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Abstract Exemplar-based texture synthesis methods try
to emulate textures observed in our visual world. Yet the
field of all possible textures (natural or not) has been little
explored. Indeed, existing abstract synthesis methods focus
on a single generation rule and generate a rather limited set
of textures. This limitation can be overcome by combining
randomly various generation principles and rule parameters.
Doing so gives access to a vast and still unexplored set of pos-
sible images. In this paper, we introduce an image sampling
method combining the main painting techniques of abstract
art. This sampler synthesizes what we call multi-layered tex-
tures. The underlying image model extends three abstract
image synthesis models: the dead leaves model, the spot
noise, and fractal generators. By respecting minimal self-
similarity rules keeping Gestalt theory grouping principles at
each texture layer, the abstract textures remain understand-
able to human perception. The complexity of the generated
textures derives from the systematic and randomized use of
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shape interaction principles taken from abstract art such as
occlusion, transparency, exclusion, inclusion, and tessella-
tion.
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1 Introduction

To meet the growing demand of the entertainment industry,
computer graphics has been naturally focusing on the graph-
ical modeling of natural objects and environments, and their
physical rendering in realistic scenes. For example in the field
of exemplar-based texture synthesis, spectacular progress has
been made, both in terms of speed and visual realism [46].

However, research on image structure can go far beyond
the simple reproduction of natural textures. One feels the
need to also explore all means of creating new shapes and
textures, regardless of their plausibility in the real world.
There is, however, a limitation to the creation of newpictures:
these pictures must be understandable to the human visual
system. We show experimentally here that there are many
more perceptually understandable images than those actu-
ally created by current mathematical synthesis methods. The
exploration of the subject by mathematicians and computer
scientists has been, indeed, rather limited. Many algorithms
have been proposed for non-photorealistic rendering (NPR),
but they are mostly concerned with the artistic stylization
of scene acquisitions (photographs, video, 3D objects), and
not with abstract synthesis as discussed above. To the best of
our knowledge, the mathematical attempts at creating new
abstract images have each been based on a single genera-
tion principle. Classical examples of suchmodels are iterated
function systems and more generally fractal models, Fourier
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Fig. 1 Sample images generated using the proposed technique to
create new sorts of textures

spectrummodeling and randomnoises, classicalmodels from
stochastic geometry (such as the dead leaves, hard sphere or
random tessellation models). We shall review these models
in the next section.

In a different context, the question of generating new
sorts of images was investigated almost simultaneously and
in strikingly similar terms by abstract painters and Gestalt
psychologists at the beginning of the past century. The first
technical treatises of abstract art sketch general laws for
image formation. They explain the technical rules for cre-
ating abstract paintings, starting from simple non-figurative
shapes and colors [20,24]. In parallel, Gestaltists have deter-
minedwhich features in an image are perceptually significant
to humans and which are not [47]. Following these studies,
a general question arises: how can we create more general
classes of images than those existing in nature, that would
still be visually understandable? A trivial answer to the ques-
tion of finding the most general class of images would be to
sample randomly, independently, and uniformly all pixels of
a given image. But, as shown by the American Gestaltist
Attneave in a founding work [2], white noise images look
completely uniform and are meaningless to humans. Thus,
even if the set of white noise image realizations does con-
tain all possible images, the perceptually significant ones are
lost in the crowd, being extremely unlikely. So the ques-
tion remains: how to generate general classes of perceptually
understandable computer generated images? Figure 1 shows
two images obtained by the image sampling method intro-
duced in the present paper. They cannot be termed “natural
images”. They obey more complex mathematical generation
principles than former generators. Yet, their structure is per-
ceptually straightforward.

Thus, the main goal of this paper is to use the techniques
of abstract painting and gestaltism to propose a more gen-
eral definition of (perceptually understandable) textures than
those existing. Let us here emphasize that we do not aim
at mimicking a given artist or a given artistic movement.
We observed that most abstract paintings are grounded on a
rich but short list of interaction principles: occlusion, trans-
parency, exclusion, inclusion. Some of these principles have
been individually investigated through mathematical models
such as the spot noise or the dead leaves model, where a sin-

gle principle is used to combine random shapes spread on the
plane. These principles are also routinely used in computer
graphics to create synthetic images from 3D scenes. Never-
theless, the systematic exploration of the visual possibilities
offered by their combination has never been attempted, to
the best of our knowledge. Moreover, the use of comput-
ers offers possibilities that are beyond the reach of classical
painting techniques, especially when combined with a multi-
scale or multi-layered structure, as explained in the next
section.

Classical models generating abstract images combine
structures using few principles and transformations. For
example, iterated function systems simply iterate a fixed list
of affine transforms. Procedural noises often rely on a sin-
gle scaling rule. Spot noise models are obtained by adding
shapes that are uniformly spread on the plane. The natural
generalization of these structures is to allow for a multi-
scale (multi-layered) structure with free intra- and inter-scale
shape combination rules. On the other hand, randomizing all
interactions may lead back to chaotic images, close again to
white noise. To avoid this, a main feature of the proposed
image sampler is the fact that objects are still coordinated in
each layer. By forcing objects of a given layer to share some
properties, a minimal unification of the layer is obtained. In
the terms of the Gestalt theory such a unification is called a
grouping. It follows that the image remains visually under-
standable because our perception sees groups of similar
objects. Furthermore, the systematic random positioning of
all shape elements at each layer implies that most images
generated in this way can be considered to be textures in
the sense of Julesz [19]. In accordance with Gestalt theory,
these images have enough redundancy to be understood by
human perception. Nevertheless, as will be observed, these
textures, with some exceptions (Fig. 2) look rather unnatural
(Fig. 3). This means that the chance of synthesizing natural
looking textures like sand or bark exist with this sampler, but
are limited.

The technical core of the present paper is the specification
of a texture synthesis method which we call multi-layered
texture sampler (MLTS). The term “layer” is more gen-
eral than the term “scale” used in fractal generative models.
Objects in successive layers interact with a mix of occlusion,
inclusion, or transparency that add incremental complexity
to the image. There are two kinds of random parameters in
MLTS. The layer and inter-layer structure is first fixed by
random hyper-parameters. Then the shapes, their character-
istics, andvariability are also controlledby randomnumerical
parameters.

The goal in computer graphics, perception theory, and
mathematical image modeling that ensues from the above
considerations is to create more general image classes than
those currently observable. This program is not new. Ever
since the Neolithic, abstract figures and textures have been
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Fig. 2 ML-textures generated randomly byMLTS, that bear some sim-
ilarity to textures observable in our visual environment

Fig. 3 ML-textures generated randomly by MLTS that are definitely
abstract but are nevertheless quite understandable to the human percep-
tion

drawn on potteries. Oriental tapestries display a constant
search for new abstract designs. The search for new deco-
rative patterns is present today in all decorative arts and in
the textile industry. Providing artists and designers with new
principled algorithms to cover surfaces is therefore a valid
goal for mathematicians.

2 Antecedents

2.1 Abstract Painting Schools

These schools have published technical treatises for art
students where painting is described as a combination of
elementary shapes and colors obeying regularity and equi-
librium laws [20,24]. Their shape formation and painting

Fig. 4 Some founding examples in digital art in the 60s involving
the same shape combination techniques as those used in the texture
synthesis method. From left to right and top to bottom: Georg Nees
painting from the 1960s; Michael Noll’s 1964 “Computer composition
with lines”, a pastiche of Mondrian’s 1917 “Composition with lines”
(Fig. 8); John Maeda’s “Florada, a computational study” [33] and a
study contained in “Linear way” [32]. These last two paintings clearly
use a dead leaves model with occlusion and transparency techniques

techniques originate partly in Cubism and are best illustrated
by their paintings themselves. See Fig. 8 for a quick presen-
tation of these painting techniques, relying on a short list of
interaction rules between objects, through several abstract
paintings mostly from the early twentieth century.

2.2 Digital Art

Digital art opens the way to computer aided design and paint-
ing and to the use of simulated randomness [38]. In the 60s,
Georg Nees, a pioneer of computer art, used random number
generators to generate drawings automatically by control-
ling a primitive plotter. The numerical works by John Maeda
use a random or pseudo-random dead leaves model based
on a repetitive shape. The transparency technique is obvi-
ously dominant in some of his works (Fig. 4). Michael Noll’s
1964 “Computer Composition With Lines” closely mimics
the painting “Composition With Lines” by Piet Mondrian.

123



J Math Imaging Vis (2015) 53:332–345 335

When reproductions of both works were shown to 100 peo-
ple, themajority preferred the computer version and believed
it was done by Mondrian [39].

2.3 Gestalt Theory

Gestalt theory was founded byWertheimer [47,48]. Accord-
ing to the initial theory our perception proceeds by grouping
the local percepts in an image into more global entities, the
Gestalts. The mainWertheimer grouping laws are proximity,
symmetry, similarity, same color, same shape, same orienta-
tion, good continuation, periodicity. The exploration of this
theory by the Gestalt schools culminated in the publication
of two ground breaking books by Kanizsa in 1979 [21] and
Metzger in 1975 [36]. (We refer to the very complete third
edition which became the Gestalt Bible. The first edition was
published in 1936.)

2.4 Geometric Marked Point Processes

Geometric-marked point processes are mathematical mod-
els that yield images that are obtained by the combination
of random shapes that are spread on the plane. The simplest
way to combine shapes is by addition, resulting in the spot
noisemodel, used for abstract [45] or realistic [12,13] texture
synthesis. A more involved combination principle is occlu-
sion, by which objects occlude each other in natural scenes.
The dead leaves model [35] is the mathematical formaliza-
tion of this principle. In [1,27], a multi-scale version of this
model was introduced for the modeling of natural images
(Fig. 5). In the first of these works, the model is used for sev-
eral abstract texture synthesis attempts. A transparent version
of the dead leaves model is introduced in [11], constituting
a non-linear generalization of the spot noise model. Hard
core processes [4] study the distribution of object centers
when these objects exclude each others. These combination
principles (occlusion, transparency, exclusion)will be imple-
mented in our texture generator. See Fig. 6 for some instances
where transparency is used by our texture generator. In [28]
authors present a study of natural image statistics accounts
for local geometries. Random tessellations are anotherway to
simulate planar textures by simple subdivision processes [4].
See Fig. 5, which also shows a fractal generated by iterated
function system.1

2.5 Noise Models

Some classical noise models used in computer graphics also
rely on the linear combination of simple structures. The most

1 http://matthewjamestaylor.com/blog/create-fractals-with-recursive-
drawing

Fig. 5 Basic mathematical processes generating abstract textures: a
scaling dead leaves model [1,27], a random tessellation [4], a fractal
(iterated function system)

well-knownof those is the Perlin noise [40] similar to amulti-
scale spot noise, that in turn has triggered many studies on
procedural noises [26]. These models can also be used for
realistic texture synthesis [14].

2.6 Non-photorealistic Rendering (NPR)

NPR aims at producing artistic stylizations from pho-
tographs, 3D models, or videos, see the recent mono-
graph [42]. While primarily focused on mimicking drawing
or painting styles, some of these works produce abstract
images from simple shapes. An early such example can be
found in [16] and a more systematic investigation of such
image abstraction is presented in [44]. In [50], a generative
process to produce variations on Kandinsky’s paintings is
proposed, using occlusion and transparency. While produc-
ing interesting images from a small number of patterns, this
work does not explore the wide range of possibilities offered
by a systematic use of combination principles.

2.7 Color Palettes

Color palettes will be needed for the rendering of our multi-
layered textures (ML-textures). The method we use in this
paper relies on color sampling from exemplar images to build
a color palette. Building such palettes, usually by unsuper-
vised clustering, is actually very common in data visual-
ization and graphic design. More elaborated approaches to
color palette should consider the relationships between col-
ors, building on concepts such as color harmony [37]. A
recent approach to coloring problems, relying on a proba-
bilistic modeling of color interactions, may be found in [29].
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Fig. 6 ML-textures built applying the transparency principle between
layers

The authors of [49] present a wavelet- based painting
analysis method permitting to discriminate painting styles.

2.8 Texture Perception Modeling

Attneave [2] created the first white noise image and pos-
tulated that human perception saw nothing but the mean
and variance in such images. In a series of founding papers
on perceptual texture perception culminating in [19] Julesz
followed this lead and conjectured that human texture percep-
tion was characterized by second-order statistical moments.
This theory being notoriously insufficient, he extended it and
proposed to characterize texture perception by their local
densities of features called textons. In [17] there is an attempt
to characterize texture perception by wavelet coefficient his-
tograms. This leads to one of the first psychophysically
inspired texture synthesis algorithms that works on (some)
textures. The study in [41] is probably the most complete
attempt to realize Julesz’s program: it shows that awide range
of examples of natural textures are efficiently characterized
(and can be approximately synthesized) by about 700 statis-
tical wavelet moments and wavelet coefficient correlations.

2.9 (Exemplar-Based) Texture Synthesis

Its goal is to synthesize a new texture image from a texture
sample. One of the earliest suggestion on this subject was to
model the textures as parametric Markov random fields [5].
This path was later followed by works on texture synthesis
usingwavelet decompositions, asmentioned above. In 1999 a
founding paper, [8], goes back to Shannon’s ideas to simulate
artificial text. Textures are synthesized by a non-parametric
Markov random field learnt directly from image neighbor-
hoods in the texture sample. This successful technique has
been expanded by [7] to apply a recursive copy-paste of such

Fig. 7 Black and white ML-texture with no transparency. Having
objects with arbitrarily large scales, a multi-scale causality, and non-
local spatial constraints, such textures are not Markovian

texture neighborhoods, or “texels”. In this paper, artificial
images are also formed by combining real images and tex-
els from different objects. Related synthesis techniques are
presented in the next paragraph.

2.10 Random Arrangement of Patterns

A number of works propose to create new images by random
spatial arrangements of specific patterns or of image extracts,
a task which in particular implies the modeling of interac-
tions between these basic elements. The elements can be
elementary patterns [3,18], text excerpts [34], image extracts
to produce mosaics [22], texture extracts to perform texture
synthesis [25], or realistic primitives for 3D texture synthe-
sis [31].

2.11 Fractal Based Methods

Fractal-based methods are also well known techniques to
generate (not necessarily realistic) synthetic textures (see [6,
15,23,43]). In [10] the authors combine shape-from-shading
and texture synthesis techniques to create new texturing
objects in photographs.

3 Multi-layered Textures (ML-Textures)

This section details the painting principles and the structure
of what we shall call a ML-texture. Figure 9 summarizes
the painting principles as they arise spontaneously in any
painting activity, andwere actually formalized in abstract art.
Their application on simple basic shapes in abstract paintings
is easy to identify, as illustrated in the examples of Fig. 8.
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Fig. 8 Abstract painting technique. Several famous abstract paint-
ings illustrate how abstract painting has introduced and systematically
applied the techniques proposed here for texture synthesis, namely: rep-
etition of simple shapes, occlusion, exclusion, transparency, (random)
positioning inside a parent shape, grouping of shapes by some common
feature such as orientation, color, vanishing point. R. Delaunay’s “Joie
de vivre” is based almost exclusively on the reuse of one shape, the
disk, with inclusion principle, occlusion principle, and a transparency
principle applied on them with a white polygon. Kandinsky’s 1930
“Thirteen rectangles” uses rectangles as basic shapes, with a trans-
parency principle and a pseudo-random organization which sketches
a human silhouette. Hans Arp’s 1916 “Rectangles ordered following a
random law” also applies the exclusion principle in a pseudo-random
disposition of rectangles. A few non-random corner coincidences are
enforced. Malevich’s 1915 famous “Black rectangle, blue triangle” is
based on two simple shapes and the occlusion principle. VanDoesburg’s
1930 “Arithmetic Composition” involves a single square black shape
on white background and a perspective effect created by decreasing the
shape size along a vanishing line. Mondrian’s 1917 “Composition with
lines” is a pseudo-random distribution of rectangleswith occlusion and
their inclusion in a father shape (a disk). Pollock’s 1952 “Convergence”
is based on random shape generation and occlusion, by spreading plain
color paint pseudorandomly in several successive layers occluding each
other. Notice that in these paintings, all shapes in a common “layer”
share properties (orientation, color, shape, vanishing point, parallelism,
proximity, etc.) in agreement with Wertheimer’s grouping laws. In our
abstract texture design, the very same laws are applied randomly, but
on more objects and in more layers and scales (Color figure online)

As in abstract painting, complex textures and images are
created by applying interaction laws between texels. Texels
are very basic shapes like triangles, rectangles, ellipses, and
convex polygons. The following list summarizes all consid-
ered interactions laws. It is illustrated in Figs. 7, 8, 9, and
10.

Fig. 9 Basic painting principles combining elementary shapes or “tex-
els”: occlusion, exclusion, inclusion, tessellation, transparency (those
last three principles operate between two successive layers), and per-
spective (orienting the texels). These principles are obvious in all
abstract paintings where the lack of figuration gives pre-eminence to
shape combination principles, as illustrated in Fig. 8

Fig. 10 Illustration of the combination of the inclusion and exclusion
principles and high shape aspect ratio using elongated rectangles in
ML-textures

– occlusion (corresponds to the physical notion of “being
in front” of);

– exclusion (corresponds to the physical notion that solid
objects cannot interpenetrate, and therefore exclude each
other spatially). Figure 13 shows an image mainly gen-
erated by this principle;

– transparency is a variant of “being in front of” in which
the objects behind can still be seen by transparency, like
in X-ray images.

– tessellation is a variant of transparency which is recur-
rent in cubist and abstract paintings. The shape added in
front of other shapes causes the shapes behind to change
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color in their respective intersections. This principle is
illustrated in Fig. 15.

– inclusion principle with the parent defines the relation-
ship between a container and an object included in the
container. This spatial inclusionmay be obtained by forc-
ing the child-object not to touch the boundary of its
parent. Another mode is that only parts of the sub-object
included in the parent are visible, the rest being occluded.
Figure 14 shows two artificial ML-textures obtained by
a reiteration of the inclusion principle for each layer.

– similarity of objects in the same layer. This is the main
interaction, equivalent to the gestaltic grouping laws.
Objects in the same layer behave in the same specified
way with respect to their parents of the preceding layer
and can share (some) properties such as: type, size, shape,
orientation toward a vanishing point (perspective effect),
color, interaction of objects in the same layer and the
objects of the previous layer.

Next, we introduce the formal definition of the texture
model we use in this paper which allows us to manage the
above interaction principles in a layered structure.

Definition 1 (ML-texture) A multi-layered texture (ML-
texture) is given by a pair (O, F) where O is a collection
of 2D objects

O =
{
Om,k ⊂ R2

}k=1,...,NO(Lm )

m=1,...,NL
, (1)

organized in different layers {Lm}m=1,...,NL , in such a way
that for any object Om,k , withm > 1 there exist an associated
father object Om−1,k′ in the previous layer. F : O → R3 is
a function which assigns RGB colors to the different objects
of O in order to render the ML-texture image.

The random model of the objects in O, their interaction
rules, and the construction of F are specified in continuation.
The number of layers is the main ingredient of the texture
complexity (Fig. 11). Each object Om,k is obtained by an
affine transformation of a texel (the basic objects representing
the texture element) according to the multi-layer rules to be
stated next.

Fig. 11 Evolution of the image complexity with the number of layers:
one and four layers

Fig. 12 Influence of the basic shape on the texture. From top to bottom
and left to right: random shapes, all regular polygons, all ellipses, and
all triangles. All other parameters of the synthesis are equal

Fig. 13 The exclusion principle on a single layer ML-texture. All
objects are iteratively added by MLTS with the constraint of not inter-
secting any of the former ones. Object insertion trials are alternatedwith
shape size reduction

– object type: the texels used to generate objects in the layer
using affine transformations. See Fig. 12 to see how this
shape influences (mildly) the resulting texture.

– exclusion rule (object interaction with other objects of
the same layer): in each layer it is (randomly) decided if
objects can intersect or not (see Fig. 13).

– inclusion rule (object interaction with objects of the pre-
vious layer (the so-called “father objects”) ): in each layer
it is (randomly) decided if objects have to be included in
the associated father object or not (see Fig. 14).

– object spatial organization: The object spatial organiza-
tion introduces restrictions in the affine transformations
used to generate objects from texels. These restrictions
concern
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– object orientation: to each layer are associated two
random points in projective coordinates (to allow
points at infinity) such that each layer object is ori-
ented towards one of these two points. For instance,
if the points are (1, 0, 0), (0, 1, 0), the objects are ori-
ented in vertical or horizontal directions.

– object size: For each layer, the object size is fixed by
the layer configuration but this size can be reduced
when it is not possible to include new objects in the
scene satisfying all layer rules.

– object location: object location is usually chosen ran-
domly according to a Poisson point process, as in the
spot noise or dead leaves models. Nevertheless, the
associated object should satisfy all layer rules, other-
wise the new object is rejected.

– vanishing point effect: the points used to define object
orientation are also used to introduce a vanishing
point effect in the case the orientation points are not
at infinity. The size of objects are reduced according
to the distance to such orientation points.

Once the multi-layered object structure O is created, we
have to state the function F : O → R3 (see Definition 1)
which determines the way the ML-texture is rendered. To do
that, we use the following rendering rules:

– Color palette: A single color is given to each object by
sampling a color from a fixed image, the “palette”.

– Object transparency: In the image rendering step a trans-
parency factor is associated to each object.

– Spot light distance: Represents the 3D distance from the
objects to the spot light source, see Sect. 5 for more
details.

– Tessellation: The image tessellation generated by the
object boundaries can also be used to render the image. In
this case, colors are associated in an independent way to
each connected component of the image tesselation (see
Fig. 15).

4 The Multi-layer Texture Sampler (MLTS)

This section explains the structure of the proposed multi-
layer texture sampler (MLTS). The hierarchical multi-
layered structure L = {Lm}m=1,...,NL defines for each layer
Lm the object parameter configuration. In accordance with
the general description presented above, the layer structure
is determined by the following collection of parameters:
Layer configuration parameters (see Sect. 3 for further expla-
nations):

– NL: the number of layers;

Fig. 14 The inclusion principle. All objects in a successive layer are
forced to be included in an object of the preceding layer.Object insertion
trials are alternated with shape size reduction

– T(Lm): texels used in layer Lm to generate objects;
– MaxO(Lm): maximum number of objects in layer Lm for

each father object;
– AspRatO(Lm): object aspect ratio in layer Lm ;
– MaxD(Lm): maximum diameter of an object in layer Lm ;
– MaxT(Lm): maximum number of trials to include a new
object in layer Lm ;

– sR(Lm): size reduction factor of the object diameter
applied to try to include new objects in layer Lm ;

– MaxDR(Lm): maximum number of diameter reductions
to include a new object in layer Lm ;

– Incl(Lm): inclusion rule for each layer. If inclusion rule
is activated in a layer each object has to be included in
his father object;

– Excl(Lm): exclusion rule for each layer. If exclusion rule
is activated in a layer objects of the same layer cannot
intersect;

– V0(Lm), V1(Lm): object orientation in layer Lm (given
by two points in projective coordinates);
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– rF(Lm): reduction factor of object sizewhen approaching
a vanishing point;

– Seed(L): random seed to initiate random object genera-
tion.

Implementation The above collection of parameters fully
specifies the multi-layered object structure O defined in (1).
We now describe how a ML-texture sampler can generate it.
There are two possible ways to operate the synthesis from
there. The first is fully automatic, while the second permits
the user to specify or modify the parameters. Both of these
modes are implemented in an online demo.2

In the fully automatic mode, ranges are fixed for each
parameter, which are then uniformly sampled in this range.
The only parameter which is left to the user is the input
color image yielding the color palette. Each execution also
produces a text file or script containing the image parameters.
The same script can be employed again with variations left to
the user. In the experiments presented here, unless specified
otherwise, we used the purely random procedure. This fairly
illustrates the large variety of textures directly obtained by
MLTS.

In the supervised mode, the user can guide the choice
of parameters. Available parameters have been described in
the previous sections and are made of layer configuration
parameters as well as rendering parameters (lighting, trans-
parency, tessellation, color palette, “keep father inclusion”).
Most parameters have an intuitive meaning (number or size
of the objects, number of layers, inclusion parameters, etc.).
However, the process may benefit from some user training.
Indeed, the combined effects of parameters is not always
easy to predict (as happens for example with the interaction
between inclusion and exclusion at several layers). In order
to facilitate the interaction, the proposed demo allows the
user to vary the initial parameters.

An obvious question which arises is the specification of
the range of the parameters. All parameters have been given
the largest range compatible with image size, the sampling
rate, and our perception accuracy. For example, there is not
need to create shapes larger than the image itself, as they
would cover the whole surface. Conversely, shapes thinner
than one pixel cannot be rendered without violating anti-
aliasing constraints. Similarly, vanishing points need not be
at an infinite distance. Indeed, our eye cannot discriminate
far enough vanishing points from vanishing points at infinity.

Many steps of MLTS require a random number. To sim-
plify, we always use the pseudo-random sequence provided
by the C/C++ rand() function. Pseudo-randommeans that the
sequence is completely determined by the initial seed which
allows us to reproduce the same sequence of random num-

2 The synthesis framework presented in this paper can be tested online
at www.ctim.es/AbstractTextures.

Fig. 15 Complex ML-texture where colors are associated in an inde-
pendent way to connected components of image tessellation generated
by the texture object boundaries (Color figure online)

bers and in particular to generate images only differing by
shape or color, see Figs. 12 and 18.

After fixing the layer configuration parameters MLTS
builds the multi-layered object structure: first it initiates the
random sequence using the random seed given by the para-
meter Seed(L). The first layer is composed by a single object,
namely the rectangle defining the image. For the next layers
each object is generated by a random affine transformation
of a texel. If a generated object does not satisfy the inclusion
or exclusion layer rules (in the case any of them is activated
in the layer) then it is rejected, and a new trial is made with
a new affine transform.

The computational complexity of MLTS mainly depends
on the number of layers, the total amount of objects, and
the activation in the layers of the inclusion/exclusion rules.
Generating a texture using about 3.000 basic objects (it is
the case in most textures presented here) takes less than 5s
on a laptop. This rapidity is important as the texture creation
process must allow the user to quickly select the textures of
interest and discard the others.

5 MLTS Rendering of the Geometric Structure

In the image rendering stage MLTS the function F : O →
R3 of the ML-texture is fixed using the following rules:
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Fig. 16 Some color palettes used in this paper (Color figure online)

5.1 Color Palette

For esthetic reasons, in our implementation the image colors
are sampled from another image serving as a color palette.
Digitalized classic paintings or real worlds photographs can
provide an effortless color harmony in the final rendered
image. The color of each object Om,k is sampled uniformly
from the palette. In the tessellation case, a different color
is sampled independently for each connected component of
the image tessellation generated by the boundaries of Om,k

(Fig. 16).

5.2 Transparency Effect

Each object receives a random transparency value (between
0 and 1). A value of 0 means that the object is opaque and a
value of 1 means that the object is completely transparent.

5.3 Light Spot Effect

Each object is lit using a very simple single light spot source
model. A point is randomly chosen in the object. The light
spot source is fixed as a point in the 3D space located in the
line passing by the selected object point and orthogonal to
the image plane. At the selected point the color is the value
obtained from the palette image. For the other points the color
intensity is attenuated according to the distance to the light

Fig. 17 Two realizations of the same ML-texture using different ran-
dom seeds

spot source (the intensity of the illumination is proportional
to the inverse square of the distance to the light source).

5.4 Rendering Parameters

The rendering step in MLTS involves the following parame-
ters and hyper-parameters:

– image size;
– the color palette image;
– transparency value for each object;
– “keep father inclusion property”: when this property is
activated objects are not drawn outside their father object;

– light spot distance. 3D distance from each object to his
spot light source.

– seed to initiate random assignment of palette colors to
objects.

The algorithm to render a texture using the above parameters
is straightforward: the pseudo-random sequence is initiated
using the random seed. Then a color sampled from the color
palette is associated randomly to each object (or to each con-
nected component of the tessellation) before the object is
drawn in the image by the rendering rules.

The script of the randomly chosen layer and rendering
parameters is the other output of MLTS. It fully determines
the image texture output. Once a texture is generated, it is
therefore possible to generate other textures with more or
less similar structure by modifying the script and launching
MLTS again. In Fig. 17 we illustrate the results obtained
when changing the seed of the random object generator. In
Fig. 18we changed the color palette andmaintained the same
geometry. In Fig. 19 we present instead some ML-textures
obtained using independent parameter configurations.

6 Limitations and Possible Extensions

The list of object and layer interaction rules in the proposed
random texturemodel could be extended to obtain a stillmore
general model. The following list sketches what extensions
can be envisioned.

123



342 J Math Imaging Vis (2015) 53:332–345

Fig. 18 The synthesis method permits to reiterate exactly the same
structure with two different palettes. The visual result can be very dif-
ferent. (It is not a one-to-one color transform between both images.)
These two particular images are interesting because in spite of their uni-
form generation principle, they appear unstructured to the eye (Color
figure online)

– several choices in the above synthesis algorithm are fixed
arbitrarily, and should be randomized. This is the case for
the number of vanishing points (limited to two), or for the
fact that the interaction between objects in a same layer
does not allow transparency or tessellation, this interac-
tion being allowed only between successive layers.

– color palettes used in this paper are built directly from the
pixels of an exemplar image. Another possibility would
be to build the palette by a clustering procedure, as it
is often done for graphic design applications. A more
involved approach would consider simultaneously the
choice of color for nearby objects, e.g., by respecting
some principles of color harmony [37]. Furthermore, the
color density function of each natural image or painting is
demonstrated experimentally in [30] to be supported by
a two-dimensional sub-manifold of the color cube. Thus,
the design of a harmonic color space remains widely
open.

Fig. 19 ML-textures using basic texels. The first is close to natural, the
second shows the influence of the choice of the vanishing points. The
third one is closer to an abstract painting than to a texture. The fourth is
a complex and rather unnatural combination of inclusion and exclusion
principles

– passing from textures to scenes: this can be done by
enriching the structure so that the children of a given
parent are no more coordinated. In that case, the human
perception of a unique texture will be broken into a per-
ception of several objects.

– it can be objected that a 2D texture model should be
derived from a 3D texture model, a rendering method
specifying the ensuing 2D scene. In that way, shading
laws, perspective laws, etc., would be naturally respected
(see the paintings of Tanguy for such abstract 3D scenes).
Nevertheless, abstract art, decorative arts, and many tex-
ture synthesis processes prefer to explore 2D-layered
techniques. We followed this lead.

– The synthesis method is currently organized in an object
tree where only successive layers are internally coordi-
nated. This prevents more complex interactions between
tree branches or tree layers.

– The MLTS does not yet consider all Gestalt organization
laws: objects can be coordinated spatially in more ways
than just exclusion or inclusion. The Gestalt grouping
laws also include symmetry, spatial periodicity, align-
ment, good continuation on a curve [9]. Furthermore,
the sub-objects of an object could have a much better
organized relation to the parent than just inclusion. For
example sub-objects may form periodic series along the
boundary of the parent like in a carpet; they may inherit
the symmetries of the parent, etc.

– relations between an object and its parent might be of
another sort than just inclusion: in particular we can
think of articulation (by which an object touches the par-
ent object), and even coordinated articulation (like the
hairs of an object for example). See [20] and [24] for the
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synthesis of such organized objects, articulated in sub-
objects.

– Are the ML-textures generated by the MLTS algorithm
textures in the usual sense? Since the term texture has
never been formalized, the question will necessarily
remain open. The pro- arguments are (a) the synthesized
images retain a self-similarity of shapes and shape behav-
ior at each layer, (b) the color palette is uniform in the
image, and (c) some of the rules impose a Poisson spatial
distribution of shape centers. The cons are (a) the inclu-
sion and exclusion rules are sequential. They enforce a
causal, non commutative, texel interaction; (b) some of
the texels are so large and apparent that we obtain an
abstract image rather than a texture.

7 Conclusion

We have introduced an abstract texture model, the ML-
texture, and its corresponding synthesis algorithm, the
MTLS, based on a much more complete list of organization
principles than those of the current models. Experimental
evidence shows that this algorithm produces a broad vari-
ety of texture styles. On the other hand, the number of
involved parameters in the current algorithm is approxi-
mately 14 × m + 5, where m is the number of layers (in
our experiments not exceeding 3). It can be objected that
two of these parameters have a high dimension themselves:
one is the choice of the texels used as basic shapes. Yet all
things being equal, we observed that the form of the texels
has nomajor influence on the texture visual aspect. The other
parameter with a large dimension is the color palette. Here
again, the influence of the palette is minor on the geometric
style of the texture. All in all, we can therefore surmise that
a very large set of texture styles might be obtained with a
rather small number of parameters (about 50 for three lay-
ers, 100 for six layers). This leads us to the question of
the real number of dimensions involved in the creation of
all perceptually different texture styles. This question was
implicitly posed by Julesz [19] who wondered about the
number of parameters characterizing all discriminable tex-
tures. The only consistent answer to this question so far has
been given by Portilla and Simoncelli [41] who showed that
a large number of natural textures could be characterized
by a parametric sampling algorithm with about 700 numeri-
cal parameters. Yet these authors think that these parameters
are significantly redundant (personal communication). Our
contribution brings perhaps to this discussion a wider set of
perceptually discriminable textures.

We found thanks to our experimental facility that a good
proportion of theML-textures obtained byMLTS look “inter-
esting” to humans and that digitalized classic paints or
photographs of natural scenes are excellent color palettes.

The ML-textures showed in this paper represent on aver-
age the result of picking one in ten assays (by subjective
and esthetic choices that are hard to make explicit). Each
synthesized ML-texture can be reobtained in different (but
perceptually equivalent) instances by changing the random
generator seed (Fig. 17).We conjecture that all of the “equiv-
alent” textures generated in that way are pre-attentively
indiscriminable in the Julesz sense.

We have created, as a complementary material to this
work, a demoweb pagewhere users can create their ownML-
textures in an interactive way using their own color palette
images. They can also vary the parameters in an interactive
way or manually in a text file and therefore steer the texture
synthesis. This demo web page is located at the project url:
www.ctim.es/AbstractTextures.
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