPU time ratio (w.r.t L1) 1 8.6 49 4.6 × 105 1.4 × 107 5.3 × 104 1.7

aNote that with N = 10 bins histograms, the distance MKT 10 is equivalent to MKd

Fig. 3 Convex and concave cost functions used in this experimental
section: Minkowski distance functions (referred to as dλ, with λ = 1,2
and 3), Huber cost function (H10), exponential cost function (Eτ , with
τ = 1,2 and 5) and truncated distances (T τ , with τ = 2 and 10)

• Monge-Kantorovich distances with concave ground func-
tions
◦ MKT τ defined when using a thresholded cost func-

tion (see Sect. 2.3.2), as introduced in [33, 34], that
is c(x, y) = min

{
d(x, y), τ

}
with parameter τ = 2 and

10;
◦ the L1 bin-to-bin distance, which can be seen as the

Monge-Kantorovich distance with 1d �=0 as ground cost
(i.e. equivalent to MKT 1, see Sect. 2.3.1);

◦ MKEτ defined from formula (3) when using the expo-
nential cost function (as used for instance in [15, 39,
40]), that is c(x, y) = 1 − exp{−τ · d(x, y)} with pa-
rameter τ = 1, 2 and 5.

In the following paragraph, we provide a comparative
study of computation times of the different distances in-
volved in this experimental study.

3.2 Implementation and Computation Time

An interesting aspect of the proposed closed-form solu-
tion (7) for computing Monge-Kantorovich transportation
costs with convex ground distances is that it can be easily
computed at a relatively small computational expense when
compared with the classical L1 distance.

In Table 1 are provided average computation times for
the comparison of one-dimensional, normalized and cir-
cular histograms using Monge-Kantorovich measures with
the various ground cost functions described in the pre-
vious paragraph. These average computation times have
been estimated over 1000 runs on a laptop with Intel Core
T9600 @ 2.80 GHz and 4 GB RAM, using C program-
ming implementation, between pairs of histograms with
N = {10,100,1000} bins. The list of the different Monge-
Kantorovich transportation costs and the corresponding al-
gorithms is given below:

• The linear time L1 distance (equivalent to MKT 1 and
MK1d �=0 );

• The linear time CEMD distance (equivalent to MKd ) using
formula (11);

• The MKd2 distance using formula (10);
• The MKd2 distance using the code of [41] based on a sim-

plex algorithm;
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• The MKd2 distance using the code of [30] based on a min-
cost-max-flow algorithm;

• The MKT 10 distance using the code of [30] based on a
min-cost-max-flow algorithm;

• The linear time MKT 2 distance using the code of [31].

Firstly, observe that the MKd distance (CEMD in for-
mula (11)) only requires the extra computation of a median
value5 in comparison with the L1 distance, which results in
an order of magnitude increase in execution time. The com-
plexity for computing the MKd2 distance then differs in that
it also requires the construction of pseudo-inverses to find
the optimal cut on the circle (see formulas (10) and (7))
which again results in an order of magnitude increase in
execution time. In these experiments, pseudo-inverses are
estimated using the same quantization N as in the origi-
nal histograms. Note that the computation times of Monge-
Kantorovich measures MKd3 and MKH10, with respectively
d3 and Huber convex cost functions, have been omitted for
the sake of simplicity, since those are almost the same than
the computation time of MKd2 .

Secondly, observe that the optimal transportation flow
corresponding to the Monge-Kantorovich distance with non-
convex ground costs can not be directly computed (see
Sect. 2.3). The solving of such linear programming prob-
lem requires the use of algorithmic approaches such as the
simplex algorithm, the interior point method or the min-
cost-max-flow algorithm. Even if such methods are more
generic (algorithms proposed by Rubner et al. [41] and Pele
et al. [30] can both deal with multi-dimensional histograms
and with any ground costs), it should be noted that it im-
plies much more computation time (several orders of mag-
nitude) and also memory limitations. Note that the compu-
tation times of Monge-Kantorovich measures MKEτ , with
exponential concave cost function, have been omitted for the
sake of simplicity, since those are almost the same than the
computation time of MKd2 when using the simplex code of
[41] or the min-cost-max-flow code of [30].

Observe that for the special case of the MKT 2 distance,
the first code of Pele et al. [31] is in linear time. As previ-
ously discussed in Sect. 2.3.2, experimental study will show
(Sect. 3.3) that its performance is almost the same as the L1

distance, which therefore strongly limits its practical interest
when the number of histogram bins increases.

3.3 Comparative Analysis of Transportation Distances for
Histogram Comparison

Now that we have discussed the advantage of the proposed
framework according to time complexity considerations, we

5Here computed with the linear time partial quicksort algorithm de-
scribed in [14].

intend to investigate its practical interest for histogram com-
parison with some small-scale experiments. More precisely,
the following comparative analysis is aimed at identifying
situations where convex cost functions outperform classi-
cal concave cost functions, and situations in which concave
costs are more interesting.

3.3.1 Synthetic Experiments

This paragraph provides a general discussion on the relative
advantages of Monge-Kantorovich measures using convex
cost functions, those using concave cost functions, and the
L1 bin-to-bin distance. The discussion is not specific to the
circular case and will be made from non-circular examples.

Class of perturbations Several experiments (including the
ones to be presented further) have led us to observe that
mainly two different kinds of perturbation on histogram
(illustrated in Fig. 4) are involved when using Monge-
Kantorovich measures with convex or concave cost func-
tions:

• Shifts variability: This happens when the modes of a
histogram are shifted (see Fig. 4(a) for an illustration).
For instance, this phenomenon appears with geometrical
changes when dealing with orientation histograms;

• Weights variability: This describes the fact that the rel-
ative weights of the modes in a histogram changes (see
Fig. 4(b) for an illustration). For example, this phe-
nomenon may happen in a color histogram of an image
when the sizes of object change.

Of course other phenomena can affect the performance of
the Monge-Kantorovich measures (such as the quantization,
the sampling process, or the presence of outlier noise). How-
ever, these perturbations cause nearly the same performance
degradation, whatever the cost used. On the contrary, as
it will be demonstrated in the following experiments, the
shift and weight variabilities have a different impact on the
Monge-Kantorovich measures’ efficiency depending on the
cost functions chosen.

Experimental settings We consider the Monge-Kantoro-
vich transportation costs defined in Sect. 3.1 (Fig. 3):
MKdp , with p = 1,2,3, MKHτ , with τ = 10, MKT τ , with
τ = 2,10, L1 (equivalent to MKT 1) and MKEτ , with τ =
1, 2, and 56 is computed with the linear time algorithm of
Pele [31]. Recall that among these distances, only L1, MKd

and MKT 2 can be computed in linear time. Observe also
that, these distances in a sense produce a complete range

6The Earth Mover’s Distances with exponential and truncated cost
functions have been computed using the codes kindly provided by
Y. Rubner [41] and O. Pele [30]. The special case of MKT 2.
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Fig. 4 Illustration of the two
classes of perturbations involved
in histogram comparison: shift
variability (left) and weight
variability (right)

Fig. 5 The two classes A and B

are defined as a Gaussian
mixture model. For each class,
the two Gaussian distributions
are defined with 4 parameters
(means and
standard-deviations), plus a
weighting parameter p

of alternatives between bin-to-bin distances (such as L1)
and Monge-Kantorovich associated with highly convex cost
functions (e.g. MKd3 ). This fact will be quite clear in the
following synthetic experiments.

These experiments consist, in order to study the assets
of the various distances, to perform simple retrieval experi-
ments from synthetic histograms (mixture of two Gaussians)
in the presence of two types of aforementioned perturba-
tions: shifts in the positions of modes on the one hand, and
variation in the weight of modes on the other hand (see
Fig. 4).

We assume that elements to be compared belong to two
classes A and B , and that each element is represented by one
N -bins histogram. We model the histograms as the mixture
of two Gaussians. Writing c ∈ {A,B} for the class, these
two Gaussians have weights pc and (1 −pc), means μc

1 and
μc

2, and standard deviations σ c
1 and σ c

2 (see Fig. 5). In the
following experiments, parameters are set as follows

• Histogram construction Quantization of histograms:
N = 100 bins; Number of samples for Gaussian mixture
data generation: 1,000 samples in [0,1]; Number of his-
tograms per class: 1,000 histograms.

• Gaussian mixture parameters Weights: pA = 0.6 and
pB = 0.8; Means: μA

2 = μB
2 = 0.2 and μA

2 = μB
2 = 0.7;

Standard-deviations: σA
1 = σB

1 = σA
2 = σB

2 = 0.05.

In the following experiments, the robustness of trans-
portation distances for histogram comparison are evaluated
by displaying classical performance curves. For a given dis-
similarity measure D, a retrieval performance curve is ob-
tained by using each histogram of the dataset as a query and

finding the r most similar histograms for D. For each value
of r , we hence compute

• the recall, which is defined as the average, when the query
spans the database, of the ratio between the number of
correctly retrieved histograms among r and the size of
the query class;

• the precision, which represents the average on the whole
database of the rate of true positives among the r most-
similar histograms.

The curves (r , recall) and (recall, precision) are drawn in
the following experiments for various optimal transportation
measures with respect to the two different kinds of variabil-
ity that are simulated with the Gaussian mixture model.

Histogram shift We introduce random shifts in the his-
togram by modeling the means μc

1 as random variables.
We choose μA

1 = 0.2 + εμ, where εμ is uniformly drawn
in [−0.1;0.1]. Some of such generated histograms are su-
perposed in Fig. 6(a). The precision-recall curves resulting
from this two-class retrieval problem are plotted for differ-
ent dissimilarity measures in Fig. 6(b). One first observes
that distances MKdp , relying on convex cost functions, give
the best results, the larger p the better. Second, it can be
seen that transportation distances with concave cost func-
tion yields less efficiency. First are distances relying on an
exponential cost. Eventually using transportation distances
with truncated L1 distances provides poor results, similar to
those obtained with the L1 distance. This fact is in agree-
ment with the analysis made in Sect. 2.3.2.
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Fig. 6 Two-class retrieval problem with intraclass shift variability.
The effect of the perturbation on histograms is shown in (a). The
Precision-Recall curves are displayed in (b) for several transporta-
tion measures obtained with either convex or concave ground cost:
MKT τ refers to as the transportation distance with truncated cost func-
tion according to the threshold τ ∈ {2,10}; MKexp τ corresponds to

the transportation distance with exponential cost function using pa-
rameter τ ∈ {1,2,5}; MKdp is the Monge-Kantorovich measure with
p ∈ {1,2,3} and MKH10 is the Monge-Kantorovich measure with Hu-
ber cost function. In addition the curve obtained with L1 metric, which
is equivalent to MKT 1 (see Sect. 2.3.1) is also shown

Fig. 7 Two-class retrieval
problem with intraclass weight
variability. The effect of the
perturbation on histograms is
shown in (a). The
Precision-Recall curves are
displayed in (b), plotted for
different ground costs

Histogram weight variability In the second experience, in-
traclass weight variability are now simulated by modeling
weights as random variables: pA

1 = 0.6 + εp , where εp is
uniformly drawn from [−0.1;0.1]. Some of such generated
histograms are superposed in Fig. 7(a). The precision-recall
curves resulting from this two-class retrieval problem are
plotted for different dissimilarity measures in Fig. 7(b). One
observes that with this kind of perturbation, transportation
distances with L1 cost function are less robust than the L1

distance. This time, it can be seen that distances with con-
cave cost function yield better retrieval performance. Using
thresholded cost functions again provides results that are
very similar to those obtained with the L1 distance. In the

meantime, distances relying on exponential cost functions
are still half-way between convex cost functions and thresh-
olded cost functions.

It therefore appears that higher robustness to one type
of perturbation yields poorer robustness to the other type.
There is a logical tradeoff between robustness to shifts and
weight variability. In this context, and given that it may be
computed in linear time, the MK1 distance appears as a good
compromise in term of computational cost and robustness to
the two kinds of variability considered here.

In order to illustrate the previous results on real datasets,
two image retrieval experiments are shown in the next para-
graph.
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Fig. 8 Example of a category of 9 pictures extracted from the image database used for image retrieval (results are shown in Fig. 9). These
photographs represent the same scene under various illumination conditions and camera settings

Fig. 9 (Color online) Retrieval on a color image database. Aver-
age performance curves are displayed for several similarity measures:
black curves corresponds to the L1 bin-to-bin distance; the Monge-
Kantorovich distance MKd (equivalent to the CEMD distance) is dis-
played in red, MKd2 is plotted in blue and MKd3 in cyan; the Monge-

Kantorovich measure MKH10 using Huber ground cost is shown in
magenta; the Monge-Kantorovich distances with truncated cost func-
tions MKT 2 and MKT 10 are displayed respectively in black dashed line
and gray continuous line. In this case, convex ground costs yield better
performance than concave ones

3.3.2 Toy-Examples on Color Image Retrieval

In [36], it has been already demonstrated that the Circular
Earth Mover’s Distance (or CEMD, formula (12)) is far more
robust than classical bin-to-in distances (L1 and L2 metric,
χ2 distance, etc.) to compare SIFT descriptors. In particular,
it is underlined that this cross-bin distance is more adapted
to two kinds of perturbations (quantization and histogram
shifts).

In this section, we illustrate the previous experimen-
tal observations through image retrieval experiments. These
are based on circular histogram comparison from real and
small-scale data. We emphasize here that these experiments
do not pretend to achieve state-of-the art results, and are just
an experimental illustration of the previous study.

First experiment on color image retrieval For the task of
color image retrieval, numerous studies have shown that the
Earth Mover’s Distance (defined in Sect. 2.1) often achieves
better retrieval performance than bin-to-bin distances [9, 12,
15, 20, 23, 34, 39, 40, 48]. In order to illustrate the advan-
tages of the Monge-Kantorovich distances for circular data
and in the same context, we rely on hue distributions to per-
form simple image retrieval experiments on a color image

dataset. The dataset7 contains 14 categories of 9 pictures
of the same object, with various camera settings (sensitiv-
ity, with or without flash, white balance reference, exposure
time, etc.). Nine pictures of the same category are shown as
an example in Fig. 8. Each of the P = 14 × 9 = 126 images
of the dataset is described by a hue (channel H of the HSV
representation) distribution, built on N = 360 bins.

In order to show the possible interest of using trans-
portation distances with convex costs, we compare several
Monge-Kantorovich measures (see Sect. 3.1) for which re-
call and precision curves are displayed on Fig. 9.

In this experiment, the results of CEMD—equivalent
to MKd—(in red curve), like other Monge-Kantorovich
measures with convex ground costs (i.e. MKd2 , MKd3 ,
and MKH10 in blue, cyan and magenta curves), clearly
outperform those of L1 (black curve)—and also the re-
lated Monge-Kantorovich distances with truncated ground
costs (i.e. MKT 2, and MKT 10 displayed respectively in
gray and dashed line). As in the previous synthetic exper-
iment, one can guess that the general superiority of Monge-
Kantorovich measures over bin-to-bin distances like L1 are

7The image dataset is available at the following address: http://perso.
telecom-paristech/~rabin/database/.

http://perso.telecom-paristech/~rabin/database/
http://perso.telecom-paristech/~rabin/database/


J Math Imaging Vis

Fig. 10 22 pictures used for the image retrieval under white balance perturbation (results are shown in Fig. 11)

Fig. 11 (Color online) Retrieval results with data corrupted by white
balance modification (color temperature correction). Average perfor-
mance curves are displayed for several similarity measures: the L1 bin-
to-bin distance (in black); the Monge-Kantorovich measures MKdp

(for p = 1,2, and 3 respectively displayed in red, blue and cyan) and

MKH10 (in magenta); the Monge-Kantorovich distances with trun-
cated cost functions MKT 2 and MKT 10, shown respectively in black
dashed line and gray continuous line. In contrast with the results of
Fig. 9 concave costs yield better performance in this case

due to their natural robustness to shifts in the distributions.
Nevertheless, it also becomes clear at this point that the
choice of the ground cost is crucial regarding the perfor-
mance.

Second experiment on color image retrieval In this para-
graph, we build another experimental setting showing that
convex ground costs do not systematically outperform con-
cave ones for hue comparison, and that the results of the pre-
vious experiment should be taken cautiously, as discussed in
Sect. 3.3.1.

A small dataset8 of 22 photographs is shown in Fig. 10(a).
For each picture of this dataset, synthetic modifications are
proceeded in order to simulate white balance correction with
a “color temperature” varying from 4400 to 6200 K (an ex-
ample is given in Fig. 10(b)). Results of retrieval are shown
in Fig. 11.

8The image dataset is available at the following address: http://perso.
telecom-paristech/~rabin/database/.

Under color temperature modification (Fig. 11), one ob-
serves the following result: L1 distance together with MKT 2

and MKT 10 provide better retrieval scores than Monge-
Kantorovich measures with convex costs (CEMD, MKd2 ,
MKd3 and MKH10). An examination of the results has led
us to observe that, in such a case, the intraclass variability
results this time mainly from differences of weights of dom-
inant modes in histograms (see Fig. 4(b) for an illustration).

In the next section, we illustrate another interest aspect of
the proposed circular Monge-Kantorovich cost to perform
color transfer between pair of images.

3.4 Application to Hue Transfer Between Images

Aside from the time complexity and histogram comparison
studies of previous sections, another powerful aspect of the
Monge-Kantorovich optimal transport is discussed here: the
use of the optimal transport flow when considering periodic
data. The aim of this section is to illustrate the interest of the
proposed framework to transfer a hue distribution from one
image to another.

http://perso.telecom-paristech/~rabin/database/
http://perso.telecom-paristech/~rabin/database/
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We first give a brief recall about color transfer, which
has been extensively studied in image processing, in particu-
lar within the optimal transport framework. An extension of
this methodology to hue distribution using circular Monge-
Kantorovich measures is then studied.

Color transfer First, let us recall that histogram equaliza-
tion and more generally histogram specifications are merely
particular cases of optimal transportation on the real line.
Indeed, if u is a discrete image and hu its gray level distri-
bution, histogram specification consists in finding the opti-
mal transport plan between hu and a target discrete proba-
bility distribution ht (one speaks of histogram equalization
when ht is a constant distribution). If one considers a cost
c equal to the Euclidean distance on the line, then, as ex-
plained in Sect. 2.1, the solution of this problem consists in
a monotone rearrangement. This rearrangement is obtained
by applying the function H−1

t ◦ Hu to u, where Hu (resp.
Ht ) is the cumulative distribution function of hu (resp. ht )
and H−1

t represent the pseudo-inverse of Ht (see defini-
tion in Sect. 2.2, after formula (6)). If u is a color image,
such contrast adjustments can be applied to its “intensity”
channel (e.g. the channel “Value” in the HSV representa-
tion).

Within the Monge-Kantorovich framework, this method-
ology naturally extends to color histograms (e.g. 3-D his-
tograms) when considering color transfer between two im-
ages (see for instance [28]). Nevertheless, because of the
time complexity of the aforementioned exact algorithms
(i.e. the simplex based algorithm of [40] and the min-
cost-max-flow algorithm of [34]) for high-dimensional his-
tograms (224 bins for standard images with 3 channels of
8 bits), only approximate methods can be practically per-
formed, such as [32] and [38]. In order to cope with this
dimensionality problem without any approximation, we pro-
pose in the following paragraph to restrict the color transfer
to the hue component of the HSV representation to perform
fast color transfer.

Hue transfer Thanks to formula (11) or (12) (Sect. 2.2.2),
one can extend the previous framework to hue distributions,
which are circular distributions. Following (11), the optimal
mapping between the hue distribution hu of an image u and
the target hue distribution ht is obtained as (Ht −α)−1 ◦Hu,
where α is the median of the values {Hu[i] − Ht [i]}. Fig-
ure 12 illustrates such transfer of hue on a pair of im-
ages.

It can be seen that taking into account the circularity
of hue values with CEMD (Fig. 12(b)) results in a much
more appealing result than with a non-circular mapping us-
ing EMD (Fig. 12(c)). Indeed, in the HSV representation,
the origin of the hue is defined as the separation between

red and purple values, which boils down to setting the max-
imum transport cost between those two colors when con-
sidering the optimal transport on the real line. This results,
in the hue transfer example of Fig. 12(c) using EMD, in the
partial correspondence between the light green background
and the red foreground on the one hand, and between the
dark green background and the blue foreground in the other
hand, instead of matching green colors together as with
CEMD. For this example, defining hue transfer from opti-
mal transport on the circle with other convex ground cost
such as Lp with p > 1 gives results similar to CEMD (an-
other example illustrating this fact is shown in the follow-
ing).

It should be noted that such approaches based on op-
timal transport are well known to produce some unpleas-
ant artefacts (spatial irregularities) and thus often require
some post-processing regularization techniques (for a de-
tailed survey on color transfer between images, we refer
the reader to [32, 37]). Using convex ground costs is hence
more appropriate than concave costs since it has the in-
teresting property that hue ordering on the circle is pre-
served, and thus reduces artefacts. On the contrary, using
concave costs yields optimal transport flows on the cir-
cle which may reverse local ordering. As a result, it pro-
duces strong artifacts, since similar colors can have very
different mappings. To experiment hue transfer with con-
cave cost functions, we first compute the histogram of
hue of each image with a quantization step of 256 bins
before computing the optimal flow between the two his-
tograms. This quantization step circumvents the problem
of computation time for large histograms mentioned in
Sect. 3.2.

Examples of hue transfers using convex and concave cost
functions are shown in Figs. 13 and 14. First, as claimed be-
fore, observe that optimal transport with very convex cost,
such as the MKd10 measure on Fig. 14(a), yields similar hue
transfer than with CEMD (Fig. 13(b)). Moreover, it can be
seen that, as expected, using concave costs (MKE5 measure
in Fig. 14(c)) gives very different visual results in compari-
son with convex costs. Observe that using thresholded cost
functions is also not appropriate when considering trans-
portation flow since very different flows will corresponds the
same optimal transport cost (see the hue transfer obtained by
MKT 10 distance on Fig. 14(b)).

Eventually, artefacts still arise with convex costs (see
for instance the feather on the hat of Lena on Figs. 13(b)
and 14(a)) so that an interesting approach would combine
the proposed method for hue transfer with the regulariza-
tion method proposed in [37], but such a study is beyond the
scope of this paper.
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Fig. 12 (Color online) Hue transfer between images. First row: origi-
nal images. Second row: the hue channel of each image has been mod-
ified by applying the circular optimal transportation flow of CEMD be-
tween the hue channels (see text for details), while other channels (“sat-

uration” and “value” in the HSV representation) are kept unchanged.
Third row: result of hue transfer when using optimal transportation
flow on the real line, i.e. without taking into account the circularity
of the definition of the hue

4 Conclusion

In this paper, we have proposed a new formulation (and the
proof of this formulation) for Monge-Kantorovich measures
on the circle MKc , when the ground cost c is a convex and
increasing function of the geodesic distance on the circle. In
the particular case where the cost function is the geodesic
distance on the circle d , it has been shown that the trans-

portation distance MKd between circular histograms (also

referred to as CEMD, standing for Circular Earth Mover’s

Distance) can be deduced by a very simple formula (11)

which is computed in linear time.

A comparative analysis of transportation measures with

different cost functions has been proposed, considering two

types of perturbations which arise with histogram repre-
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Fig. 13 (Color online) Other example of hue transfer between images.
First row: original images. Second row: the hue channel of each image
has been modified by applying the circular optimal transportation flow
of CEMD between the hue channels (see text for details), while other

channels (“saturation” and “value” in the HSV representation) are kept
unchanged. Third row: result of hue transfer when using optimal trans-
portation flow on the real line, i.e. without taking into account the cir-
cularity of the definition of the hue



J Math Imaging Vis

Fig. 14 (Color online) Hue transfer between images of Fig. 13(a) with
other ground costs. First row: result of hue transfer when using optimal
transportation flow of MKd10 with very convex ground cost. Second
row: result of hue transfer when using optimal transportation flow of

MKT 10 using truncated ground cost. Third row: result of hue transfer
when using optimal transportation flow of MKE5 with very concave
ground cost
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sentation: shift and weight changes of dominant modes.
We have demonstrated that there is a trade-off between
these two phenomena when using either convex or con-
cave cost functions for histogram comparison. Eventually,
the proposed CEMD dissimilarity measure offers an inter-
esting compromise between these two choices, while being
easy to use.

Eventually, an application of the proposed framework to
color transfer has been studied. Other applications could
also benefit from the transportation cost MKc, such as shape
recognition based on circular descriptors (see e.g. charac-
ter recognition with orientation histogram [6], and curvature
based descriptor along closed contour [18, 26]).
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Appendix: Proof of Theorem 1

This appendix provides a complete proof of Theorem 1 in
the case where f and g are discrete distributions (as written
in (2)). We first prove this theorem for distributions com-
posed of unitary masses, and conclude thanks to continuity
arguments.

A.1 Introduction

Consider two discrete sets of points {x1, . . . , xP } and
{y1, . . . , yP } on the unit circle S, and the corresponding dis-
crete distributions

f = 1

P

P∑
k=1

δxk
, and g = 1

P

P∑
k=1

δyk
, (20)

where the notations xk , yk are used equally for points on
the unit circle or for their coordinates in [0,1[. Let d be the
geodesic distance along the circle (given by (5)) and assume
that c can be written c(x, y) = h(d(x, y)) with h a nonneg-
ative, increasing and convex function. It is well known (this
is a consequence of Birkhoff’s theorem, see for example the
introduction of [44]) that the optimal transportation cost be-
tween f and g equals

MKc (f, g) = min
σ∈ΣP

Wc
σ (f, g), with

Wc
σ (f,g) := 1

P

∑
k

c(xk, yσ(k)) = 1

P

∑
k

h(d(xk, yσ(k))),

(21)

where ΣP is the set of permutations of {1, . . . ,P }. In other
words, finding the optimal transportation between f and g

boils down to find the optimal permutation σ between the
points {xk} and {yj }.

A.1.1 Paths

If x and y are two different points of S1, we note γ (x, y)

the geodesic path linking x and y on S1 (the path is sup-
posed open: it does not contain x and y). This path is always
unique except in the case where x and y are in opposite po-
sitions on the circle. In this case, we choose γ (x, y) as the
path going from x to y in the trigonometric direction. A path
γ (x, y) is said to be positive if it goes from x to y in the
trigonometric direction. If the path goes from x to y in the
opposite direction , it is said to be negative.

A.1.2 Cumulative Distribution Functions

The cumulative distribution function of f has been defined
in (6). Now, on [0,1[ seen as a the unit circle S, no strict or-
der can be defined between points, which means that we can
define as many cumulative distribution functions as there are
starting points on the circle. If x is a point in [0,1[, the x-
cumulative distribution function Fx of f can be defined by
choosing x as the reference point on the circle S1 and by
summing the mass in the trigonometric order from this new
reference point:

∀y ∈ R, Fx(y) = F(x + y) − F(x). (22)

A.2 Preliminary Results

In the following, we prove that if f and g can be written as
in (20), if the points x1, . . . , xP and y1, . . . , yP are pairwise
different, and if σ is an optimal permutation for (21), there
is always a point on the circle which is not contained in any
optimal path of σ . This result is proven first for strictly con-
vex functions h and for any optimal permutation σ , then for
convex functions h and a well chosen optimal permutation.

Proposition 1 Assume that h is strictly convex. Let x1, . . . ,

xP and y1, . . . , yP be P points in [0,1[, all pairwise dif-
ferent. Then for each permutation σ of ΣP which mini-
mizes (21), there exists k ∈ {1, . . . ,P } such that for all l �= k,
xk /∈ γ (xl, yσ(l)).

The proof of this proposition needs the following lemma,
which describes some properties of the geodesic paths
γ (xl, yσ(l)) obtained when σ is a minimizer of (21) and h is
strictly convex.

Lemma 1 Assume that h is strictly convex. Let σ be a mini-
mizer of (21) and let γl = γ (xl, yσ(l)) and γk = γ (xk, yσ(k))

(with l �= k) be two geodesic paths for the assignment de-
fined by σ . Assume also that xl �= xk and yσ(l) �= yσ(k). Then,
one of the following holds:

• γl ∩ γk = ∅ ;
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• γl ∩γk �= ∅ and in this case γl and γk have the same direc-
tion (both positive or both negative) and neither of them
is contained in the other.

Proof Assume that γl ∩ γk �= ∅. If γl ∩ γk is equal to
γ (xl, xk), then, since h is an increasing function of d ,
c(xl, yσ(l)) > c(xk, yσ(l)) and c(xk, yσ(k)) > c(xl, yσ(k)),
which contradicts the optimality of σ . The same conclu-
sion holds if γl ∩ γk is equal to γ (yσ(l), yσ(k)). Moreover,
if for example the path γl is included in γk , then the strict
convexity of the function h implies

c(xl, yσ(l)) + c(xk, yσ(k)) > c(xl, yσ(k)) + c(xk, yσ(l)),

which also contradicts the optimality of σ . Thus, γl ∩ γk is
equal to γ (xl, yσ(k)) or to γ (xk, yσ(l)) and it follows that γk

and γl are either both positive or both negative. �

Proof of Proposition 1 Let σ be a minimizer of (21). In
the following, we will denote by γl the geodesic path
γ (xl, yσ(l)). We can assume without loss of generality that
the points x1, . . . , xP are in trigonometric order on the cir-
cle.

Assume that for each l ∈ {1, . . . ,P }, there exists q(l) �= l

such that xl belongs to the open path γq(l). Then, for each
l, we have γq(l) ∩ γl �= ∅, which means that the geodesic
paths γq(l) and γl are either both positive or both negative
(from Lemma 1). Assume for instance that they are both
positive and let us show that in this case xl ∈ γl−1 (with
l − 1 = P if l = 0). If q(l) = l − 1, there is nothing to prove.
If q(l) �= l − 1, it means in particular that xq(l), xl−1, xl are
in trigonometric order on the circle. Since γq(l) is a pos-
itive path starting from xq(l) and containing xl , it follows
that γq(l) contains xl−1 (recall that the points are assumed
to be pairwise different, in particular xl−1 �= xq(l)). Thus
γl−1 ∩ γq(l) �= ∅, which implies that γl−1 is positive. Now,
xl must be in γl−1, otherwise we would have γl−1 ⊂ γq(l),
which contradicts Lemma 1. Thus, if the paths γq(l) and γl

are both positive, xl ∈ γl−1.
In the same way, if γq(l) and γl are both negative, then

xl ∈ γl+1. In any case, for each l ∈ {1, . . . ,P }, xl ∈ γl−1 ∪
γl+1 (with the obvious convention γP+1 = γ1, γ0 = γP ).

Now, suppose that for a given k ∈ {1, . . . ,P }, xk is in
γk−1. Then, γk−1 and γk have the same direction. From
Lemma 1, it follows that xk−1 cannot be contained in
γk . Since we know that xk−1 ∈ γk−2 ∪ γk , xk−1 must be
in γk−2. Recursively, for each l ∈ {1, . . . ,P }, xl ∈ γl−1.
It follows that for each l ∈ {1, . . . ,P }, d(xl, yσ(l−1)) <

d(xl−1, yσ(l−1)), and since h is increasing

P∑
l=1

c(xl, yσ(l)) >

P∑
l=1

c(xl+1, yσ(l)), (23)

which contradicts the fact that σ is a minimizer of (21). We
come to the same conclusion if for a given k ∈ {1, . . . ,P },
xk is in γk+1. �

The same result can be proven for any convex function h

with the difference that it is only satisfied for a good choice
of the permutation σ which minimizes (21), and not for all
of these permutations. This result can be seen as a limit ver-
sion of Proposition 1.

Corollary 1 Assume that h is convex. Let x1, . . . , xP and
y1, . . . , yP be P points in [0,1[. Assume that all these points
are pairwise different. Then there exists a permutation σ of
ΣP which minimizes (21) and a point xk ∈ {x1, . . . , xP } such
that for all l �= k, xk /∈ γ (xl, yσ(l)).

Proof We know that for any strictly convex function h,
if σh minimizes the cost σ �→ Wc

σ (f,g), there exists k ∈
{1, . . . ,P } such that for all l �= k, xk /∈ γl = γ (xl, yσh(l)).

Now, assume that h is convex (not strictly). One can al-
ways find a sequence (hn) of increasing and strictly convex
functions such that hn converges pointwise towards h when
n → ∞. If σ and the points x1, . . . , xP , y1, . . . , yP are fixed,
then the finite sum Wn

σ (f,g) := 1
P

∑
k hn(d(xk, yσ(k)))

tends towards Wσ (f,g) = 1
P

∑
k h(d(xk, yσ(k))) when n →

∞. Thus, for each ε > 0, there exists an integer N , such that
for all n ≥ N , |Wn

σ (f,g) − Wσ (f,g)| ≤ ε. Since ΣP is a
finite set, we can chose N large enough such that this prop-
erty holds for every σ in ΣP . We can also chose N such that
|minσ Wσ (f,g) − minσ Wn

σ (f, g)| ≤ ε. Now, if n ≥ N and
if σ ∗ is an optimal permutation for Wn

σ (f,g), it follows that

|min
σ

Wσ (f,g) − Wσ ∗ (f, g)|
≤ |min

σ
Wσ (f,g) − min

σ
Wn

σ (f, g)|
+ |Wn

σ ∗ (f, g) − Wσ ∗ (f, g)|
≤ 2ε.

Since ΣP is a finite set, the fact that this distance can be
made arbitrarily small implies that when n is large enough, a
minimizer σ ∗ of Wn

σ (f,g) is also a minimizer of Wσ (f,g).
This proves that there exists at least one minimizer σ of
σ �→ Wσ (f,g) such that xk /∈ γ (xl, yσλ(l)) for some k ∈
{1, . . . ,P } and all l �= k. �

A.3 Proof of Theorem 1

Proof of Theorem 1 Let us begin with the case where f

and g can be written as sums of unitary masses (see (20)),
and where x1, . . . , xP and y1, . . . , yP are pairwise different.
Proposition 1 and Corollary 1 show that if the ground cost c

can be written c(x, y) = h(d(x, y)) with h a positive, con-
vex and increasing function, we can choose some optimal
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permutation σ for which there is some point xk which is not
contained in any path of σ (recall that paths are defined as
open: they do not contain their boundaries). Since all points
are supposed pairwise different, the only path meeting all the
neighborhoods of xk is γk . It follows that there exists some
open set on one side of xk and not containing xk which does
not cross any path of the optimal permutation σ . The mid-
dle x of this open set is not contained in any path of σ . We
can thus cut the circle S1 at x and reduce the transportation
problem on the circle to the transportation problem on the
real line. The optimal permutation σ is thus given by the
sorting of the points (formula (72) in [44]), taking x as the
reference point on the circle. This means that when points
are pairwise different, we have

MKc (f, g) = inf
x∈S1

∫ 1

0
h(|F−1

x − G−1
x |), (24)

where F−1
x and G−1

x are the pseudo-inverses (pseudo-
inverses are defined in Sect. 2.2) of the increasing functions
Fx and Gx defined in (22).

Now, observe that Fx and Gx are horizontal translations
of F − F(x) and G − G(x) by the same vector x. In conse-
quence,
∫ 1

0
h(|F−1

x − G−1
x |)

=
∫ 1

0
h(|(F − F(x))−1 − (G − G(x))−1|). (25)

If we notice that for all α, (F − α)−1(t) = F−1(t + α),
this can be rewritten∫ 1

0
h(|F−1

x − G−1
x |)

=
∫ 1

0
h(|F−1(t + F(x)) − (G)−1(t + G(x))|)dt

=
∫ 1−F(x)

−F(x)

h(|F−1(t) − (G)−1(t + G(x) − F(x))|)dt.

Since F and G have been defined on R such that for all y,
F(y + 1) = F(y)+ 1 and G(y + 1) = G(y)+ 1, the bounds
of this integral can be replaced by any bounds (t, t + 1),
and in particular by the bounds (0,1). By using the fact that
G−1(t + α) = (G − α)−1(t), it follows that the whole inte-
gral equals
∫ 1

0
h(|F−1 − (G + F(x) − G(x))−1|). (26)

Finally,

MKc (f, g) = inf
x∈S1

∫ 1

0
h(|(F )−1 − (G + F(x) − G(x))−1|).

(27)

In order to conclude, notice that the function ϕ : α �→∫ 1
0 h(|(F )−1 − (G + α)−1|) is continuous (h : R → R

+ is
continuous since it is convex) and coercive (ϕ(α) → +∞
when |α| → +∞). It follows that ϕ reaches its minimum
at a point α0 ∈ R. In addition, the fact that F and G are
piecewise constant implies that ϕ is piecewise affine, with
discontinuities of ϕ′ at points F(x) − G(x). Thus,

MKc (f, g) = inf
α∈R

∫ 1

0
h(|(F )−1 − (G + α)−1|). (28)

The previous result can be generalized to the case where
the points xi , yj may coincide just by remarking that both
quantities in (28) are continuous in the positions of these
points. In consequence, the result holds for distributions
with rational masses.

In order to generalize the result to any couple of discrete
probability distributions, observe that the right term in (28)
is continuous in the values of the masses f [i] and g[j ]. As
for the continuity of MKc(f, g), assume that a mass ε of the
distribution f is transferred from the point xi0 to the point
xi1 in f , and let us call the new distribution f ε . If (α) is an
optimal transport plan between f and g, let j0 be an index
such that αi0,j0 ≥ ε. A transport plan (α′) between f ε and g

can be defined as

• α′
i0,j0

= αi0,j0 − ε,
• α′

i1,j0
= αi1,j0 + ε,

• α′
i,j = αi,j for (i, j) �= (i0, j0), (i1, j0).

The corresponding transportation cost between f ε and g

is then lower than MKc(f, g) + εh( 1
2 ), which implies that

MKc(f
ε, g) ≤ MKc(f, g) + εh( 1

2 ). Conversely, we can
show that MKc(f, g) ≤ MKc(f

ε, g) + εh( 1
2 ). �
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