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Removing Artefacts From Color and
Contrast Modifications

Julien Rabin, Julie Delon, and Yann Gousseau

Abstract—This work is concerned with the modification of the
gray level or color distribution of digital images. A common draw-
back of classical methods aiming at such modifications is the re-
vealing of artefacts or the attenuation of details and textures. In
this work, we propose a generic filtering method enabling, given
the original image and the radiometrically corrected one, to sup-
press artefacts while preserving details. The approach relies on the
key observation that artefacts correspond to spatial irregularity
of the so-called transportation map, defined as the difference be-
tween the original and the corrected image. The proposed method
draws on the nonlocal Yaroslavsky filter to regularize the trans-
portation map. The efficiency of the method is shown on various ra-
diometric modifications: contrast equalization, midway histogram,
color enhancement, and color transfer. A comparison with related
approaches is also provided.

Index Terms—Artefact-free, color transfer, contrast adjustment,
contrast equalization, contrast modification, histogram specifica-
tion, image regularization, optimal transportation.

I. INTRODUCTION

A PPLYING contrast changes to digital images is one of
the most elementary tools for image enhancement. Such

changes may be obtained by applying a prescribed function to
the gray values of images, as in contrast stretching or Gamma
correction, or by prescribing the histogram of the resulting
image, as in histogram equalization or specification from an
example image [1]. Such operations are characterized by the
way they affect the histogram of an image and may be seen as
modifications of their gray-level distribution. These techniques
extend to color images by considering a luminance channel, as
in Gamma correction, or by working on each color channel sep-
arately. The prescription of the 3-D color distribution is more
satisfying because it avoids the creation of false colors, but
is also more involved. Actually, a nice theoretical framework
enabling to merge the gray level and color cases is the one of
optimal transportation, also known as the Monge–Kantorovich
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problem [2], as we will briefly recall in this paper. When the
resulting color histogram is prescribed by a target image, one
speaks of color transfer. Various approaches to this task are
proposed in [3]–[6].

Applications of contrast or color changes are of course
extremely numerous. With the popularization of digital pho-
tography, these techniques have became immensely popular
through the use of various “curves” in image editing soft-
ware. Early uses of contrast equalization are the enhancement
of medical images [7] and the normalization of texture for
analysis purposes [8]. In a related direction, the construction
of midway histograms [9], [10] is useful for the comparison
of two images of the same scene. More recently, extensive
campaigns of old movies digitization have claimed for the
development of contrast modification techniques to correct
flicker [11], [12]. Similar techniques are commonly used in the
postproduction industry [13], [14]. Another field of increasing
industrial interest in which contrast changes play a central role
is the one of imaging in bad climatic conditions, see, e.g., [15].
Color modification or transfer is also useful for a wide range of
applications, such as aquatic robot inspection [16], space image
colorization [17], and enhancement of painting images.

A common drawback of most methods aiming at modifying
the contrast or color content of images is their strong tendency
to create visual artefacts. Indeed, when increasing the contrast,
parasite structures that were barely visible become prominent.
Most noticeable is the enhancement of noise and compression
scheme patterns, such as “block effect” due to the JPEG stan-
dard. In the other direction, contrast reduction or color transfer
may yield detail loss and texture washing. A last artefact is par-
ticularly noticeable in the case of color transfer and appears
when the proportions of colors are very different between im-
ages. The goal of this paper is to propose a universal approach
to remove those artefacts. This approach can be used as a post-
processing for many classical image modification tasks, such as
contrast and color transfer, movie restoration, gammut mapping,
or high-dynamic-range (HDR) image visualization.

Before proceeding, we now recall some of the approaches that
have been proposed in the literature to suppress artefacts due to
contrast or color modification. The simplest one is proposed in
[18] in the context of local histogram modifications and amounts
to limit the modification depending on gradient values. While
improving the results in some cases, this approach let most arte-
facts untouched. In [5], it is proposed to correct color transfer
artefacts by using a variational regularization after the transfer.
Still in a variational framework, the authors of [10] propose a
unified formulation containing both color transfer and regularity
constraints in a single energy minimization. For the problem of
color proportion, a possible approach is to transfer color after
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having identified some homogeneous regions, as proposed in
[6] and [19]. A related class of works takes interest in the avoid-
ance of compression artefacts, usually using the properties of
the compression scheme, see, e.g., [20].

In this paper, we propose to remove all the artefacts described
above by regularizing the transportation map, defined as the
image of the differences between the original image and the
one after contrast or color modification. Indeed, we will show
that all these artefacts may be interpreted as spatial irregulari-
ties of this transportation map. In order to regularize this map
without introducing blur in the final image, we take inspira-
tion from nonlocal methods [21] that have been proposed for
image denoising and more precisely from the Yaroslavsky filter
[22]. The transportation map is filtered by averaging pixel values
using weights that are computed on the original image, therefore
adapting to the geometry of this initial image. It will be shown
that artefacts are progressively suppressed by iterating this fil-
tering stage and that the proposed filter generally provides better
results than the approaches described in the previous paragraph.
This paper is organized as follows. In Section II, the general
setting for contrast and color modifications is introduced. The
generic approach proposed in this work is given in Section III,
and experiments are displayed in Section IV. In the Appendices,
useful facts and results about optimal transportation and powers
of stochastic matrices are given.

II. COLOR AND CONTRAST MODIFICATION

Here, we recall how color and contrast modifications can
be applied to images and why they are likely to create visual
artefacts.

A. Contrast or Color Distribution of an Image

Let be a discrete image, with for a
gray-level image, for a color image, and where
is the bounded image domain. Assume that takes its values
in the set , and then the gray level or color
distribution of is defined as

(1)

where . When , we
denote by the cumulative distribution function of . The
distribution is also called the gray level or color histogram
of and is called its cumulative histogram.

B. Color and Contrast Modifications

It is usual to apply simple radiometric transformations to a
gray-level image in order to improve its contrast and level of
details. Such transformations generally consist in an increasing
function , in order to preserve gray level ordering. The
image becomes , and its gray level distribution becomes

. Particular cases of such transforma-
tions are histogram stretching or histogram
clipping , used for instance
to improve visualization in satellite or medical imaging [7].
Another example is the function , which is
particularly useful to visualize images of Fourier transforms or

HDR images [23]. Similar transformations can also be applied
to the luminance channel of a color image [see an example of
histogram clipping in Fig. 1(e)]. Note that some other methods
have been developed for local contrast enhancement, e.g.,
making use of the Curvelet transform [24], of a variational
framework [14], or of a PDE formalism [25].

In some cases, it is useful to assign to an image a given
target distribution . This amounts to find a mapping (called
contrast or color transfer) such that the distribution of is
equal or at least close to , i.e., such that

(2)

Most of the time, the equality cannot be exactly satisfied. For in-
stance, if ( is a constant image) and

, there is no mapping such that the distribution of is
exactly . is thus generally chosen so that be close to

in some sense.
For , (2) can be satisfied in the sense that the cumulative

distribution functions and coincide on the values taken
by . This is always possible in the continuous setting (i.e.,
when is continuous). Now, if we add the constraint that is
increasing, the solution is given by

(3)

where is defined as
. If is a constant distribution on the range of , (3) yields

the well-known histogram equalization. More generally, if
is the gray-level distribution of another image , then

is called histogram specification. These transforma-
tions can also be applied to the luminance channel of a color
image [an example is displayed in Fig. 1(b)]. Some variants of
this framework have been proposed to apply such equalization
locally [18], [26] [see Fig. 1(c) and 1(d)] or with a data-fidelity
term [27].

When , the interpretation of (2) is less clear and the
monotonic constraint cannot be used anymore to find an op-
timal mapping . A naive solution, proposed in [3] in the case of
color images, consists in applying an affine transformation to the
color distribution of in order to match the mean and variance
of the color distribution . If this elementary solution can be
satisfying for cases involving images having similar and simple
color distributions, it usually fails in general cases. In order to
find a satisfying mapping in the general case, the problem must
be seen in the framework of optimal transport, as described in
more details in Appendix A. If , this framework leads to
formulas similar to (3) for histogram equalization and specifi-
cation. If , however, no analytic formulation can be found
for the optimal mapping . Such mappings can be estimated
numerically, for instance by using the simplex algorithm. Most
of the time, this estimation leads to expansive computations. In
practice, a common approximation is to perform an histogram
specification separately on the three channels of the color image
(see, e.g., [28]). Though, a more satisfying approximation can
be computed by estimating iteratively 1-D optimal mappings on
random axes, as proposed in [5] and studied in [29] [an illustra-
tion is proposed in Fig. 1(m)]. The result is fast to compute,
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Fig. 1. Examples of visual artefacts produced by different image processing techniques and the corresponding regularizations. The first row exhibits several
images resulting from different contrast enhancement methods applied to the same original image (a). The second row shows the corresponding applications of
the TMR filter proposed in this paper. The third row shows an example of color transfer [the colors of (l) are affected to (k)]. Resulting artefacts are visible on
(m) and are shown to be removed by the TMR filtering in (n). The fourth row shows corresponding details illustrating the various artefacts and their removal.
Note: All of the images in this paper are much better appreciated when viewed full size from the electronic version of this article. All examples are available at:
http://perso.telecom-paristech.fr/~delon/artefact_removal_html/.

although not perfectly optimal in the sense of the Monge–Kan-
torovich transport problem described in Appendix A.

C. Visual Artefacts

As it can be observed from the several examples provided in
Fig. 1, four major visual artefacts can be caused by contrast or
color modifications.

• Noiseenhancement: thishappens if thevarianceof thenoise
in increases after the application of to , as illustrated for
instance in Figs. 1(b) and 2(d) for histogram equalization.

• Compressionartefacts:theseartefactsappearwhentheorig-
inal image is the result of some compression scheme (e.g.,
JPEG)andwhenpixelswithsimilarcolorsaremappedtodif-
ferent colors [see, e.g., Fig. 1(o)].
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Fig. 2. Convergence study of the iterated TMR filter. (a) Low-dynamic-range image � and (b) its gray-level histogram. (d) Image � , obtained by applying an
histogram equalization to �, and (l) histogram of � . (e)–(g) Iterations of the TMR filter, with (e) 23 iterations (corresponding to the automatic stopping criterion),
(f) 10 000 iterations, and (g) convergence. (m)–(o) Corresponding gray-level histograms. (i)–(k) Corresponding transportation maps. Observe how the 23 iterations
chosen by the stopping criterion permit to reduce the noise level while preserving contrast and image details.

• Detail loss: this results from a reduction of contrast be-
tween and and can be observed for instance on the
head of the bird in Fig. 1(p).

• Color proportion inconsistencies: Ideally, the mapping
should be defined in such a way that pixels having similar
colors in the original image are mapped to similar colors.
However, this is unfeasible if the proportions of colors are
very different in the original and the target distributions, as
illustrated by Figs. 1(q) and 6(i).

Our approach to remove these artefacts relies on the obser-
vation that they are all due to spatial irregularities of the trans-

portation map of the image , defined as . Indeed,
when comparing the geometrical information of the transporta-
tion map [see, e.g., Fig. 6(j)] with the one of the original color
map, each of the aforementioned artefacts appears as an irrel-
evant high frequency feature. As a result, a piecewise constant
transportation map [cf. the instance in Fig. 6(k)] taking into ac-
count the geometry of the image will considerably reduce arte-
facts from color and contrast modification. In this paper, the
proposed solution to obtain such a desired transportation map
consists in applying a guided edge-preserving filter to the trans-
portation map, using the original image.
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Fig. 3. Comparison of the iterated TMR filter with other regularization techniques for contrast enhancement. We consider here the image � and its equalization
����� previously shown in Fig. 1(a) and (b), respectively.

III. NEW REGULARIZATION APPROACH FOR

TRANSPORTATION MAPS

Following the observations of the previous section, we pro-
pose to spatially filter the transportation map. The solution we
chose is inspired from nonlocal filters [21]. This concept has
been introduced for image denoising by Yaroslavsky [22]. Sim-
ilar filters have been independently defined, as SUSAN [30] or
the Bilateral Filter [31]. More recently, a somehow radical ex-
tension of this approach, the so-called “Non-Local Mean” filter
[21] has been shown to outperform many approaches to image
denoising. In what follows, we will make use of a variant of the
Yaroslavsky filter to regularize transportation maps.

A. Transportation Map Regularization

Recall that is the image after color or contrast modifica-
tion. In what follows, we write for the trans-
portation map of image . We propose to regularize it thanks to
the operator , a weighted average with weights depending on
the similarity of pixels in the original image . The effect of this
operator on an image with is defined as

with weights (4)

where stands for the Euclidean distance in , where
, with a spatial neighborhood of

0, where is a tuning parameter of the method and is the
normalization constant .

Observe that if we apply to the image , we obtain the
Yaroslavsky filter [22]. If the weights also decrease as a function
of the distance to , becomes similar to the cross bilateral
filter introduced in [32] for flash photographic enhancement.

The regularization of the image , referred to as
transportation map regularization (TMR), is then defined as

. Now, observe that this formu-
lation can be divided in two terms as

of image

(5)

First, the image is filtered by a nonlocal operator ,
following the regularity of the image . This operation attenu-
ates noise, compression, and color proportion artefacts but also
the details of the image . The second operation performed
by the TMR filter consists in adding the quantity

, which can be considered as details of the original
image (e.g., texture and fine structures). We will see in the exper-
imental section that these two steps are very important to obtain
a natural rendering of the image.

B. Properties

The previously defined filter has several nice properties which
enable us to reduce the visual artefacts described in Section II-C.

First,observethat thisfilter leavesall theimages , ,
unchanged. Moreover, if the application consists of a multipli-
cation by a positive constant , then

. If , the transfer increases the contrast. In
that case, the TMR filter reduces the noise contained in the image
difference . If the transfer decreases the contrast
and the TMR filter restores the lost details contained in .

Finally, another interesting aspect of the TMR filter is that
the discrete distribution of the regularized image
is contained in the convex hull of the specified distribution of

. This property somewhat prevents the creation of false
colors which may be caused by the regularization process.

C. Iteration of TMR and Convergence Study

Inpractice,more thanone iterationof theTMRfilter is required
to remove all the aforementioned artefacts. The image after

iterations of the TMR filter can be written as follows:
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Fig. 4. Application of the iterated TMR filter for Gamma correction. (a) Gray-level image and (b) its contrast enhancement via histogram clipping and Gamma
correction (with � set to 1/2). Result of the iterated TMR filter, respectively, with (c) � � �� and (d) � � �.

where refers totherecursiveuseofthe filter.Anillustration
for histogram equalization is given in Fig. 3(b) and (a), where the
equalized image [Fig. 1(b)] is regularized using respectively one
and several iterations of the TMR filter.

The question is then how to choose the right number of itera-
tions and one may wonder what happens for large values of .
Studying the limit of when boils down to the study
of the limit of the powers of a matrix. Indeed, let us resize the
discrete image into a column vector of size . In this set-
ting, the linear filter can be written as an matrix ,
whose coefficients are

(6)

In this formulation, is the index in the vector of a pixel in
, and is the set of indexes in corresponding to the 2-D

neighborhood in . If we resize the map into the
vector , then corresponds to the vector .
Now, observe that the matrix is stochastic, i.e., that

and . If we assume that is primitive,
i.e., that is strictly positive for some [and this is
clearly true if the neighborhoods are disks of radius
in (4)], the Perron–Frobenius theorem permits to conclude that

tends toward a stochastic matrix when , and
that all of the lines of are equal (see Appendix B). This
means that the map tends toward a constant image

. In other words, the limit image
is only a shift of the image by a constant color.

The Perron–Frobenius theorem also gives information on the
convergence rate of towards . More precisely, we know
that behaves as , where is the eigen-
value of with the second largest modulus and where is
the algebraic multiplicity of . In practice, is generally close
to 1 for a similarity matrix , and the resulting convergence rate
is quite slow, as it will be confirmed in the experimental section.
The aim of the next section is to propose a way to stop automat-
ically the iterations of the filter TMR.

D. Stopping Criterion

In order to control the iterations of the TMR filter, we com-
pute at each iteration a convergence map, written and defined
at each pixel as follows:

where is the average Euclidean norm in . We then
consider that there is numerical convergence in pixel when

, and the TMR filter is only applied to pixels for
which the convergence map is greater than the threshold . In
all experiments, the convergence threshold has been set equal
to (for -bit images).

In practice, if is the first pixel to attain this numerical con-
vergence, this boils down to replace the line corresponding to

in matrix by the same line in the identity matrix. The new
matrix is then iterated until a second pixel attains numerical
convergence, and is then replaced by , etc. Observe that
each matrix is stochastic and such that converges when

(see Appendix C for a proof), which implies that a
new pixel attains numerical convergence after a finite number

of iterations. The whole process hence stops once all pixels
satisfy . At the end, if is the vector corresponding to

, we get

(7)

Observe that the proposed stopping criterion permits also to
save computation time since the iterations of the TMR filter con-
cern fewer and fewer pixels.

IV. EXPERIMENTAL STUDY

This section presents several applications of the TMR filter.
Observe that this filter relies on two different parameters. The
most important one is , which is used to compute the weighting
terms in the computation of the regularized map [(4)]. In the fol-
lowing experiments, we have used . The second param-
eter is related to the size of the neighborhood . In experi-
ments, we used disks of radius .
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Fig. 5. Application of the iterated TMR filter to flicker stabilization. (a) Sequence of three images corrupted by flicker (strong and fast local contrast change).
(b) Flicker stabilization results with the method of Delon and Desolneux [12]. Observe that the contrast is well harmonized over the sequence, but some artefacts
related to brutal and local contrast modifications appear. (c) Same frames after local flicker reduction and application of the TMR filter. Iterated TMR filter permits
to remove those artefacts.

A. Convergence Study

This paragraph illustrates the interest of the stopping criterion
introduced in Section III-D. Consider the image of Fig. 2(a).
This image has a narrow dynamic range, as illustrated by its
histogram [Fig. 2(b)]. Applying a histogram equalization to
yields an image with a more satisfying dynamic range but
also increases the noise level [Fig. 2(d)]. Using the stopping
criterion proposed in Section III-D, 23 iterations of the TMR
filter are required to converge in the sense of (7). This permits to
reduce dramatically the noise level while preserving the contrast
and details of ]Fig. 2(e) and (m)].

The asymptotic behavior of the iterated TMR filter without
using this stopping criterion is illustrated by Fig. 2(e)–(o). In
accordance with the convergence study of Section III-C, we
observe that the map tends toward a constant
map 1 when increases. The convergence rate
is illustrated by Fig. 2(c), which plots the values of the norm

when increases. As expected,
this convergence rate is very slow. This confirms that, while

1The limit map can be computed explicitly in our case; see Appendix B.

the threshold on the convergence is important in practice, its
precise setting is not crucial.

B. Contrast Modification

In this section, we investigate different applications of con-
trast modification to illustrate the interest of the proposed ap-
proach. In this context, we propose in Section IV-B3 a com-
parative study of our scheme with different regularization ap-
proaches that have been proposed in the literature.

1) Histogram Modification: The first lines of Fig. 1 illustrate
the interest of the TMR filter for several contrast enhancement
techniques, namely histogram equalization [Fig. 1(b) and (g)],
spatial adaptive histogram equalization [18] [Fig. 1(c) and (h)]
shape-preserving equalization [26] [Fig. 1(d) and (i)] and his-
togram clipping [Fig. 1(e) and (j)]. Notice how the artefacts de-
scribed in Section II-C are present in these examples, in partic-
ular the enhancement of both noise and compression artefacts.
In each case, the iterated TMR filter permits to remove these
artefacts while preserving contrast and restoring details [see,
e.g., Fig. 1(f)].

In Fig. 4, a challenging example of contrast modification
using both histogram clipping and Gamma correction is given,
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Fig. 6. Illustration of color transfer regularization with iterated TMR filter. The first row displays the result of transferring the colors of (b) to (a). The second row
illustrates that the corresponding regularization is obtained as the addition of the filtering of the raw color transfer with the details extracted from the original image,
where the mean has been changed for visualization purpose. The third row displays the result of transferring the colors of (h) to (g). The result of the proposed
iterated TMR regularization is displayed in (l). One observes that, in contrast with (i), the artefacts due to different color proportions are mostly removed. For
illustration, the transportation maps before and after regularization are displayed in (j) and (k), respectively.

resulting in an increase of noise level. The result of the iterated
TMR filter is illustrated in Fig. 4(d), using . Observe that
our approach limits the noise enhancement and maintains the
desired contrast modification. It should be noticed that using

[see Fig. 4(d)] on this example is not satisfying due to
the very poor dynamic of the original image [Fig. 4(a)]. This
illustrates that the practical choice of the parameter may
depend on the considered contrast or color modification.

2) Flicker Reduction: The proposed regularization scheme
can also benefit the restoration of old movies. Fig. 3(a) shows

three images of a sequence suffering from a strong local flicker
(fast and unnatural intensity fluctuations from one frame to the
other). This sequence is restored by the local method proposed
in [12] and the three corresponding restored frames are shown in
Fig. 5(b). The method manages to harmonize the local contrast
in the sequence. However, as we can see, the flicker and film
compression are so brutal that several artefacts appear on some
parts of the frames [see, for instance, both heads in the second
image and the jacket in the third image in Fig. 5(b)]. Fig. 5(c)
shows how these defects are corrected by the iterated TMR filter.
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Fig. 7. Illustration of image editing correction with iterated TMR filter. In this example, an image is edited with an image editing software (The Gimp) for color
enhancement, using global contrast and saturation modification tools.

3) Comparison With Other Regularization Approaches: In
the following, we confront our method with other approaches
that have been proposed in the literature to reduce irregularities
created by contrast modifications.

Gradient control: The approach of [18], that has been pro-
posed to enhance the contrast of medical images, consists in ap-
plying local histogram equalizations independently on subparts
of an image. We return to the images of Fig. 1 to illustrate this
point. Fig. 1(c) shows an example where the image has been di-
vided into 8 8 overlapping tiles. To prevent the noise level from
skyrocketing (in particular in constant regions), the gradient of
the transportation map is restricted to a user-defined interval,
which also limits the contrast enhancement. In practice, one can
observe that artefacts, if still present, are less noticeable than in
the classical histogram equalization [Fig. 1(b)]. Fig. 1(h) shows
that the iterated TMR filter enables to remove the remaining
artefacts while preserving the local contrast changes.

Two-scale decomposition technique: Fig. 3(b) shows the
result of a single iteration of the TMR filter when the mapping

is an histogram equalization (denoted here by the operator
EQ) applied to the image of Fig. 1(a). Following (5), the re-
sulting regularized image can be written as

, where is the de-
tail image. This formulation shares similarity with the approach
proposed by Durand and Dorsey in [23] in a different context
for tone mapping (contrast reduction for HDR images). In their
framework, the image is first decomposed into a base layer
using the bilateral filter (corresponding here to ) and a
detail layer . A contrast reduction is then
applied to the base layer, and is added to the result to ob-
tain the final image. Fig. 3(c) demonstrates that this approach,
which is well suited for dynamic reduction, is not adapted to
contrast enhancement, yielding discontinuities in flat regions.

One can see from Fig. 3(a) how using iterations of the TMR
filter until convergence yields an even better result. It is notice-
able that this framework shares some common features with the
two-scale decomposition approach of [23].

Regraining: Another regularization scheme has been
proposed by Kokaram et al. [5] as a postprocessing for color
transfer and can also be used for contrast modification. This
scheme relies on a variational formulation combining two
fidelity terms: one depending on the gradient of images and the
other one on their gray levels. These two terms are weighted by
two spatial-adaptive functions, which depend on the gradient

norm of the original image. The result of our implementation
of their algorithm on the equalized image is shown on
Fig. 3(d). Although the visual impact of artefacts is reduced,
this method fails to restore completely details, yielding a
blurred and “mottled” appearance.

C. Color Transfer

This section presents the results of our regularization filter
on several color transfer examples (see Section II-B). In all of
these experiments, the raw color transfer is computed thanks to
the algorithm proposed in [5], which is both fast and easy to
implement.

1) Four Examples: We have already analyzed the color
transfer example displayed at the bottom of Fig. 1, which
exhibits many artefacts [see details given in Fig. 1(o)–(q)].
Fig. 1(n) shows the result of several iterations of the TMR
filter (until the stopping criterion is reached) on this example.
As can be observed on the different zooms, the regularization
removes all compression artefacts while restoring fine details
in the image and reducing color proportion problems.

Two additional examples of color transfer are proposed in
Fig. 6. The first one [Fig. 6(a)–(f)) illustrates the two-terms de-
composition of (5). Let denote the original image [Fig. 6(a)]
and the same image after color transfer [Fig. 6(c)], using
the color palette of Fig. 6(b). Then, [Fig. 6(f)]
can be seen as the sum of [Fig. 6(d)], the filtered ver-
sion of , and [Fig. 6(e)], which restores the
details of the original image . In the second example, at the
bottom of Fig. 6, the colors of Mahana no atua by Gauguin are
transferred to the painting Le Déjeuner des Canotiers, by Au-
guste Renoir. The resulting raw transportation map is shown on
Fig. 6(j), while Fig. 6(k) and (l) show, respectively, the trans-
portation map and the result of the color transfer after several it-
erations of TMR filter. Among other effects, the annoying color
proportions problems (see, for instance, the blue spots on the
white clothes) completely vanish, resulting in a far more plau-
sible image.

A last example is given in Fig. 7 to illustrate the versatility
of the proposed approach for various color modification tech-
niques. In this example, the image shown in Fig. 7(a) is modi-
fied using an image editing software (The Gimp) to separately
increase both the contrast and the saturation of colors. The re-
sult of this operation, along with some artefacts, is visible in
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Fig. 8. Comparative color transfer regularization results with regraining approach of [5], iterated TMR filter, and variational histogram equalization of [10].
Original images are shown respectively in Figs. 6(g) and 8(e), with the corresponding target color distribution displayed respectively in Figs. 6(h) and 8(f). Note:
These examples and some other ones are available in full resolution at: http://perso.telecom-paristech.fr/~delon/artefact_removal_html/.

Fig. 7(b). Again, the proposed method makes it possible to at-
tenuate color blotches and to restore lost details [as can be seen,
for example, on the patterns on the roofs in Fig. 7(c)].

2) Comparison With Other Approaches: Two results of the
regraining approach [5] on the Renoir/Gauguin experiment and
on a Lena/Barbara color transfer, are shown, respectively, in
Fig. 8(a) and (h). While this variational approach tends to re-
duce irregularities in the transportation map, it fails at removing
severe compression artefacts or inconsistencies in color propor-
tions. As a comparison, the result of the iterated TMR filter on
both examples can be seen in Fig. 8(b) and (i).

Another variational approach has been proposed very
recently to transfer color between several images while pre-
serving their geometry [10]. This interesting approach enables
to perform simultaneously the desired color transfer and its reg-
ularization thanks to a unified energy minimization framework,
relying on several terms: a quadratic data-fidelity term, a color
distribution constraint based on cumulative histograms, and a
regularization term preserving the geometry of the images. The
result of this approach for the Renoir/Gauguin experiment is

displayed in Fig. 8(c) and for the Lena/Barbara color transfer in
Fig. 8(j). Observe that the method achieves the transfer without
producing strong artefacts. It is interesting to see that some
color inconsistencies are still occurring [Fig. 8(c) and (j)] which
are removed with the iterated TMR filter [Fig. 8(d) and (k)].

D. Discussion

Patch-Based Regularization: Following the idea of the
NL-means filter [21], one could think of replacing the pixel-wise
comparisons in the TMR filter by patch comparisons. Indeed,
in [21], Buades et al. show that using small patches instead of
pixels increases the confidence level on the similarity measure
between pixels corrupted by noise. In our case, it boils down to
replacing the weights in (4) by

where is a centered square neighborhood defined on the pixel
grid, and where is the size of . Using patches in our frame-
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Fig. 9. Variation around TMR filter based on different edge-preserving filters. The same number of iterations (10) and the same parameter setting �� � ��� have
been used for each experiment.

work does not improve the results (see Fig. 9(e) for a com-
parison). On the contrary, using the same parameter , some
fine structures are more blurred (along edges or stokes) with
this approach, while some artefacts are less regularized (see the
compression artefacts around the book title). Indeed, the use of
patches tends to increase the similarity between pixels across
edges, so that even some contrasted structures are blurred after
several iterations. At the same time, the use of patches tends
to decrease the similarity of pixels of non-repetitive structures
(see [33] for details), which explains that some artefacts remain.
While Yaroslavsky filter is less robust than the NL-means for
denoising purposes, it is particularly adapted in our case, where
the image is regular. It yields a faster approach and a better
preservation of edges.

Median-Based Regularization: In some cases, it could be in-
teresting to replace Yaroslavsky filter by a median filter. Indeed,
the median filter requires only one parameter (the size of the
neighborhood), it does not introduce blur and it is able to re-
move small objects (for instance salt and pepper noise). In the
case of contrast modifications, (5) can be rewritten as

where is the weighted median of the values
when spans , with weights . Fig. 9(d)
displays an example of the median based TMR filter. The result
presents typical characteristics of median filter approaches,
avoiding blurring effects that are inherent to averaging filters,
while providing some unsatisfactory piecewise constant regions.

V. CONCLUSION

In this paper, we have introduced a generic filtering procedure
in order to remove the different kinds of artefacts created by
radiometric or color modifications. The ability of the proposed
TMR filter to deal with these artefacts while restoring the fine
details of images has been demonstrated on various examples.

Several extensions of this work are foreseen. First, notice that
the computation time of the TMR operator is similar to those
of the Bilateral filter [31] or nonlocal means [21]. As a con-
sequence, it could directly benefit from several accelerations
techniques that have been proposed recently in the literature for

those type of filters, as for instance, multiscale approximations
[34], the use of kd-tree structures for fast computation of pixels
comparison [35], or FFT-based convolutions [36]. Second, the
whole procedure would also be strengthened by the automatic
estimation of the parameters and (for instance, by consid-
ering the recent work of [33]), even if most experiments gives
satisfactory results running the same parameter values. In par-
ticular, when considering movie restoration, those parameters
should be set adaptively, depending on the local motion and the
local contrast change. Finally, we plan to increase the control of
color inconsistencies. Indeed, the approach presented here per-
mits to remove artefacts due to color proportions as long as these
are not too extreme. But it cannot completely modify the pro-
portions of colors in the final image. In the case of color transfer,
one possible option would be to transfer colors from a precom-
puted “color palette” [6], [37]. We also believe that the scheme
presented in this paper can benefit other applications that color
or contrast modifications. One possible framework of applica-
tion, for which the approach should of course be adapted, is the
one of the fusion of panchromatic and multispectral images [38].

APPENDIX A
LINK WITH OPTIMAL TRANSPORT

This section recalls why color and contrast transfers can
be seen as optimal transportation problems. As described in
Section II-B, assigning a given distribution to an image
boils down to find a mapping such that . If such
mappings exist, one looks generally for one minimizing the
global cost

(8)

where is the Euclidean norm. This problem, first stated by
Monge in [39], has generally no solution when is discrete.
Kantorovich proposed to relax the problem into a more gen-
eral one, where one looks for a probability distribution on

, with marginals and (we write the set
of these probability measures, which are called transportation
plans). Observe that can be seen as a multivalued function
sending exactly onto . Among all transportation plans in
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, one imposes that minimizes a global transportation
cost

(9)

In practice, a satisfying mapping between and can then
be chosen as one approximating the optimal plan . If we apply
this framework to the case , we find formulas similar to
(3) for histogram equalization and specification.

APPENDIX B
POWERS OF STOCHASTIC MATRICES

Here, we recall the Perron–Frobenius theorem as it is stated in
[40], [41]. Recall that a square matrix is said to be primitive if
there exists such that is strictly positive, in the sense
that all coefficients are strictly positive.

Theorem 1 (Perron–Frobenius, See [40], [41]): Let be a
nonnegative primitive matrix. There exists a real eigen-
value with algebraic as well as geometric multiplicity one
such that , and for any other eigenvalue .
Moreover, the left eigenvector and the right eigenvector as-
sociated with can be chosen positive and such that .
Let be the eigenvalues of other than ordered
in such a way that and if
for some , then , where is the algebraic mul-
tiplicity of . Then

(10)

where represents a function of such that there exists
, , such that

for all sufficiently large.
Proof: See [41].

Observe that the matrix defined in Section III-C is sto-
chastic, which implies that and . All
of the lines of are thus equal to the left eigenvector for
the eigenvalue 1. Now, if the neighborhood is symmetric
(which implies that if and only if ), this left
eigenvector is

where exponential weights are defined in (4). The limit ma-
trix can thus be computed easily in this case.

APPENDIX C
STOCHASTIC MATRICES WITH STOPPING CRITERION

Here, we show that, if is the matrix defined in Section III-C,
and if is built by replacing some lines in by the same lines in
the identity matrix, then the sequence still converges toward
a limit matrix . This property is a consequence of classical
results and the proof is provided for the sake of completeness.

First, observe that there exists a permutation matrix such
that can be written as

(11)

where is the identity matrix of size , is the null ma-
trix of size , and .
Since , the convergence of the sequence
will imply the convergence of , so we assume in the fol-
lowing that is written as in (11). Now

with (12)

and the study of the sequence boils down to the study of
the sequence .

Now, observe that the sequence
decreases with , for all .

Indeed, since is stochastic, for all , then

Moreover, for each line , there exists a rank such
that, for all , . Indeed, the set of
points which have already converged is not isolated in the image.
Step by step, each point outside of (indexes in

) undergoes the influence of at least one point of (indexes
in ) after a large enough number of iterations, which

implies that for all , there exists and
such that for .

The index can be chosen such that this property holds for
all . Since these sequences are decreasing,
there exists in ]0, 1[ such that for all and all ,

. Thus, for each , we have

It follows that . This property also holds

for the whole sequence since it is decreasing with
a subsequence converging to 0. Since all the coefficients of these
matrices are positive, we conclude that .

Now, notice that
(if was not invertible, then we would have

such that which is impossible since ). Thus,

. Finally

(13)
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