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Abstract. This paper deals with the parameter choice for the nonlocal means (NLM) algorithm. After basic
computations on toy models highlighting the bias of the NLM, we study the bias-variance trade-off
of this filter so as to highlight the need of a local choice of the parameters. Relying on Stein’s
unbiased risk estimate, we then propose an efficient algorithm to locally set these parameters, and
we compare this method with the NLM with optimal global parameter.
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1. Introduction. In recent years, patch-based methods have drawn a lot of attention in
the image processing community. Inspired by the work of Efros and Leung [14] for the texture
synthesis problem, Buades, Coll, and Morel have proposed the nonlocal means (or NLM)
denoising algorithm in their seminal paper [7]. Their idea (also suggested independently in
[1]) is to take advantage of self-similarities in images by comparing local neighborhoods (the
“patches”) across the whole image. Each pixel value is estimated as a weighted average of all
others, and the pixels whose neighborhoods are the most similar to the neighborhood of the
pixel to be denoised are given the largest weights. This novel point of view has stimulated
many authors and is at the core of most of the state-of-the-art image denoising algorithms.

The aim of this paper is to discuss the choice of parameters of the standard NLM filter. Our
theoretical study advocates for a local choice of the parameters within the image. Numerically,
we address the problem of automatic parameter tuning by resorting to Stein’s unbiased risk
estimate (SURE) [31], which is a popular method of estimation of the risk, notably in the
wavelet community [12], and which was recently introduced in the context of NLM by [37]. We
propose an algorithm which automatically computes the best local parameters in the image
so that we can propose a spatially adaptive version of the NLM filter.

To discuss the tuning of parameters of the NLM, we interpret this choice as a bias-variance
dilemma. Contrary to the approach of [18], which also relies on a bias-variance analysis, we
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focus mainly on the choice of the smoothing parameter rather than on the search window.
Notation. We consider an image u defined on a domain Ω ⊂ Z

2. Given an odd number s
and a pixel x ∈ Ω, we define the patch U(x) of width s centered at x as the s2-dimensional
vector whose coordinates are the gray values of the pixels in a square neighborhood of x with
side s:

(1.1) U(x) = (u(x+ j))|j|∞≤ s−1
2
.

The NLM filter compares patches in the image u to restore the value at pixel x according to
the following formula:

NLu(x) =
∑
y∈Ω

w(x, y)u(y) =

∑
y∈Ω e−

‖U(x)−U(y)‖2
2h2 u(y)∑

y′∈Ω e−
‖U(x)−U(y′)‖2

2h2

.(1.2)

The �2 norm we use to compare the patches is normalized:

‖U(x)− U(y)‖2 =
1

s2

∑
|j|≤ s−1

2

(u(x+ j)− u(y + j))2,

so that h is homogeneous to a gray level.
Since the common habit is to restrict the above search for patches to a search window of

side-length W around x, the sums in (1.2) may be replaced by sums over all y ∈ Ω such that
|x− y|∞ ≤ W−1

2 .
Bias-variance trade-off. Many authors (e.g., [18, 21]) use a χ2 test to set the parameter h.

They accept only patches that are likely to be exact replicas of the one they want to denoise:
for instance, they choose the smallest h such that 99% of exact replicas contaminated by the
noise are accepted. This leads to a linear relation between h and σ, and the experiments
reported in [7, 34, 37] confirm that, in terms of the peak signal-to-noise ratio (PSNR), the
best value of h is roughly proportional to σ. Still, we prove in this paper that there is interest
in choosing the parameter h depending on the image. First, the rule of selecting h = Cσ
is too rough: the visual difference between the results with the optimal h and the predicted
value Cσ may be noticeable. Second, the optimal h widely varies among the different regions
of an image (see section 4).

In fact, an exact replica is not always available (e.g., along contrasted curved edges or on
isolated details), and it is sometimes necessary to smooth the image nonetheless, introducing
some bias in order to reduce the variance. To fix ideas, let us momentarily assume that the
weights are computed on the noise-free image (and thus are deterministic). If the variance σ2

of the noise is small and the patch size is large,1 this approximation makes sense. Indeed, if
Ũ(z) denotes the patches of the noisy image ũ = u + n, with n independent and identically
distributed (i.i.d.) Gaussian noise, we have2 ‖Ũ(x) − Ũ(y)‖2 ≈ E‖Ũ(x) − Ũ(y)‖2 = ‖U(x) −
U(y)‖2 + 2σ2.

1Roughly, we assume that σ2

s
is small compared to the typical square distance ‖U(x) − U(y)‖2, which is

typically 102, as illustrated in Figure 7.
2This approximation is not valid for x = y. However, the same qualitative conclusions can be drawn by

slightly adapting the following discussion. We skip this for the sake of clarity.
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The risk of denoising the pixel x is given by

E|NLũ(x)− u(x)|2 = E|NLũ(x)−NLu(x)|2 + E|NLu(x)− u(x)|2
+ 2E ((NLũ−NLu(x))(NLu(x) − u(x))) .

The last term vanishes since E(NLũ(x) − NLu(x)) =
∑

y E(n(y))w(x, y) = 0. The first
term is the variance term: it is small when the smoothing parameter h is large. The second
one is the bias term: it is small when h is small. Thus, the optimal choice of h is a trade-off
between bias and variance. If the bias term of an image stays low for large intervals of h, this
image will be easy to denoise with the NLM filter. We call such images patch regular. This
property corresponds to a condition presented in [33] as a necessary assumption on the signal
for NLM to work: similar patches have similar central pixels. This patch regularity will be
clarified in the rest of the paper. Notice that a similar information-theoretic formulation can
be found in [1], stating that conditionally to the rest of the patch, the entropy of the law of
the central pixel is very low.

In practice we estimate the risk of NLM using SURE (recently introduced in [37] in the
context of NLM), so we need not assume that the weights are deterministic.

Organization of the paper. The guiding principle of our study is the above bias-variance
trade-off: section 2 illustrates the bias of the filter on toy models without noise. In section 3,
we add noise and discuss the bias-variance trade-off in terms of the geometry of the image in
the patch space. In section 4, we handle this trade-off locally, first by using an oracle which
gives the main guidelines of an efficient denoising, then by relying on Stein’s unbiased risk
estimate, first proposed in [37] in the framework of NLM.

Related works. There are many contributions in the literature concerning the NLM, ranging
from a better understanding of the algorithm to the proposition of brand new algorithms.

Variational frameworks for nonlocal image processing have been proposed in [19, 15, 16],
in connection with total variation–based denoising. Let us also mention the work of Brox and
Cremers [5] and Azzabou et al. [3] based on similar variational considerations. In addition,
let us mention the combination of total variation filtering techniques and NLM proposed in
[21] which reduces the visual artifacts of NLM, as in the present paper.

Generally, variational problems are solved using iterative methods. Since nonlocal filters
require a lot of calculations, reducing their computation time is a crucial matter, not only
for iterative denoising methods but also for real-time denoising, and several authors have
proposed fast implementations of the NLM, including [10, 6].

Another point of view consists of studying images and the NLM filter in the patch space:
in [32] and [36], the NLM filter is interpreted as one step of a heat equation in the patch
space, and the connection with classical diffusion-based denoising algorithms is established.
The analysis of the nonlocal heat equation is carried further in [23, 29], where a whole point
of view on spectral analysis on manifolds is developed. In [24], Peyré shows that for several
models of signals (e.g., smooth or cartoon), images lie on a manifold in the patch space, and
he deduces restoration algorithms in that framework.

One may adopt a more statistical framework: in [17], the NLM is extended to deal with
colored noise, and the choice of the weight function is discussed. In [2], the authors pro-
pose an adaptive denoising algorithm based on marginal posterior modes estimation, whereas
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Deledalle, Denis, and Tupin [11] introduce an iterative algorithm based on maximum likeli-
hood estimation which allows one to deal with noises other than Gaussian, e.g., multiplicative
speckle noise. Moreover, a new light is shed on the classical NLM by Salmon and Le Pennec
[27], who interpret it as the aggregation of estimators in a PAC-Bayesian approach. Also,
statistical approaches have been proposed to select the parameters: in [13], a local selection of
the parameter h is performed using the Cp statistic introduced by Mallows, and in [37] SURE
is used to select a global optimal parameter.

In terms of performance, some of the best denoising results are obtained, to the best of
our knowledge, by three different approaches that rely on nonlocality and patch-denoising:
the BM3D algorithm, which is built on classical signal processing tools, proposed by [9], the
one in [22] which is based on learning dictionaries of patches, and the one in [40] relying on
principal component analysis (PCA).

2. Nonlocal means properties with basic examples. The aim of this section is to recap
several qualitative properties of the NLM that are known in the literature. We consider toy
examples that highlight the following properties:

1. The search window has an impact on the visual quality of the result.
2. A large patch size tends to blur objects.
3. Even periodic images are altered.
4. There is a loss of contrast depending on the occurrence of each pattern.
5. A weight with compact support instead of an exponential allows one to reduce the

bias.
6. The less contrasted the details, the more they are degraded, and this relation is highly

nonlinear.
The reader who is familiar with these properties may skip this section.

2.1. Isolated detail. Assume we want to denoise an isolated pattern modeled by a single
crenel of size T

2 and intensity α. If the signal has length N � T , under assumptions described
in the appendix, we have, inside the crenel,

NLu(x) = α
1− e−r − 2e−

1
2
(T
2
+1)r cosh rx

(1− e−r)

(
2
∑T

2
j=0 e

−rj − 1 + (N − T − 1)e−r T
2

) ,(2.1)

where r = 2 α2

sh2 and x ∈ [−T
4 + 1

2 ,
T
4 − 1

2

]
refers to the pixel position (x = 0 corresponds to

the center of the crenel). The corresponding curve is a catenary that is farther from the crenel
as r decreases (see Figure 1). The result when denoising an object depends on the size of the
whole image: in the case of an infinite signal (or image) (N → +∞) we see that NLu(x) = 0
for all x! The phenomenon also appears when denoising lines in an image (see Figure 2), but
this time the output is O( 1√

N
) instead of O( 1

N ) (where N is the number of pixels).

In practice, one usually restricts the set of patches to a search window around x, so that
this dependence on N is changed into a dependence on W (hence point 1). The dependence
on W was noted in [18, 13], and we believe this example strengthens their argument. The
idea is that, when denoising a small detail, pixels are averaged with any other pixels. Because
of the exponential function, the weights assigned to the wrong patches are small, but they are
nonzero. If these patches are overwhelming, they will have a strong influence.
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Figure 1. Loss of isolated details. Left: an extract of a synthetic input signal and the result provided by
the NLM filter; it is a catenary inside the crenel (see (2.1)). The size of the crenel is 7, its intensity α = 64,
the patch size is s = 7, h = 20. Depending on the total size of the signal (N = 200 or N = 800), the result

does not vary much since e−r T
2 � 1. Right: same experiment, using a patch size s = 15. Since the patch size

is larger than the pattern, the size of the signal has a large impact on the bias (e−r T
2 ≈ 1).

Figure 2. Loss of lines and isolated details. Left: boat image with little noise (σ = 5). Middle: result of
the NLM filter (h = 6, s2 = 7 × 7, search window 11 × 11). Right: same experiment, using a search window
61× 61. Notice that several ropes vanish when the size of the search window increases (this should be seen on
a computer screen).

Two remedies have been proposed: use a small search windowW or replace the exponential
weights with functions with compact support (i.e., that vanish for ‖U(x)−U(y)‖2/(2h2) large
enough) so that e−r T

2 in (2.1) is replaced with zero (see, for instance, [17, 21, 26]). The
connection between these methods is discussed in section 3.3. Let us also mention [18], where
the bias is locally controlled by choosing W at each pixel.

Incidentally, notice that the larger the patch size, the larger the impact of W on the
blurring of the detail (cf. point 2 and Figure 1).

2.2. Periodic crenel. The reader who is not familiar with the NLM filter might think
that it is able to restore any periodic signal arbitrarily well. However, it can be shown that
the only functions that are invariant by NLM are constant (a direct proof is given in [15]),
so that even periodic signals must be altered. As a variation of the previous example, let us
consider a quickly oscillating texture which can be modeled by a periodic crenel with period
T 
 s and intensity α. Under assumptions given in the appendix, the output of the filter is
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Figure 3. Left: effect of NLM on a periodic crenel; the result is a piecewise catenary (see (2.2)). The
period of the crenel is T = 14, its intensity is α = 64, the patch size is s = 21, h = 20. Right: effect of NLM on
a step signal. The size of the signal is N = 1000, 750 coefficients are zero, the other 250 have intensity α = 32.
The parameters are s = 21, h = 10 (dashed line), and h = 20 (dash-dot line). The length of the transition area
is equal to the patch size. The bias at each pixel becomes more important as h increases and the pixel value
becomes rare (see (2.3)).

the following (see Figure 3):

NLu(x) =
α

(1− e−r T
2 )(1 + e−r)

(
1− e−r − 2e−

1
2
(T
2
+1)r cosh rx

)
,(2.2)

where r = α2

Th2 . This shows that even periodic signals may suffer from bias (point 3).

2.3. Step edge. As a last toy example, let us consider two regions (one with θN black
pixels, the other with (1 − θ)N pixels with intensity α, and θ ∈ (0, 1)) delimited by a step
edge. Taking the limit N → +∞, one may compute the output of the filter (see Figure 3):

NLu(x) =
α(1 − θ)

(1− θ) + θe(2b(x)−s)r
,(2.3)

where b(x) is the number of black pixels in the patch centered at x (e.g., b(x) = s if the patch
of center x lies completely inside the black region). Observe that the gray levels of the two
regions are shifted differently, depending on their number of pixels (point 4). Eventually, the
transition width between the two regions is proportional to the patch size.

The previous three examples also show the nonlinear behavior of the filter with respect to
the contrast (point 6). Two regions with the same geometry but different contrast are handled
differently by the filter (notably for the rare patch effect exhibited in section 4.3).

3. Bias-variance trade-off in the patch space. Let us recall that our approach consists of
setting the NLM parameters by considering the bias-variance trade-off. Whereas the previous
section shed light on the bias of the estimator on toy models, we now focus on the bias-variance
trade-off and carry out our study in the patch space.

3.1. Regularity and the patch space. The ease with which one may solve the bias-
variance trade-off depends on the regularity of the image, which can be read in the patch
space. Several authors [32, 23, 24, 35, 36, 29] interpret the behavior of the algorithm as a
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diffusion on a manifold in the patch space (and, indeed, there is strong evidence that the
patches of an image lie on a manifold). The patch application3

U :
Ω −→ P ⊂ R

s2 ,
x �→ (u(y), |y − x|∞ ≤ s−1

2 ),
(3.1)

which maps every pixel x of the domain to the patch of center x in the patch space P, gives
a parametrization of a surface in the patch space (provided u is smooth enough).

However, the geometry of such surfaces is complicated as there are many self-intersections.
Moreover, the geometry of the patch manifold does not take into account redundancies in the
image. For instance, a closed surface may represent either a single pattern or a periodic one,
while this difference is crucial for the NLM. Thus, inasmuch as we are interested in the bias-
variance trade-off in the patch space, we focus on the mass distribution of the patch set rather
than on its geometry, in a more elementary framework.

A measure in the patch space may be defined by pushing forward the Lebesgue measure
of the spatial domain:

∀A ∈ B(Rs2), m(A) = L2(U−1(A)).

If the search window is the whole image, the weights w(x, y) = 1
C(x)e

− ‖U(x)−U(y)‖2
2h2 (where C(x)

is the normalizing factor) depend only on the patch value U(x) and not on the pixel position

x itself. Therefore we can denote them by W (U(x), U(y)) = 1
C(U(x))e

− ‖U(x)−U(y)‖2
h2 and we may

write

NLu(x) =

∫
Ω
u(y)w(x, y)dy =

∫
P
c(P )W (U(x), P )dm(P ),(3.2)

where c is the application that maps a patch to the value of its central pixel (i.e., c(U(x)) =
u(x)).

Because of the normalization of the weights, the measure W (U(x), P )dm(P ) has total
mass 1. The “bias” of the filter can therefore be expressed as

NLu(x)− u(x) =

∫
P
(c(P )− c(U(x)))W (U(x), P )dm(P ).(3.3)

For instance, if an image has a measure m locally widely spread along the central pixel axis,
it will be considerably modified by the NLM filter.

The patch regularity assumption may be reformulated by asking that the measure m make
the above integral small.

Lipschitz regularity. A natural assumption to control the bias in (3.3) is to assume a Lip-
schitz regularity of the center: the support of W (U(x), ·)m is contained in the set {P ∈
P, |c(P ) − u(x)| ≤ k‖Ṗ − U̇(x)‖}, where Ṗ ∈ R

s2−1 denotes the patch omitting its central
pixel (i.e., P = (c(P ), Ṗ )) and k > 0 is a constant. This provides the upper bound:

|NLu(x)− u(x)| ≤ k√
1 + k2

∫
P
‖P − U(x)‖W (U(x), P )dm(P ).

3In this paragraph, we may assume that images are defined on a continuous domain. Otherwise, the
Lebesgue measure may be replaced with the counting measure.
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Figure 4. Similarity diagrams for the pixels indicated by a blue or green cross. Top: a natural image.
Middle: two regions. It is more difficult to reduce the variance without introducing bias for the minority pixels
than for the majority. Bottom: stripes. Pixels near edges suffer from more bias than pixels at the center of
each stripe. The Lipschitz constant k is larger near edges.

However, this bound may be arbitrarily close to 255 (or any positive constant): consider the
mass defined by the crenel signal of section 2.1, or the following one: m = 1

N δU(x) + (1 −
1
N )δ(0,0,...,0), where U(x) = (255, 255, . . . , 255). Again, since the exponential weights never
cancel, the effect of overwhelming patches is out of control. On the contrary, if one uses
kernels ϕ with compact support as proposed in [17] (e.g., ϕ(x) = 0 for x ≥ 1), the bias is

bounded by
√
2k√

1+k2
h.

Similarity diagram. A visual way to examine the regularity at a point is to plot the patch
set as the couples (‖Ṗ − U̇(x)‖, c(P ) − u(x)). This representation is inspired from the one in
[29] where, in dimension 1, patches of size 2 are represented as couples (u(y), u(y +1)) for all
y. It allows us to see if the estimation of each pixel will be very biased, and it contains the
exact information that NLM needs to compute NLu(x). Such similarity diagrams are shown
in Figure 4 in the case of a natural image and in the case of the examples of sections 2.2 and
2.3. This shows that the regularity constant k varies in the image and is especially high near
edges.
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3.2. Bias-variance trade-off. The bias-variance considerations of section 1 may be trans-
lated to the patch space. Let R1 := E|NLũ(x) − NLu(x)|2 and R2 := E|NLu(x) − u(x)|2.
Since

R1 = E

(∑
y

n(y)w(x, y)

)2

= σ2
∑
y

(w(x, y))2 = σ2

∫
P
(W (U(x), P ))2 dm(P ),(3.4)

the risk is given by

R1 +R2 = σ2

∫
P
(W (U(x), P ))2 dm(P ) +

(∫
P
(c(P ) − c(U(x)))W (U(x), P )dm(P )

)2

.(3.5)

By the Cauchy–Schwarz inequality, the first term is minimal when the weights are uniform
(i.e., h → +∞). On the contrary, if the image is patch regular, the second term is small for
small values of h (since patches with a different central pixel are allowed, but they should be
very far in the patch space; see Figure 4). This formula shows that the best choice for h is
a trade-off between reducing the variance by taking a large number of pixels in the average,
and not averaging pixels that belong to very different patches.

The interpretation of this quantity is even clearer when the kernel is not Gaussian but is
given by an indicator function w(x, y) = 1

C(x)1‖U(x)−U(y)‖2≤h2 , where C(x) is an appropriate

normalization factor. In the patch space, the weights can be written as W (P,Q) =
1Bh(P )(Q)

m(Bh(P )) ,

where Bh(P ) denotes a ball with radius h and center P , and m(Bh(P )) denotes its m-measure,
i.e., the number of patches within distance h of P . Then, similar computations show that

R1 +R2 =
σ2

m(Bh′(U(x)))
+

(
1

m(Bh′(U(x)))

∫
Bh′ (U(x))

(c(P ) − c(U(x)))dm(P )

)2

,(3.6)

where h′ =
√
h2 − 2σ2 corresponds to a threshold on the noise-free image. The more regular

the image is (e.g., the smaller the Lipschitz constant k is), the lower the minimum value of
R1 + R2 is. Figure 4 shows the trade-off for different pixels. In the middle row, a threshold
h′ = 7 allows us to reduce the variance without introducing bias. However, the variance
will decrease more for the majority pixels than for the minority ones. In the bottom row
of Figure 4, it is immediately necessary to introduce bias near edges in order to reduce the
variance, contrary to the center of stripes.

3.3. Bias-variance and the size of the search window. We have seen in sections 2.1
and 3.1 that the bias term depends on the size of the search window. Using a small search
window is the common practice and the reason invoked is that, besides the speed-up, the
result is visually better. However, on theoretical grounding, restricting the search of patches
to a window for computational reasons is very different from doing this because we know
that it will produce better results: the second approach contradicts the “nonlocal philosophy”
introduced in [7]. If a similar object appears at the other side of the image, there is no reason
not to use it to denoise a pattern. On the other hand, we have seen that kernels with compact
support allow us to control the bias. The following experiment determines to what extent this
is true.
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Figure 5. Left: evolution of the PSNR as the size of the search window increases, for different values of
the threshold T , on the boat image. Using a good threshold (e.g., T = 20) for the weights makes the algorithm
more robust to changes in the search window. The parameters are h = 10, s = 7, σ = 10. Right: the different
kinds of irrelevant pixels in a similarity diagram.

To this end, we need to distinguish two different kinds of pixels that may introduce bias
when denoising a pixel x (see Figure 5). First, there are pixels that belong to patches that
are similar but have very different central values (‖U̇ (x) − U̇(y)‖ is small, but |u(x) − u(y)|
is large): these patches are the cause of nonpatch regularity. We have seen that such pixels
arise, for instance, at edges. Second, there are pixels that belong to very different patches
(both ‖U̇(x) − U̇(y)‖ and |u(x) − u(y)| are large). These pixels have a small weight, but, as
in section 2.1, it is nonzero. Contrary to pixels of the first type, we can get rid of them by
using a truncated kernel.

We run the NLM filter on several images degraded by a noise with σ = 10 and look at the
evolution of the PSNR when the size of the search window increases. However, we truncate
the weights in the following way:

w(x, y) =

{
1

C(x)e
− ‖Ũ(x)−Ũ(y)‖2

2h2 if ‖Ũ (x)− Ũ(y)‖ ≤ T,

0 otherwise,
(3.7)

where C(x) is a normalizing factor and the parameter h is set to 10. Since the patch distance
is normalized, for a threshold value T = 255, the algorithm is equivalent to the usual NLM
filter. Typical curves for several values of T are shown in Figure 5. The PSNR first increases
with W , since the variance decreases and the bias introduced on small neighborhoods is very
low. When W gets large enough, many (but not all) pixels in the search window are not
pertinent in denoising x, and the bias increases greatly: the PSNR drops.

The interesting point in this experiment is that when imposing a small threshold value T ,
the filter is almost insensitive to the increase of the search window. This shows that the pixels
of the first kind are not prominent when the search window increases, and therefore the loss
of PSNR without thresholding is due to the bias induced by pixels of the second kind.

As a consequence, images are mostly patch regular, and truncated weights make the
algorithm more robust to the choice of the search window. In [17], the authors propose using
kernels with compact support and show that this allows one to preserve textures better (which
can also be understood in light of section 2.1). Let us stress the fact that it also makes the
algorithm more robust to the choice of the search window.

Remark 3.1. It is shown in [34] that projecting the patches on their principal components
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before computing the distances reduces the decay of the PSNR when W increases. Since
the main advantage of this modified �2 distance is its improved robustness to noise, this
suggests that some of the error committed when increasing W is due to the uncertainty on
the distances (for large σ). However, the PCA does not solve the problem of nonzero weights
(as in section 2.1), and we have performed several experiments highlighting the same bias
problem for large W when using PCA.

3.4. Bias-variance and the patch size. In the literature (see [34, 37, 22]), the best results
with strong noise are obtained with large patches. As noted in [29], using a large patch allows
a more robust discrimination between areas that are not actually similar, which is interesting
in the presence of noise. Let us illustrate this in an experiment displayed in Figure 6. We
consider an image with mainly two kinds of patches, say two regions (with intensities α and 0),
and a noise with standard deviation σ such that the two noisy regions are hard to distinguish.
This time we compute the similarity diagram on the noisy image: the two regions cannot be
discriminated with a 3× 3 patch, but with size 15× 15, two different clouds clearly appear.

The shapes of the similarity diagrams are explained by the Bienaymé–Chebyshev inequal-
ity. Indeed, let P (resp., Q) be a perfect gray (resp., black) patch and Ũ(x) be a noisy patch
completely included in the gray region. Then

∀ε > 0, P

(∣∣∣‖Ũ(x)− P‖2 − σ2
∣∣∣ > ε

)
≤ 2σ4

s2ε2
,

so that for a large patch size s2, most patches of the gray (resp., black) regions lie near the
sphere of radius σ and center P (resp., Q).

Since the two clusters are separated with a large patch size, a good threshold value h
allows us to average the pixels of the first cluster only. This does not introduce bias if the first
cluster actually corresponds to the pixels of the gray region, i.e., ‖Ũ(x)−P‖2 ≤ ‖Ũ(x)−Q‖2.
But if ni ∼ N (0, 1) i.i.d. for i ∈ {1, . . . , s2},

P

(
‖Ũ (x)−Q‖2 < ‖Ũ(x)− P‖2

)
= P

⎛
⎝ 1

s2

s2∑
i=1

(α− σni)
2 <

1

s2

s2∑
i=1

(σni)
2

⎞
⎠

= P

⎛
⎝αs

2σ
<

1

s

s2∑
i=1

ni

⎞
⎠ =

∫ +∞

αs
2σ

e−t2/2 dt√
2π

,(3.8)

so that when s is large, most patches are averaged with the correct cluster.

The same holds for natural images: large patches are needed for their robustness to
noise. An example is shown in Figure 7, where a small patch size induces a mottling effect.
However, large patches make the algorithm more exposed to both bias and variance. First,
as in section 2.1, using a large patch size reduces the importance of little contrasted small
details, so that they are more blurred. Second, if the image has textures with highly contrasted
transitions or curved and contrasted edges, using a too large patch will prevent the algorithm
from finding redundancies and the variance will stay large (see Figure 8). A way to overcome
both issues is to select the smoothing parameter h accordingly: when choosing the useful
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Figure 6. Left: original (intensity 0 and α = 32) and noisy image (σ = 30). Middle and right: similarity
diagram for a pixel at the center of the gray region (the patch sizes are 3× 3 and 15 × 15, respectively). With
a large patch size one sees two clusters. Question: Does the closest cluster correspond to patches which were
originally gray as well? When s is large, the answer is yes with high probability: in strong noise, a large patch
size discriminates the two regions better than a small one.

Figure 7. Left and right: extract of the result of the NLM filter with s2 = 3× 3 and s2 = 5× 5 on a noisy
image (σ = 10, h optimized for PSNR). Using a too small patch size makes the algorithm less robust to noise,
and Lena’s skin looks mottled. It looks smoother with patch size 5× 5, but visual artifacts appear in the eye.

patches, be more selective in the first case and more tolerant in the second one. These two
contradictory behaviors impose a local choice of h.

The patch size ideally should also be chosen depending on the local scale of the sig-
nal/image, but a locally defined h should make this choice less critical. In the next section
we propose setting both the smoothing parameter and the patch size automatically.

4. Making the nonlocal means spatially adaptive. In this section, we propose locally
selecting the parameters by solving the bias-variance trade-off. As the above discussion ad-
vocates for kernels with compact support (see also [17]), we consider general filters of the
form

NLu(x) =

∑
y∈Ω ϕ

( ‖U(x)−U(y)‖2
2h2

)
u(y)∑

y′∈Ω ϕ
( ‖U(x)−U(y′)‖2

2h2

) ,(4.1)

with ϕ nonnegative and nondecreasing. With a kernel with compact support, the filter is more
robust to the choice of W than it is with a global kernel, so that in the following, we fix W in
advance and then we choose h locally. This approach is dual to that proposed by Kervrann
and Boulanger [18], who fix h and then control the bias and variance of the filter by choosing
the size of the search window.
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(a) Original (b) Noisy (c) Top: original, bottom: noisy

(d) Patch size 5× 5 (e) Patch size 9× 9 (f) Top: 5× 5, bottom: 9× 9

Figure 8. Choice of the patch size: original image (a), noisy image (b) (σ = 10), NLM filter with patch
size s2 = 5 × 5 (d), and s2 = 9 × 9 (e). Zoomed versions are shown in (c) and (f). Around the letters it is
very difficult to find similar patches, and a noisy halo appears. A smaller patch size reduces the spread of the
halo since it allows us to find similar patches for the furthest pixels. Another solution would have been to force
a high smoothing parameter h (those used here were chosen to maximize the PSNR).

4.1. Oracle estimation. To show that the behavior of the SURE-based method of sec-
tion 4.2 is an approximation of the optimal behavior, we first build an oracle which has access
to the real local squared error. Although this algorithm is not usable in practice, it gives an
idea of which parameters should be used in each region and what can be expected in terms
of visual quality.

For the oracle estimation only, we have used the indicator kernel ϕ(x) = 1[0,1/2](x). This
kernel has compact support, and it does not suffer from the overestimation of the self-weights
w(x, x) pointed out in [26]. Let us recall that for y �= x, the distance between noisy patches
‖Ũ(x)−Ũ (y)‖2 ≈ ‖U(x)−U(y)‖2+2σ2 is increased by the noise level, whereas the self-distance
‖Ũ(x) − Ũ(x)‖2 is always zero. Therefore, with Gaussian weights, the weight w(x, x) = 1

C(x)

is proportionally e
2σ2

2h2 times larger in the presence of noise than it would be without noise. As

a consequence, some authors set w(x, x) to 1
C(x)e

− δ2

2h2 , where δ2 = miny 
=x ‖Ũ(x)− Ũ(y)‖2, or
replace it with 1

C(x)e
−σ2

h2 (see [26]). On the contrary, the indicator weights do not behave this

way, and we need not give a special value to w(x, x).

With this kernel, minimizing the bound (3.6) over the radius h′ amounts to finding the
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Figure 9. Map of parameters prescribed by the oracle. The original images are degraded with σ = 10; the
patch size is s = 7. From top to bottom: original images (without noise), map of the number of pixels in the
mean, map of the corresponding h parameter. In the second row, the white regions represent a number of pixels
nx ≈ 3000. In the third row, first image, the parameter h is approximately equal to 14 on the lake, while it
ranges from 15–20 in the forest, and from 40–75 along the edges of the mountains and the lake. On the rocks
it is around 30. Although the denoising of edges should be performed with very few pixels, the corresponding
parameter h should be very large.

optimal number of pixels nx := m(Bh′(U(x))) when denoising x. To build our oracle estimate,
we compute the risk on the noise-free image u for each integer, and we keep the minimizing
value nx. Then we can estimate u(x) from ũ by averaging the centers of the nx patches Ũ(y)
that are nearest to Ũ(x) in Euclidean distance. In a nutshell, we use the oracle to define a
map nx and then compute the nonlocal filter on the noisy image ũ, keeping only the best
nx patches. Notice that this procedure is roughly equivalent to one iteration of [5] with the
difference that the number of pixels is chosen locally, by an oracle.

Figure 9 shows the number of pixels nx recommended by the oracle and the associated
smoothing parameter hx (that is, we display the norm ‖U(x)−U(y)‖, where y is the last pixel
taken into account). As expected, in very smooth regions the oracle selects as many pixels as
possible, whereas in regions where the image is not patch regular (i.e., near edges) the oracle
recommends using very few pixels. The case of textures falls in between. More surprising is
the map of the corresponding hx: the values prescribed near edges are much higher than in
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(c)

Figure 10. Similarity diagram for three different pixels. The red line indicates the ball of radius hx

prescribed by the oracle (the pixels at the right of this line are not taken into account in the mean). In the
interior of homogeneous regions (a), a small radius (hx ≈ 17) is sufficient to reduce the variance of the noise.
Near edges (b) and (c), one has to look very far in the patch space to find enough pixels to reduce the variance
(hx ≈ 50 and 95, respectively). The threshold is especially large in the third case since the compensation of the
darker and brighter pixels yields a very small bias.

smooth regions or textured regions. In fact, even though the oracle prescribes very few pixels
to reduce the variance term, one has to go very far in the patch space to gather enough pixels.
This is illustrated in Figure 10 (notice that here these similarity diagrams are computed on
the noisy image). Therefore, one should use much higher values of h near edges. Let us stress
that this problem is not related to the overestimation of the self-weight mentioned above,
since the indicator kernel does not suffer from this drawback.

Figure 11 shows the PSNR as a function of the size of the search window (cf. Figure 5).
This time, the global trend of the PSNR is nondecreasing with the size of the search window.
The conclusion is that there is no harm in computing fully nonlocal means, provided that
we carefully choose the pixels in the means,4 but there is also little gain in doing so unless
the image has large smooth areas (like the mountain image). In general, the PSNR tends to
stabilize for a side-length W greater than 25. Slights oscillations of the PSNR are due to the
following balance: when increasing the search window, one adds to the mean several relevant
pixels that help reduce the variance, but also a few pixels of the first kind (see section 3.3)
which perturb the estimation of u(x). However, they are very few, so that overall the PSNR
is stabilized.

4.2. SURE. In this section, we show that one can approximate the behavior of the oracle
by locally minimizing Stein’s unbiased risk estimate. This is a way to handle the bias-variance

4Phrased this way, this statement appears to be a tautology, but one should remember that the expression
(4.1) imposes a structure on the choice of the pixels, and it would not be true if pixels of the first kind (see
section 3.3) were overwhelming in natural images.
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Figure 11. Evolution of the PSNR as the size of the search window W increases. Left: for the oracle with
indicator weights on different images. The patch size is s = 7; the noise level is σ = 10. With a locally defined
smoothing parameter h, there is no or very little loss when using a large window, so that the choice of W is
not a real issue, contrary to Figure 5. Right: for the local SURE filter on the image “mountain.” The local
SURE filter, the NLM with polynomial weight, and the classical NLM are displayed (for the last two filters, the
parameter h was optimized for PSNR for each size of the search window). The local SURE filter is robust to
the size of the search window, mainly because of the compact support of the weights.

dilemma of section 3 without making the assumption that the weights are deterministic. The
use of SURE to select the parameters is well known in the wavelet community [12, 41, 8, 4],
but on the whole it is less widespread in the image processing community [30]: it is usually
difficult to compute the necessary analytic expression of SURE. Recently, however, it was
shown in [25] that one could replace this computation with a stochastic estimation. In the
recent work [37] (which we discovered after deriving the results of section 4.2.1), Van De Ville
and Kocher have shown that these computations are tractable in the case of the classical
NLM. In this paper we extend this computation to compactly supported weights, and we use
it to perform a local choice of the parameter h. Algorithmic issues are also discussed.

4.2.1. Estimation of the risk. Let us first recall the result by Stein (see [31]).
Proposition 4.1 (Stein). Let x ∈ R, Z ∼ N (0, σ2), and Y = x + Z. If γ : R → R is

absolutely continuous, and

(i) lim|z|→∞ γ(x+ z)e−
z2

2σ2 = 0,
(ii) E(γ(x+ Z))2 < +∞ and E|γ′(x+ Z)| < +∞,

then the risk of the estimator γ(Y ) of x is given by

E|γ(Y )− x|2 = E
[−σ2 + 2σ2γ′(Y ) + (γ(Y )− Y )2

]
.(4.2)

The proof relies on an integration by parts. Let ũ be the noisy image, NLũ the result
of NLM applied to the noisy image using the noisy weights, and z the noise at pixel x (i.e.,
ũ(x) = u(x) + z). Then

J(x) := −σ2 + 2σ2

(
d

dz
NLũ(x)

)
+ (NLũ(x)− ũ(x))2(4.3)

is an unbiased estimator of the risk at pixel x, and in [37], an analytic expression of J is given
in the case of the Gaussian weights. The authors show that this estimator yields a very robust
estimation of the global mean square error.
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In the general case of a kernel ϕ with compact support, the middle term is rewritten as

d

dz

(∑
y

ũ(y)
ϕy

C

)
=

ϕ(0)

C
+

1

C

∑
y

ũ(y)
∂ϕy

∂z
− 1

C2

(∑
y

ũ(y)ϕy

)(∑
w

∂ϕw

∂z

)
,(4.4)

where

ϕy := ϕ

(
‖Ũ (x)− Ũ(y)‖2

2h2

)
, C := C(x) =

∑
y

ϕy,

and the derivative of ϕy is given by

∂ϕy

∂z
=

1

h2sd
(ũ(x)− ũ(y)− (ũ(x+ i0)− ũ(x))︸ ︷︷ ︸

if ∃i0,∈P, x=y+i0

)ϕ′
y.

The last two terms appear only when y belongs to the patch centered at x (i.e., |x−y|∞ ≤ s−1
2 ).

As with the Gaussian weights, this procedure yields a very reliable estimation of the
(global) mean square error when it is summed over all pixels x in the image. Note that
it is necessary to compute the NLM for each parameter to estimate the corresponding risk,
and that (4.4) adapts straightforwardly to the trick of replacing ϕ(0) with exp(−σ2

h2 ) in the
self-weight.

4.2.2. Local approach. In order to select local parameters, we use the estimation (4.3) to
minimize the risk depending on the local content of the image (textured areas, smooth regions,
etc.). Since the pointwise estimation of the risk is not robust, we need to locally average the
estimations. The underlying assumption is that the risk is roughly homogeneous within each
region (smooth/textured). One should find the right balance between having enough samples
to estimate the risk and keeping a local estimation.

Considering a set of values {h1, h2, . . . hn} for the smoothing parameter, we compute for
each value the output of the filter (NLhi

ũ)i=1,...,n and the associated risk map (Jhi
)i=1,...,n.

We convolve each risk map Jhi
with a disk indicator or a Gaussian with small radius to have a

more robust estimation of the local risk. Then we choose for each pixel x the value hi(x) that
minimizes the convolved risk at pixel x, Jhi

(x), and we retain the corresponding estimation
NLhi(x)ũ(x).

Implementation. The procedure we propose, called LBMRE (local bandwidth minimizer
of the risk estimate), is described in Figure 12. It is necessary to compute many NLM filters,
but this procedure is simpler than several methods proposed in the literature inasmuch as it
is not iterative. The expensive computations of the patch distances need be performed only
once (since all the filters work with the same input image), and as the other computations are
independent, they can be parallelized. As an indication, our code takes 26 s to execute lines
1 to 15 (the rest is negligible) on a 256× 384 image using a search window W of 23× 23 and
64 values of h, on an Intel Core2 Duo 2.5GHz and 4Gb RAM. In addition, the speed can still
be improved, since our C code (which uses SSE instructions to vectorize the computations)
uses only one of the two cores. Additional tricks could be added, such as taking advantage of
the fact that, for each pixel, if a weight is zero for some value h1, it is necessarily zero for all
h2 ≤ h1. Moreover, several approaches proposed in the literature (such as the use of integral
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Nonlocal means with local h (LBMRE)

for all pixel x do
for all translation k ∈ Z

d, |k|∞ ≤ W−1
2 do

dist ← ‖U(x)−U(x+k)‖2

2
for i=1 to n do

(
∑

uϕ)i ← (
∑

uϕ)i + u(x+ k)ϕ(dist
h2
i
),

(
∑

ϕ)i ← (
∑

ϕ)i + ϕ(dist
h2
i
),

(
∑

uϕ′)i ← (
∑

uϕ′)i + u(x+ k)ϕ′(dist
h2
i
),

(
∑

ϕ′)i ← (
∑

ϕ′)i + ϕ′(dist
h2
i
)

end for
end for
for i = 1 to n do

NLiu(x)← (
∑

uϕ)i / (
∑

ϕ)i,
Ji(x)← · · · (4.3)

end for
end for
for i = 1 to n do

Ji ← Ji ∗Gr

end for
for all pixel x do

LBMRE(x)← NLi(x)u(x), where i(x) = argmini Ji(x)
end for

Figure 12. LBMRE algorithm.

images to compute the patch distances in [10], or the cluster tree in [6] to accelerate the NLM)
could be adapted.

4.3. Experimental results. In this section, we illustrate the differences between the NLM
filter with optimal global parameter (i.e., using the value of h that minimizes the true MSE)
and the NLM with local parameter estimated using SURE (LBMRE). The indicator oracle
(section 4.1) is also shown. The NLM filters5 used with SURE are given by the polynomial
kernel: ϕ(x) = 1[0,1](x)(1− (10x6− 24x5 +15x4)). Observe that this kernel is smooth enough
to apply Proposition 4.1. In the following, the local and global versions share the same values
for the parameters that are not locally selected and, unless otherwise stated, the size of the
search window is set to 29× 29 and the patch size is 7× 7. Notice that the use of compactly
supported weights already gives a better result than the original Gaussian ones, as explained
in [17]. When the noise level is σ = 10, we take {h1, h2, . . . , hn} = {3, 3.5, . . . , 34.5} (see the
previous paragraph) and scale these values proportionally when σ varies.

5We do not replace the self-weight w(x, x) by the maximum of the weights w(x, y). This would slightly
reduce the rare patch effect described here, but it would not solve it because this effect is due to the configuration
of the patch cloud (see Figure 10) and even the indicator weights suffer from it. This trick would also favor
the loss of details. Moreover, its relevance is questioned in [26].
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Figure 13. Original and noisy images (σ = 10).

Figure 14. Bird image. From left to right: NLM with global smoothing parameter h optimized for PSNR,
NLM with local h (LBMRE), zoom of the NLM with global h, local h, and their respective method noise
(ũ − NLũ). Along contrasted edges, the global NLM leaves a noisy halo. This “rare patch effect” becomes
stronger as the edge is winding. The local choice of the smoothing parameter corrects this shortcoming.

Original and noisy images are displayed in Figure 13. In Figure 14, it is shown that the
local selection of h enables one to get rid of the rare patch effect, responsible for noisy halos
around edges. The advantage of using the local approach is further illustrated in Figure 15,
where one observes in particular that the macrotexture made of the tiger stripes is better
preserved using a local selection of h. Both the PSNR and the structural similarity (SSIM)
are improved in these experiments, as illustrated in Table 1 for σ = 10 and Table 2 for σ = 20.
In these tables the proposed method is denoted as LBMRE with polynomial weights. The
case of Gaussian weights is also shown, and the local bandwidth with exponentially weighted
aggregation (LBEWA) is an alternative method presented in the conclusion.

Next, we display in Figure 16 the maps of prescribed values for h, first using the (ideal)
oracle, then using the approach described in section 4.2.2. Of course, the values prescribed by
the oracle are spatially more accurate than those using LBMRE. The corresponding denoising
result is also better. It is therefore tempting to try to improve the estimation of h. We
performed various attempts in this direction, for example, using some nonlocal regularization
of the risk map, relying on weights computed on the noisy image. This did not improve the
PSNR but, instead, yielded some visible artifacts, and we did not further pursue this direction.
Observe also that some abnormally high h values are present on the map obtained from local
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Figure 15. Tiger image. From top to bottom: NLM with global parameter h optimized for PSNR, NLM
with local h (LBMRE), oracle.

SURE. They may be explained by very flat risk curves in these areas, as illustrated in the
same figure, and therefore do not significantly impair the denoising process.

In the experiments of Figures 17 and 18, it is shown that the optimal local value of h near
an edge strongly depends on its contrast. As a consequence there is no way to globally set h
to efficiently denoise edges.

The experiment of Figure 19 shows that the LBMRE approach permits the reduction of
noise halos and artifacts that appear when the patch size s is increased. Figure 20 displays
an example where the local approach yields a better preservation of fine details. Finally, it
is illustrated in Figures 21 and 22 that this ability to increase the value of s enables one to
avoid the mottling effect (local intensity fluctuation due to a nonrobustness of small patch
sizes) without washing out textures.

Eventually, we can also locally adapt the patch size using the local SURE. Figures 21 and
22 recap the trade-off one has to face when choosing the global patch size: a too small patch
size yields a mottling effect, but it allows one to preserve details, whereas a large patch size
produces smoother images except in regions where it brings the rare patch effect. Choosing
h locally already makes this choice easier by allowing one to preserve details with large patch
sizes. Therefore, the gain in letting s vary locally is visually small, although in our experiments
it always provides a slightly higher PSNR.
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Table 1
Comparison of the PSNR (dB)/SSIM [39] for the aggregation (σ = 10).

NLM Gaussian weights NLM polynomial weights BM3D NLM ind. w.

Global h
Local h

Global h
Local h Local h

[9]
Local h

(LBMRE) (LBMRE) (LBEWA) Oracle

barbara 33.08/0.961 33.71/0.968 33.28/0.962 33.84/0.970 33.51/0.966 34.94/0.977 35.21/0.978
boat 31.84/0.938 32.59/0.952 32.13/0.943 32.76/0.955 32.55/0.949 33.86/0.966 33.95/0.963
bird 32.60/0.916 33.11/0.923 32.60/0.917 32.92/0.920 33.07/0.922 33.83/0.931 33.68/0.923
bridge 29.50/0.879 29.98/0.893 29.42/0.879 29.73/0.890 29.86/0.896 30.79/0.911 30.68/0.916
cameraman 32.35/0.910 33.26/0.922 32.52/0.912 33.07/0.921 33.14/0.920 34.08/0.932 34.19/0.925
country house 30.81/0.823 31.38/0.848 30.78/0.822 31.21/0.841 31.36/0.848 32.02/0.851 32.35/0.880
couple 31.92/0.931 32.58/0.951 32.23/0.941 32.81/0.955 32.47/0.946 34.00/0.967 33.99/0.965
fingerprint 30.34/0.979 30.76/0.987 30.37/0.983 30.69/0.987 30.69/0.989 32.48/0.991 31.94/0.989
flinstones 31.27/0.971 31.93/0.978 31.14/0.971 31.50/0.977 32.04/0.979 32.48/0.980 33.71/0.984
hill 30.55/0.854 31.08/0.868 30.53/0.847 30.90/0.863 31.01/0.870 31.81/0.883 32.13/0.902
house 34.55/0.879 35.20/0.896 34.88/0.887 35.46/0.900 35.10/0.891 36.59/0.918 36.52/0.915
lena 34.00/0.947 34.56/0.958 34.26/0.952 34.82/0.960 34.35/0.953 35.86/0.969 35.77/0.967
man 32.08/0.936 32.74/0.949 32.32/0.941 32.87/0.952 32.59/0.946 33.94/0.963 33.99/0.963
mandrill 30.28/0.931 31.02/0.949 30.51/0.930 31.33/0.951 30.98/0.950 33.18/0.966 32.18/0.963
peppers 32.89/0.903 33.54/0.912 33.17/0.906 33.67/0.914 33.41/0.908 34.72/0.927 35.18/0.936
tiger 31.59/0.846 32.28/0.855 31.72/0.846 32.31/0.858 32.17/0.850 33.42/0.887 33.41/0.886
ucla 30.43/0.928 31.03/0.940 30.48/0.932 30.78/0.937 30.93/0.939 31.63/0.948 31.68/0.952

Table 2
Comparison of the PSNR (dB)/SSIM [39] for the aggregation (σ = 20).

NLM Gaussian weights NLM polynomial weights BM3D NLM ind. w.

Global h
Local h

Global h
Local h Local h

[9]
Local h

(LBMRE) (LBMRE) (LBEWA) Oracle

barbara 29.44/0.917 29.81/0.929 30.11/0.929 30.52/0.938 29.12/0.912 31.67/0.952 31.20/0.946
bird 28.79/0.813 29.28/0.836 28.91/0.826 29.36/0.837 28.95/0.813 30.18/0.859 29.85/0.825
boat 28.55/0.860 29.07/0.887 29.03/0.871 29.59/0.897 28.70/0.865 30.80/0.926 30.21/0.915
bridge 25.56/0.729 25.99/0.750 25.58/0.714 25.92/0.741 25.85/0.750 26.83/0.782 26.97/0.809
cameraman 28.73/0.830 29.47/0.852 28.96/0.841 29.57/0.854 29.22/0.833 30.52/0.878 30.28/0.844
couple 28.32/0.867 28.68/0.884 28.85/0.884 29.29/0.897 28.26/0.864 30.73/0.929 29.85/0.915
country house 27.71/0.703 28.06/0.724 27.77/0.702 28.12/0.724 27.93/0.716 28.88/0.743 28.88/0.772
fingerprint 26.59/0.938 26.86/0.953 27.02/0.951 27.21/0.957 26.52/0.948 28.86/0.972 28.38/0.969
flinstones 27.59/0.941 28.47/0.958 28.17/0.952 28.87/0.961 28.31/0.954 29.60/0.966 30.06/0.967
hill 27.13/0.724 27.48/0.739 27.35/0.721 27.70/0.743 27.16/0.725 28.54/0.778 28.53/0.800
house 31.60/0.841 31.87/0.844 32.32/0.851 32.56/0.851 31.30/0.826 33.77/0.869 32.81/0.838
lena 30.93/0.907 31.22/0.916 31.44/0.912 31.70/0.922 30.62/0.902 32.94/0.940 31.89/0.928
man 28.79/0.862 29.18/0.881 29.13/0.867 29.52/0.888 28.68/0.858 30.56/0.917 30.16/0.913
mandrill 26.59/0.840 26.90/0.863 26.91/0.836 27.36/0.872 26.67/0.847 29.11/0.912 28.18/0.906
peppers 29.38/0.845 29.83/0.851 29.83/0.854 30.26/0.858 29.33/0.830 31.38/0.885 31.04/0.867
tiger 28.29/0.741 28.82/0.758 28.46/0.742 29.02/0.764 28.63/0.746 30.01/0.806 29.58/0.776
ucla 26.81/0.824 27.28/0.855 26.73/0.829 27.19/0.855 27.08/0.844 27.94/0.875 28.12/0.892

4.4. Conclusion. We have proposed a bias-variance study of the NLM which shows the
interest of using local parameters. Our LBMRE method automatically chooses the smoothing
parameter h and the patch size s2. Choosing the patch size s2 locally provides hardly any
visual improvement over a global (well-chosen) patch size: we suggest selecting a global patch
size large enough to avoid the mottling effect (5× 5 or 7× 7) and a local parameter h.
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Figure 16. Map of the prescribed value of h using the oracle (left) and the filtered SURE (middle). The
middle map is rough, but it shows the same general behavior as the left one. In some areas, the chosen h is
very high since the filtered SURE is flat when h varies (right). It has no visual consequence.

Figure 17. Penguin image. From left to right: NLM with global parameter optimized for PSNR, NLM with
local h (LBMRE), zoom of the same results.

Figure 18. Experiment with σ = 20. Left: NLM filter (h = 30 optimized for the PSNR). The global optimal
parameter is too high for the least contrasted edges, so that, as in (2.3), they are blurred. Middle left: NLM
with local h (LBMRE). Along the least contrasted edge, the chosen value of h is about 24. If we set the global
parameter to 24 (middle right), these edges become sharp, but the more contrasted edges become noisy. Right:
map of h prescribed by the indicator oracle. The more contrasted the edge, the higher h should be.

The main improvement brought by the locality is to remove the “rare patch effect.” This
is definitely a visual improvement, but since the concerned regions, along edges or highly
contrasted textures, are not prominent in images, the gain on the global PSNR/SSIM is
moderate. A second, less striking, improvement is the better preservation of the contrast of
details and textures. However, a limitation of the method is that the decision of the local
SURE might yield small visual artifacts in some regions.

As a future work, we plan to investigate the benefit of combining the estimators associated
with different parameters instead of keeping the minimizer of the estimated risk as we do in this
paper. In the context of NLM, recent works have shown that considering a linear combination
of estimators instead of the best one often leads to better results (see in particular [28, 38]).
Figures 23 and 24 show a preliminary result using an exponentially weighted aggregation (see
[20] or, in the context of NLM, [27]) of the NLM for different values of h. Instead of considering
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(a) Original (b) Global h, s2 = 5× 5 (c) Global h, s2 = 7× 7

(d) Noisy σ = 10 (e) Local h, s2 = 5× 5 (f) Local h, s2 = 7× 7

Figure 19. Couple image (only an extract is shown). Top: extract of the original image (a), NLM with
global parameter h: the patch size is s2 = 5 × 5 in (b) (PSNR 32.46 dB) and s2 = 7 × 7 in (c) (32.14 dB).
In both cases, h was chosen to maximize the PSNR. Bottom: noisy image (d) (σ = 10), NLM with local h
(LBMRE): the patch size is s2 = 5× 5 in (e) (32.77 dB) and s2 = 7× 7 in (f) (32.70 dB). Notice how the face,
the tie, and the shoulder are smoother with the local h (the reader should zoom in on this picture) with both
patch sizes. Yet the contrast of the wall is not lost.

the minimizer, we take

LBEWA(x) =

∑n
i=1 exp (−Ji(x)/T )NLiũ(x)∑n

i=1 exp (−Ji(x)/T )
(4.5)

with T = 0.5σ2. As before, everything is performed locally. This procedure leads to slightly
noisier images than the method described in this paper, but the preservation of textures is
much better. We find that the visual result is drastically improved. Yet, it is less stable in
terms of PSNR: the performance is sometimes better than the local h described in this paper,
or sometimes below the best global h (see LBEWA in Tables 1 and 2).

Appendix: Assumptions on the toy signals of section 2. For the isolated crenel and the
periodic crenel, we assume that

• the crenel size is T/2 = p, where p is an odd number;
• the size of the search window is infinite, or it is a multiple of T .

We assume moreover that the patch size is s = T/2 in the case of the isolated crenel, and
s =

(
k + 1

2

)
T , for k ∈ N, in the case of the periodic crenel (i.e., the period of the signal is

small compared to the patch size). In both cases, the computation of the distances leads to a
triangle signal, so that the denoised signal is the quotient of geometric sums.
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(a) Original image (without
noise).

(b) Gaussian weights, global h.

(c) Polynomial weights, global
h.

(d) Polynomial weights, local h.

Figure 20. Comparison of the NLM on a noisy image (σ = 10). In (b) and (c), the parameter h is
optimized for PSNR. The difference between them is barely visible. In regions (1), (2), and (3), the adaptivity
using SURE (d) allows us to reconstruct fine structures such as ropes and antennas. However, the filter leaves
a noisy spot in region (4) when trying to preserve a fine rope.
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(a) Global h, s2 = 3× 3 (b) Global h, s2 = 5× 5 (c) Global h, s2 = 7× 7

(d) Local h, s2 = 3× 3 (e) Local h, s2 = 5× 5 (f) Local h, s2 = 7× 7

Figure 21. Patch size and textures. Top: NLM with different patch sizes s2 using a global parameter
h optimized for PSNR. Bottom: local parameter h using LBMRE. The least contrasted textures are better
preserved with a small patch size. However, what looks like texture with patch size 3 × 3 might as well be the
mottling artifact (see below). With the local parameter h, the textures are preserved even with a large patch
size.

(a) Global h, s2 = 3× 3 (b) Global h, s2 = 5× 5 (c) Global h, s2 = 7× 7

(d) Local h, s2 = 3× 3 (e) Local h, s2 = 5× 5 (f) Local h, s2 = 7× 7

Figure 22. Patch size and robustness to noise (same experiment as in Figure 21). With a too small patch
size, the algorithm leaves too much noise: Lena’s skin looks mottled. As the patch size increases, this effect
reduces, but the rare patch artifact appears. With a local h, the rare patch effect is reduced, which allows us to
use large patches.



A BIAS-VARIANCE APPROACH FOR THE NLM 785

(a) Original image (b) Noisy Image (σ = 10)

(c) Global h (d) Local h, LBMRE

(e) Local h, LBEWA (f) BM3D

Figure 23. Comparison on the country house image (σ = 10).
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Figure 24. Zoom of Figure 23.
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[23] G. Peyré, Image processing with nonlocal spectral bases, Multiscale Model. Simul., 7 (2008), pp. 703–730.
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