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We provide a theoretical analysis of some empirical facts about the second order spatiochromatic struc-
ture of natural images in color. In particular, we show that two simple assumptions on the covariance
matrices of color images yield eigenvectors made by the Kronecker product of Fourier features times
the triad given by luminance plus color opponent channels. The first of these assumptions is second order
stationarity while the second one is commutativity between color correlation matrices. The validity of
these assumptions and the predicted shape of the PCA components of color images are experimentally
observed on two large image databases. As a by-product of this experimental study, we also provide
novel data to support an exponential decay law of the spatiochromatic covariance between pairs of pixels
as a function of their spatial distance.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

There is a general agreement about the fact that the Human
Visual System (HVS from now on) has evolved in order to optimize
the elaboration and transmission of visual signals originating from
natural scenes by getting rid of redundant information. In fact,
there is a hundred million retinal photoreceptors against one
million optic nerve neurons, therefore the retinal output must be
re-coded to allow the salient visual information passing to
subsequent stages.

The origin of redundancy in the interaction between humans
and natural scenes is twofold: on one side, natural scenes contain
strong spatial correlation, since nearby points are likely to send
similar radiance information to the eyes, unless they lie in the
proximity of a sharp edge. On the other side, light signals
(in photopic conditions) are absorbed by the three L;M; S-type
cones, whose sensitivity is not independent, see e.g. the picture
of Vos-Walraven’s cone sensitivity functions depicted in
Buchsbaum and Gottschalk (1983, p. 92). In particular, the LðkÞ
and MðkÞ have a wide overlap area, thus every broadband visual
stimulus will excite both the L and the M-type cones, resulting in
a strong chromatic correlation. When both effects are taken into
account, one speaks about spatio-chromatic correlation.
The simplest way to look at spatial redundancy within images
is through the second order statistics between pixel values.
Two noticeable and well-known facts are the Fourier-like structure
of Principal Component Analysis (PCA), as a result of spatial
stationarity, and the power-law decay of the power spectrum, as a
possible consequence of scale-invariance. Higher order statistics
have also been largely investigated, for instance through wavelets
or sparse coding, as recalled in Section 2. On the other hand,
several works have been concerned with chromatic redundancy
in images, mostly through second order property and in connection
with opponent color spaces. However, the spatio-chromatic struc-
ture of color images has been less studied. One of the most striking
known empirical observation is that the spatio-chromatic
covariance matrices resemble a tensor product between a Fourier
basis and color opponent channels, as pointed out in Section 2. In
this work, we focus on this statistical characteristic, both from a
theoretical and an experimental perspective. In Section 3 we show
that second order stationarity,1 together with another technical
assumption, namely that covariance matrices must commute for
any distance between pixels, implies that the eigenvectors of the
spatio-chromatic covariance matrix are represented by the tensor
product of the 2D cosine Fourier basis and the triad given by the
achromatic plus color opponent channels. In Section 4, we show
experimentally by using two large image databases that these two
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assumptions hold true and that the tensor structure of covariance
matrices is satisfied. One of these bases is made of images gathered
from the internet, for which we have no information about the
formation process. The other one is made of RAW images that are
free of compression artefacts, white balance and gamma correction.
As previously said, the second key assumption that guarantees this
result is that the spatiochromatic covariance matrices must com-
mute for any distance between pixels. In Section 4, to test this
assumption, we will analyze the decay of spatiochromatic covari-
ance matrix elements, showing that it can be modeled through an
exponential law, in contrast to the power law decay commonly
thought to characterize natural images. In Section 5 we will discuss
these theoretical and empirical results and comment about future
perspectives for computer vision purposes.
2. State of the art in natural color image statistics

The literature about natural image statistics is vast and its
exhaustive presentation is beyond the scope of this paper. We
concentrate here on important achievements that are related to
the present paper. In Section 2.1, we recall some classical facts
about the covariance structure of gray level images and also quote
some related and more profound results on the structure of image
patches. In Sections 2.2 and 2.3 we discuss results dealing with the
chromatic and spatiochromatic redundancy of natural images,
respectively. In these two last sections, a particular emphasis is
given to the results from Buchsbaum and Gottschalk (1983) and
from Ruderman, Cronin and Chiao (1998), which are both closely
related to our results.

2.1. Spatial redundancy in natural images

There is a large body of works dealing with spatial statistics in
natural images, as e.g. reviewed in Srivastava et al. (2003). In the
present work, we will focus mostly on relatively simple second
order property of natural images, and mostly on their covariance.
Our motivation is that such simple structures are, to the best of
our knowledge, not fully understood in the case of spatiochromatic
dependency. In particular, we will not consider in this work the
non-gaussianity of natural images, i.e. the appearance of sparse
features with high kurtosis, although it is related to the most
geometric aspects of image structure, see e.g. Mumford and
Gidas (2001).

2.1.1. Image patches decomposition
Attneave (1954), MacKay (1956) and Barlow (1961) pioneered

the idea that the HVS, in order to deal with the great amount of
information that it constantly receives, should have developed a
scheme to get rid of redundant information. However, they did
not quantify these ideas with a computational theory that could
provide a coding for natural images. The simplest observations in
this direction concern principal component analysis (PCA) on small
image patches. These are well known (see for instance the experi-
ments in Olshausen & Field (1996)) to yield Fourier basis elements.
This fact is a consequence of spatial stationarity, as will be recalled
in Section 3.1. More elaborated patch decompositions, relying on
the minimization of redundancy, as in Atick and Redlich (1990)
and Atick (1992), or on sparse decompositions, as in Olshausen
and Field (1996), Olshausen and Field (1997), yield localized,
band-pass and oriented filters resembling wavelet basis elements.

Since these early works, sparse dictionary representations have
become a standard tool for image restoration, for their ability to
economically represent geometric structures, see e.g. Elad and
Aharon (2006). Analogous elementary patches have been obtained
Please cite this article in press as: Provenzi, E., et al. On the second order sp
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with the use of Independent Component Analysis (ICA), see e.g.
Hyvärinen, Hurri, and Hoyer (2009) or from convolutional neural
networks, see the experiments in Krizhevsky, Sutskever, and
Hinton (2012).

2.1.2. Power spectrum
One of the most striking fact about image statistics is that most

pictures exhibit some form of scale-invariance. Roughly speaking,
statistical observations on an image and on a zoomed version
of it are qualitatively similar. The most well known among such
observations concerns the power spectrum of images.
Experiments conducted over different databases of natural
images, see e.g. Field (1987) and Ruderman and Bialek (1994), have
shown that, while the power spectra of different images change
considerably, if we compute the average power spectrum over a
sufficiently large number of images and all orientations, then we
find a power-law behavior. That is, if we write Sðf Þ for the power
spectrum (the square of the amplitude of the Fourier transform)

averaged over all directions, we find that Sðf Þ � f�b, as a function
of the frequency magnitude f. The value of b varies roughly from
1.5 to 3, with a cluster of values around 2, depending on the image
database used, see Tolhurst, Tadmor, and Chao (1992) and Pouli,
Cunningham, and Reinhard (2010) for some examples of b values.
This decreasing behavior of the power spectrum is usually
associated with scale invariance, since the value b ¼ 2 corresponds
to this case, see Mumford and Gidas (2001).

By Wiener-Khinchin’s theorem (see Papoulis, 1991), under the
hypothesis of second order stationarity, power spectrum and
covariance form a Fourier pair. In Ruderman (1996, p. 3397), it is
underlined that if the power spectrum of an image follows a power
law Sðf Þ � 1

f 2�g ;g being the so-called ‘anomalous exponent’, then

the covariance C as a function of the distance d among pixels has
the following expression CðdÞ ¼ a

dg � b; a; b > 0, i.e. apart from an
offset, the covariance also decreases with a power-law. This
power-law decay has been proven to fail at large frequencies and
distances, both for the power spectrum, e.g. in Langer (2000),
and the covariance, see Huang and Mumford (1999) and Huang
(2000). In Section 4, we will confirm the failure of the power-law
decay of the covariance at large distances. We will show that an
exponential model is more accurate, and discuss the relation of
such a model with the spatiochromatic covariance properties of
natural images.

2.2. Chromatic redundancy in natural images

The first statistical information about chromatic redundancy
has been experimentally obtained in Ohta, Kanade, and Sakai
(1980) in the framework of color segmentation of RGB images.
For each picture of a database of 8 RGB images, the authors
computed the covariance matrix C of the distribution of the values
of R;G and B at each pixel. They found that the eigenvectors of the
covariance matrix are approximately the following ones for each
image of the database:

v1 ¼ 1
3 ;

1
3 ;

1
3

� �t

v2 ¼ 1
2 ;0;� 1

2

� �t

v3 ¼ � 1
4 ;

1
2 ;� 1

4

� �t
;

8>><>>: ð1Þ

These vectors correspond to the three following uncorrelated color
features

X1 ¼ RþGþB
3

X2 ¼ R�B
2

X3 ¼ 2G�ðRþBÞ
4 :

8><>: ð2Þ
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2 Notice that the definition of a positive matrix A, i.e. a matrix with all positive
entries, is different than that of a positive-definite matrix A, for which the following
property is required: xtAx > 0, for every non zero vector x.
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This shows that the feature that corresponds to the largest variance
is the luminance X1 (or achromatic channel) and the other two
features are described by the opponent channels X2 (red–blue) and
X3 (green–violet).

Buchsbaum and Gottschalk (1983) approached the problem of
finding uncorrelated color features from a purely theoretical point
of view. Following the already quoted ideas of Attneave, Barlow
and MacKay, they analyzed the problem of an efficient
post-retinal information transmission by performing a PCA on
the LMS cone activation values. We shall now give a detailed
presentation of this work, to which our contributions are closely
related.

Buchsbaum and Gottschalk considered the abstract ensemble of
all possible visual stimuli (radiances), i.e. S � fSðkÞ; k 2 Lg, where
L is the spectrum of visible wavelengths. From a given representa-
tive SðkÞ 2 S, a weighted integration of SðkÞ over the visual
spectrum, with weights given by the Vos-Walraven spectral
sensitivity functions LðkÞ; MðkÞ; SðkÞ yields the three cone
activation values:

L ¼
R
L SðkÞLðkÞdk

M ¼
R
L SðkÞMðkÞdk

S ¼
R
L SðkÞSðkÞdk:

8><>: ð3Þ

Assuming that the stimulus SðkÞ (coming from a fixed point �x of a
scene) is a random variable, a covariance matrix can be build from
the three random variables L; M; S. This matrix, called chromatic
covariance matrix, is defined as:

C ¼
CLL CLM CLS

CML CMM CMS

CSL CSM CSS

264
375; ð4Þ

where CLL � E½L � L� � ðE½L�Þ2;CLM � E½L �M� � E½L�E½M� ¼ CML, and so
on, E being the expectation operator.

If we introduce the covariance function, Kðk;lÞ ¼ E½SðkÞSðlÞ�
�E½SðkÞ� � E½SðlÞ�, then the entries of the covariance matrix
can be written as CLL ¼

RR
L2 Kðk;lÞLðkÞLðlÞdkdl;CLM ¼RR

L2 Kðk;lÞLðkÞMðlÞdkdl, and similarly for the others. This shows
that the correlation among the L; M; S cone activations does not
depend only on the overlap among the sensitivity curves, but also
on the prevalence of certain wavelengths in the ensemble of visual
stimuli S with respect to others.

To be able to perform explicit calculations, the analytical form
of the covariance function Kðk;lÞmust be specified. In the absence
of a database of multispectral images, Buchsbaum and Gottschalk
used abstract non-realistic data to compute Kðk;lÞ. They chose
the easiest covariance function, i.e. Kðk;lÞ ¼ dðk� lÞ; d being the
Dirac distribution, corresponding to visual stimuli maximally
uncorrelated with respect to their energy at different wavelengths.
As the authors observe, this condition is satisfied only if the
ensemble S is made of monochromatic signals, thus it is higly
non-realistic with respect to natural stimuli.

With this choice, the entries of the covariance matrix C are all
positives and they can be written as CLL ¼

R
L L2ðkÞdk;CLM

¼
R
L LðkÞMðkÞdk, and so on. C is also real and symmetric, so it has

three positive eigenvalues k1 P k2 P k3 with corresponding
eigenvectors vi; i ¼ 1; 2; 3. If W is the matrix whose columns are
the eigenvectors of C, i.e. W ¼ ½v1jv2jv3�, then the diagonalization
of C is given by K ¼WtCW ¼ diagðk1; k2; k3Þ.

The eigenvector transformation of the cone excitation values
L; M; S is then

A

P

Q

0B@
1CA ¼Wt

L

M

S

0B@
1CA:
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In the special case of monochromatic stimuli, we can also parame-
terize with the wavelength k:

AðkÞ
PðkÞ
QðkÞ

0B@
1CA ¼Wt

LðkÞ
MðkÞ
SðkÞ

0B@
1CA:

The transformed values A; P; Q are uncorrelated and their covari-
ance matrix is K. A is the achromatic channel, while P and Q are
associated to the opponent chromatic channels.

The key point in Buchsbaum and Gottschalk’s theory is the
application of Perron–Frobenius theorem (see e.g. Berman &
Plemmons (1987) for more details), which assures that positive
matrices,2 i.e. matrices whose entries are all strictly greater than
zero, have one and only one eigenvector whose entries have all the
positive sign, and this eigenvector corresponds to the largest
eigenvalue, i.e. k1. So, only the transformed A channel will be a linear
combination of the cone activation values L; M; S with positive
coefficients, while the channels P and Q will show opponency. This
is the theoretical reason underlying the evidence of post-retinal
chromatic opponent behavior, following Buchsbaum and Gottschalk.

We underline that the positivity of C in Buchsbaum–Gottschal
k’s theory is a consequence of their non-realistic selection of
monochromatic visual stimuli. However, signals coming from real
scenes are broad-band, so there is no theoretical guarantee that C
has all positive entries. In Section 4, we will see that C is positive
also when it is computed through natural RGB images, in which
case the HVS sensitivity functions are replaced with the sensitivity
functions of cameras.

The monochromatic signal energy of the channels has the
following property:Z
L

A2ðkÞdk :

Z
L

P2ðkÞdk :

Z
L

Q 2ðkÞdk ¼ k1 : k2 : k3: ð5Þ

The explicit form of the matrices C;Wt and K within Buchsba
um–Gottschalk’s theory are the following:

C ¼
77:0622 38:6204 0:0649
38:6204 22:8099 0:0646
0:0649 0:0646 0:0151

0B@
1CA; ð6Þ

Wt ¼
0:887 0:461 0:0009
�0:46 0:88 0:01
0:004 �0:01 0:99

0B@
1CA; ð7Þ

K ¼ diagð97:2; 2:78; 0:015Þ: ð8Þ

The large covariance values between L and M and the very small
ones between these two channels and S are a direct consequence
of the use of Vos-Walraven’s sensitivity functions and the hypothe-
sis Kðk;lÞ ¼ dðk� lÞ. In Section 4 we will see that if we compute C
from a database of natural images, then the difference among
covariance values is rather small.

Using the data obtained above, Buchsbaum and Gottschalk
could write explicitly the transformation from ðL; M; SÞ to
ðA; P; QÞ as follows:

A ’ 0:887Lþ 0:461M

P ’ �0:46Lþ 0:88M

Q ¼ 0:004L� 0:01M þ 0:99S;

8><>:
the energy ratios among A; P and Q being 97:2 : 2:78 : 0:015. Again,
we observe that the unrealistic hypothesis of maximally
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uncorrelated visual signals implies that the achromatic channel
accounts for the great majority of the energy transmitted and the
blue channel has practically no influence in the computation of
the achromatic stimulus.

2.3. Spatio-chromatic redundancy in natural images

Buchsbaum also developed the first computational model of
spatio chromatic image coding in early vision in the paper
Derrico and Buchsbaum (1991). In that paper, only the L and
M signals are taken into account, because the authors claim that
they contain almost the whole energy of retinal output and the
opponent L�M ganglion cell receptive fields3 represent 90% of
the total ganglion cells on–off receptive fields. Their model consists
in a two-stage process: the first (chromatic) step consists in the
same PCA operated in Buchsbaum and Gottschalk (1983) to
decorrelate the L and M signals, which gives the achromatic part
LþM and the opponent chromatic channel L�M. The second
(spatial) step consists in applying a linear predictive coding (similar
to that used by Srinivasan, Laughlin, & Dubs (1982)) which optimizes
the transmission of the achromatic part by attenuating the low
spatial frequencies.

Also Atick, Li, and Redlich (1992) considered only the L and M
signals and, by postulating translation-invariance of natural light
stimuli and separability among chromatic and spatial correlation,
they built a linear operator able to decorrelate the signals L and
M into LþM and L�M (see Atick, 1992, p. 245; Atick, Li, &
Redlich, 1992, p. 566).

In Ruderman, Cronin and Chiao (1998), Ruderman, Cronin and
Chiao proposed a patch-based spatio-chromatic coding and tested
Buchsbaum–Gottschalk’s theory on a database of 12 multispectral
natural images of foliage.

Because of the proximity between our contribution and this
work, we now give a detailed account of the experiments per-
formed in Ruderman, Cronin and Chiao (1998). Each multispectral
image of their database consists of 43 successive images taken at
7–8 nm intervals from 403 to 719 nm, thus they chose
L ¼ f403;410; . . . ;719g nm. In order to build the cone activation
values L; M; S, the authors did not follow the same procedure
as Buchsbaum and Gottschalk, but they write ðL; M; SÞ ¼P

k2L
~QðkÞRðkÞJðkÞ, where ~Q ¼ ðQL; QM ; Q SÞ are the cone sensitivity

functions detailed in Stockman, MacLeod, and Johnson (1993), JðkÞ
is the standard D65 CIE illuminant used to model daylight spec-
trum, and RðkÞ is an estimation of scene’s reflectance. RðkÞ is
obtained by placing in each photographed scene a MacBeth chart
with known spectral reflectance and re-calibrating the multispec-
tral values in order to match those of the chart. Of course this
procedure is approximated, since the illumination of the scene
can vary in space and time, for this reason the authors analyzed
only the 128 � 128 central region of each image.

The scatterplots in the LM and LS planes of the L; M; S cone
activations values corresponding to 1000 pixels randomly selected
in the database show a high degree of correlation (higher in the LM
plane than in the LS one due to the overlap of L and M spectral
sensitivity functions) but also asymmetry, see Ruderman, Cronin
and Chiao (1998, p. 2037).

The authors decided to study these data by first reducing
their asymmetry: they modified the LMS values by taking their
decimal logarithm and then they subtracted the average image
value in the logarithmic domain. They obtained the so-called
Ruderman–Cronin–Chiao coordinates, i.e. ~L ¼ LogL� hLogLi;
3 The typical representation of a ganglion cell L�M receptive field is given by a
center disk surrounded by a ring. The center is excited by the information arriving
from the L (resp. M) cones, but its response is inhibited by the information arriving
from the M (resp. L) cones on the surrounding ring.

Please cite this article in press as: Provenzi, E., et al. On the second order sp
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eM ¼ LogM � hLogMi and eS ¼ LogS� hLogSi. This transform is
motivated by the fact that, following Weber–Fechner’s law, uni-
form logarithmic changes in stimulus intensity tend to be equally
perceptible, see Goldstein (2013). Moreover, second-order statis-
tics of log-transformed data is similar to that of linear images,
see Ruderman and Bialek (1994). Instead, the motivation for the
average substraction is to assess the data independently on the
illumination level, analogously to a von Kries procedure (see von
Kries, 1902).

The choice of logarithmic coordinates is nevertheless question-
able. Ruderman, Cronin and Chiao claim that the linear relationship
among logarithmic data and Weber–Fechner’s contrast metric
gives a reason to select the principal component analysis among
other non-orthogonal analysis because the orthogonal transforma-
tions involved in the PCA preserve the space metric. However,
other researcher, e.g. Simoncelli and Olshausen (2001) have
criticized this observation, claiming that considering high-level
perceptual features, as Weber-Fechner’s law, in early vision models
is misleading.

Following Ruderman, Cronin and Chiao (1998), if ~L; ~M; ~S, are
the basis vectors in the logarithmically-transformed space, then
the application of the PCA gives the following three principal axes:

l ¼ 1ffiffi
3
p eL þ eM þ eS� �

a ¼ 1ffiffi
6
p eL þ eM � 2eS� �

b ¼ 1ffiffi
2
p eL � eM� �

:

8>>>><>>>>: ð9Þ

The color space spanned by these three principal axes is called lab
space. The standard deviations of the l; a; b coordinates are
rl ¼ 0:353; ra ¼ 0:0732 and rb ¼ 0:00745. Notice that there is an
inversion in the importance of opponent channels with respect to
Buchsbaum and Gottschalk (1983): here the L�M channel has
the lowest variance.

To study spatiochromatic decorrelated features, Ruderman,
Cronin and Chiao considered 3� 3 patches, with each pixel
containing a 3-vector color information, so that every patch is con-
verted in a vector with 27 components that they analyzed with the
PCA. The principal axes of these small patches in the logarithmic
space are depicted in Ruderman, Cronin and Chiao (1998) at page
2041. The color rendering that the authors performed is the
following: firstly, the R; G; B values are linearly related to the

logarithmic ~L; ~M; ~S values via these formulae R ¼ 128ð~Lþ 1Þ;
G ¼ 128ð ~M þ 1Þ; B ¼ 128ð~Sþ 1Þ. Notice that ~X ¼ 0 if and only if
LogX ¼ hLogXi, for X ¼ L; M; S, so the previous relations set the
average image values in the logarithmic domain to 128. Finally,
the ðR; G; BÞ values so obtained are linearly stretched to [0,255].
The first principal axis shows fluctuations in the achromatic
channel, followed by blue–yellow fluctuations in the a direction
and red-green ones in the b direction.

The spatial axes are largely symmetrical and can be represented
by Fourier features, in line with the translation-invariance of
natural images, as argued in Field (1987). It is important to stress
that in the results of Ruderman et al. no pixel within the patches
appear other than the primary gray, blue-yellow or red-green
colors, i.e. no mixing of l;a; b has been found in any 3� 3 patch.
These means that not only the single-pixel principal axes l;a; b,
but also the spatially-dependent principal axes lðxÞ; aðxÞ; bðxÞ,
viewed as functions of the spatial coordinate x inside the patches,
are decorrelated.

These results have been confirmed by Párraga, Troscianko, and
Tolhurst (2002). A strong, but not perfect, spatio-chromatic decor-
relation has been confirmed in Hyvärinen, Hurri, and Hoyer
(2009, p. 323), where the authors performed experiments on
50000 patches of size 12� 12 selected in a basis of 20 RGB (and
atiochromatic structure of natural images. Vision Research (2015), http://
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not LMS) images. The imperfection in the decorrelation is put in
evidence by the appearance of mixed colors, as e.g. orange. In
Section 4, we will perform similar experiments on much larger
databases.

Ruderman, Cronin and Chiao proposed the following separable
form for the spatio-chromatic principal axes: pððL;M; SÞ; xÞ ¼
cðL;M; SÞ � sðxÞ, i.e. the product of two uncorrelated eigenfunctions,
namely cðL;M; SÞ, given by the principal axes l;a; b and sðxÞ, given
by the Fourier basis. They also suggest that the lack of spatial depen-
dence of the chromatic components can be a consequence of scale
invariance in natural images. Such a separable basis has been
recently exploited also in Chakrabarti, and Zickler (2011) in the
context of hyperspectral images representation and reconstruction.

In Wachtler, Lee, and Sejnowski (2001), the authors applied the
ICA to study a set of 8 multispectral images of terrestrial natural
scenes containing mainly plants and rocks. The measured values
of the ICA basis functions for single pixels are coherent with those
of Ruderman, Cronin and Chiao, however, they have proven that if
one considers patches of 7� 7 pixels, then colors other than the
principal ones can appear.

The Kronecker product relationship between spatial and
chromatic correlations is also assumed (without proof) in the very
recent and interesting treatise Li (2014).

3. Relationship between second order stationarity and the
decorrelated spatiochromatic features of natural images

In this section we will analyze the consequence of second order
stationarity in natural images on their decorrelated spatiochromatic
features. For the sake of clarity, we will first start with the simplest
case of gray-level images, where stationarity implies that the princi-
pal components are Fourier basis functions. We will then extend this
result to the color case and show that a supplementary hypothesis on
color covariance matrices yields principal components given by the
tensor product between Fourier basis functions on one side, and
achromatic plus opponent color coordinates on the other.

3.1. The gray-level case

Let I be a gray-level natural image of dimension W � H. We
denote the H rows of I as r0; . . . ; rH�1 and the position of each pixel
of I row-wise as follows4:

I ¼ r j
k; j ¼ 0; . . . ;H � 1; k ¼ 0; . . . ;W � 1

n o
: ð10Þ

Each row r j ¼ ðr j
0; . . . ; r j

W�1Þ will be interpreted as a W-dimensional

random vector and each component r j
k as a random variable.

Let us define the spatial covariance of the two random variables

r j
k; r

j0

k0
:

covðr j
k; r

j0

k0
Þ � cj;j0

k;k0
¼ E r j

krj0

k0

h i
� E½r j

k�E½r
j0

k0
�: ð11Þ

Due to the symmetry of covariance we have cj;j0

k;k0
¼ cj0 ;j

k0 ;k
. We write

the spatial covariance matrix of the two random vectors r j; rj0 as

covðr j; rj0 Þ � Cj;j0 , where Cj;j0 is the W �W matrix:

Cj;j0 ¼

cj;j0

0;0 cj;j0

0;1 � � � cj;j0

0;W�1

cj;j0

1;0 cj;j0

1;1 � � � cj;j0

1;W�1

..

. ..
. . .

. ..
.

cj;j0

W�1;0 � � � � � � cj;j0

W�1;W�1

26666664

37777775: ð12Þ
4 To avoid cumbersome repetitions of the indexes variability, from now on, we will
suppose that j; j0 2 f0; . . . H � 1g and k; k0 2 f0; . . . W � 1g, unless otherwise specified.
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Finally, the spatial covariance matrix C of the image I can be written
as:

C ¼

C0;0 C0;1 � � � C0;H�1

C1;0 C1;1 � � � C1;H�1

..

. ..
. . .

. ..
.

CH�1;0 � � � � � � CH�1;H�1

266664
377775: ð13Þ

Notice that C is a HW � HW matrix because each sub-matrix Cj;j0 is a
W �W matrix.

Hypothesis 1. From now on, the covariance of I is assumed to be
invariant under translations of the row and column index, i.e.

cj;j0

k;k0
¼ cjj�j0 j

jk�k0 j.

Hypothesis 1 will be tested in Section 4.3 and, as said before, it
is weaker than the typical definition of second order stationarity
because here we do not assume the translation invariance of the
mean.

Alongside this hypothesis, we add a technical requirement on
the geometry of digital images which is implicitly assumed every
time the Fourier transform is considered, i.e. we will consider a
symmetrized spatial domain with a toroidal distance, which means

that we will perform the identification r j
k ¼ rj0

k0
when j � j0 (mod

H) and k � k0 (mod W), i.e. every time there exist a; b 2 Z such that
j0 � j ¼ aH and k0 � k ¼ bW .

As a covariance matrix, C is real, symmetric and
positive-definite. Now, as a consequence of the previous hypothe-
ses, the matrix C is also block-circulant with circulant blocks.

Indeed, the Cj;j0 are circulant matrices, i.e. matrices where each
row vector is rotated one element to the right relative to the
preceding row vector,5 or, equivalently, each column vector is
rotated one element down with respect to the preceding column
vector. If we use the convenient shorthand notation ‘circð Þ’ to denote
a circulant matrix, by specifying only the first row (or, equivalently,
the first column, due to symmetry) between the round brackets,

then Cj;j0 can be written as follows:

Cj;j0 ¼ circ cj;j0

0;0; c
j;j0

0;1; . . . ; cj;j0

0;W�1

� �
: ð14Þ

Now, if we write C j � C0;j; j ¼ 0; . . . ;H � 1 it is straightforward to see
that the covariance matrix C is block-circulant and can be explicitly
written as:

C ¼ circ C0;C1; . . . ;CH�1
� �

: ð15Þ

It is well known that an n� n circulant matrix has n eigenvalues
corresponding to the components of the DFT of the finite
sequence given by the first row of the matrix itself, and its
eigenvectors are the Fourier basis functions, see e.g. Frazier (2001)
or Gray (2006).

Let us apply this general result to the W �W circulant matrices

C j. The set of eigenvalue equations C jem ¼ k j
mem; k

j 2 C and
e 2 CW ;m ¼ 0; . . . ;W � 1, can be written as the following matrix

equation C jEW ¼ K jEW , where6:

K j¼
ffiffiffiffiffiffi
W
p

diagðĉ j
m; m¼0; . . . ;W�1Þ; ĉ j

m¼
1ffiffiffiffiffiffi
W
p

XW�1

k¼0

cj
ke�

2pimk
W ; ð16Þ

and EW is the Vandermonde matrix which implements the DFT, i.e.
5 This can be easily verified by noticing that cj;j0

k;k0
¼ cj;j0

kþ1;k0þ1
.

6 We have used the simplified notation c j
m � c0;j

0;m to denote the matrix element of

position m in the first row of the matrix C j � C0;j;m ¼ 0; . . . ;W � 1.
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EW ¼ e0je1j � � � jeW�1½ �

¼ em ¼ 1ffiffiffiffi
W
p 1; e�2pim

W ; . . . ; e�
2pimðW�1Þ

W

� �t
� �

m¼0;...;W�1

¼ 1ffiffiffiffi
W
p

1 1 � � � 1
1 e�

2pi
W � � � e�

2piðW�1Þ
W

..

. ..
. . .

. ..
.

1 e�
2piðW�1Þ

W � � � e�
2piðW�1Þ2

W

266664
377775:

ð17Þ

The following remark will help us understanding how to extend the
previous diagonalization procedure to the whole matrix C.

Remark 1. Let M ¼ circðM0; . . . ;MH�1Þ be a block-circulant matrix

and let us assume that the blocks M j can be diagonalized on the
same basis B. If we write EH ¼ e0je1j � � � jeH�1½ �, with the vectors ej

defined as in Eq. (17) for all j ¼ 0; . . . ;H � 1, then it can be verified
by direct computation that EH � B is a basis of eigenvectors of M,
where � denotes the Kronecker product.

In the case of our spatial covariance matrix C, all the submatri-

ces C j have the same basis of eigenvectors EW , thus the result
stated in the previous remark can be directly applied on the
matric C to guarantee that

EH � EW ¼ em;l ¼
1ffiffiffiffiffiffiffiffiffi
HW
p 1; e�2pi m

Wþ
l
Hð Þ; . . . ; e�2pi mðW�1Þ

W þlðH�1Þ
H

� �	 
t
" #

m;l

;

ð18Þ

for m ¼ 0; . . . ;W � 1, and l ¼ 0; . . . ;H � 1 provides a basis of eigen-
vectors for the matrix C.

Actually, due to the symmetry of covariance matrices, the com-
plex parts of the exponentials cancel out (see Gray, 2006) and so
the 2D cosine Fourier basis also constitutes a basis of eigenvectors
of C:

em;l ¼
1ffiffiffiffiffiffiffiffiffi
HW
p 1; cos 2p m

W
þ l

H

	 
	 

; . . . ;

	
cos 2p

mðW � 1Þ
W

þ lðH � 1Þ
H

	 
	 

t

: ð19Þ
7 We recall that, given two generic matrices A and B for which the products AB and
BA is well defined, ½A;B� � AB� BA is called the ‘commutator’ between them. Of course
A and B commute if and only if ½A;B� ¼ 0.
3.2. The color case

Let u : X! ½0;255�3 be an RGB image function, where X is the
spatial domain, and, for all ðj; kÞ 2 X;uðj; kÞ ¼ ðRðj; kÞ;Gðj; kÞ;
Bðj; kÞÞ is the vector whose components are the red, green and blue
intensity values of the pixel defined by the coordinates ðj; kÞ.

We define the spatiochromatic covariance matrix among two
pixels of position ðj; kÞ and ðj0; k0Þ by extending Eq. (11) as follows:

cj;j0

k;k0
¼

cj;j0

k;k0
ðR;RÞ cj;j0

k;k0
ðR;GÞ cj;j0

k;k0
ðR;BÞ

cj;j0

k;k0
ðG;RÞ cj;j0

k;k0
ðG;GÞ cj;j0

k;k0
ðG;BÞ

cj;j0

k;k0
ðB;RÞ cj;j0

k;k0
ðB;GÞ cj;j0

k;k0
ðB;BÞ

26664
37775 ð20Þ

where we defined cj;j0

k;k0
ðR;RÞ ¼ E½Rðj; kÞRðj0; k0Þ� � E½Rðj; kÞ�

E½Rðj0; k0Þ�; cj;j0

k;k0
ðR; GÞ ¼ E½Rðj; kÞGðj0; k0Þ� � E½Rðj; kÞ�E½Gðj0; k0Þ�, and

similarly for the remaining matrix elements. Of course the matrix

cj;j0

k;k0
is symmetric because cj;j0

k;k0
¼ E½Gðj; kÞRðj0; k0Þ� � E½Gðj; kÞ�

E½Rðj0; k0Þ� ¼ cj;j0

k;k0
, and similarly for all the other off-diagonal

elements.
In the particular case defined by j0 ¼ j and k0 ¼ k, we will call

cj;j0

k;k0
‘chromatic autocovariance’ and denote it simply as c0.
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Notice that the matrix analyzed in Buchsbaum and Gottschalk
(1983) is the chromatic autocovariance of LMS values.

We then define the spatiochromatic covariance matrix C j;j0 among

the two random vectors r j; rj0 given by the j-th and j0-the rows of
the spatial support of u by extending Eq. (12) as follows:

C j;j0 ¼

cj;j0

0;0 cj;j0

0;1 � � � cj;j0

0;W�1

cj;j0

1;0 cj;j0

1;1 � � � cj;j0

1;W�1

..

. ..
. . .

. ..
.

cj;j0

W�1;0 � � � � � � cj;j0

W�1;W�1

26666664

37777775: ð21Þ

Finally, we define the spatiochromatic covariance matrix C of the RGB
image u by extending Eq. (13) to the 3HW � 3HW matrix defined in
this way:

C ¼

C0;0 C0;1 � � � C0;H�1

C1;0 C1;1 � � � C1;H�1

..

. ..
. . .

. ..
.

CH�1;0 � � � � � � CH�1;H�1

266664
377775: ð22Þ

Now, supposing that all the elements of the matrices (20) are
positive, thanks to the Perron-Frobenius theorem we can assure

that each of these cj;j0

k;k0
matrices has a basis of eigenvectors that

can be written as a triad of achromatic plus opponent chromatic
channels. If we further assume that the matrices (20) can be
diagonalized on the same basis of eigenvectors ðA; P;QÞ, then, thanks
to Remark 1, we have that the eigenvectors of the spatiochromatic
covariance matrix C can be written as the following Kronecker
product:

ðA; P;QÞ � em;l 2 R3HW ; ð23Þ

which is precisely the type of eigenvectors that have been exhibited
experimentally in Ruderman (1996). A standard result of linear
algebra guarantees that a set of matrices can be diagonalized on
the same basis of eigenvectors if and only if they commute.7

Thanks to the hypothesis of translation invariance of covariance, this

is verified if and only if the generic covariance matrix cj;j0

k;k0
commutes

with the chromatic autocovariance matrix c0.
It is convenient to resume all the hypotheses made and results

obtained so far in the following proposition.

Proposition 1. Let u : X! ½0;255�3 be an RGB image function, with
a periodized spatial domain X, and suppose that
1. The spatiochromatic covariance matrices matrices cj;j0

k;k0
defined in

(20) depend only on the distances jj� j0j; jk� k0j, i.e. the covariance
of u is stationary;

2. All matrices cj;j0

k;k0
are positive, i.e. their elements are strictly greater

than 0;
3. The following commutation property holds:
atio
c0; cj;j0

k;k0

h i
¼ 0 8ðj; kÞ; ðj0; k0Þ 2 X: ð24Þ

Then, the eigenvectors of the spatiochromatic covariance matrix C
defined in (22) can be written as the Kronecker product
ðA; P;QÞ � em;l, where ðA; P;QÞ is the achromatic plus opponent
chromatic structure of natural images. Vision Research (2015), http://
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color channels triad and em;l is the 2D cosine Fourier basis defined
in Eq. (19).
Proposition 1 defines a mathematical framework where

the empirical result of Ruderman et al. can be formalized and
understood in terms of statistical properties of natural images. In
the following section we will test this framework with the help
of two large databases of RGB images.

A direct corollary of Proposition 1 is the following.

Corollary 1. If the hypotheses of Proposition 1 are valid, then the
following decomposition formula holds:

u ¼
XW�1

m¼0

XH�1

l¼0

hu; ðA; P;QÞ � em;liðA; P;QÞ � em;l; ð25Þ

where h ; i is the scalar product in R3HW .
4. Validations on natural image databases

As stated in the previous section, the validity of Proposition 1,
which expresses the spatiochromatic basis as the Kronecker
product of the 2D cosine Fourier basis by the triad given by one
achromatic plus two opponent color channels, is constrained by
some hypotheses. In this section we present the tests that we have
performed to check their validity.

To perform our numerical experiences we have selected two
databases that are best suited for different scopes. The first
one is an excerpt from the database described in Hays and
Efros (2007), which consists of 2.3 millions of 1024� 768
copyright-free RGB images taken from the popular website Flickr.
The presence of semantically similar images in the database can
induce biases in the statistical results, for this reason, in our exper-
iments, we have used packets of images randomly selected from
the database. As it will be detailed later on, we have also performed
experiments with several subsets to check the coherence of the
results. The advantage of this first database is its large number of
images, which enabled us to check the stability of our results. An
excerpt of this database is provided in Fig. 1.

The second database is made of personal RAW photographs of
more than 2000 natural scenes8. The content of the natural images
that constitute the RAW database is given by landscapes, people,
woods, parks and rivers. The database has been built by means of
two cameras, a Canon 400D and a Nikon D300.

Each 4-neighborhood of pixels in a raw image contains two
pixels corresponding to the R and B channels and two pixels
corresponding to the G channel. We demosaicked each RAW image
to build a subsampled RGB image simply by keeping unaltered the
R and B information and averaging the G channel.

The advantage of this second database is that RAW images are
free from post-processing operations such as gamma correction,
white balance or compression, thus, modulo camera noise, they
provide a much better approximation of irradiance than the images
of the first database. Using RAW images from two different cam-
eras will permit us to test the influence of camera sensitivity
curves on the results of our analysis. An excerpt of this database
is provided in Fig. 2.

Before describing our tests, we show in Fig. 3 the 64 first prin-
cipal components obtained by applying a PCA to a packet of 105

images from the Flickr database. These components indeed have
the shape predicted by Proposition 1, i.e. they show, in separated
component, oscillations of increasing frequency of the achromatic
and color opponent channels. Notice that all the principal
8 The database of RAW images is available at the following website:
http://download.tsi.telecom-paristech.fr/RawDatabase/.
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components that we have obtained respect the previsions of
Proposition 1, we show just the first 64 components because the
variance of features represented by the subsequent components
decreases rapidly.
4.1. Computation of the covariance matrices

Since the test that we have performed are related to covariance
matrices, it is logical to start by describing how these matrices
are obtained from the images of the databases. First of all, in
order to simplify their computation, the expectation of the
empirical average image of the ensemble has been subtracted to
all images.

We first concentrated on the evaluation of the chromatic
autocovariance c0. Even if the simplest way to compute the
covariance is via the Fourier transform, which implicitly assumes
periodicity and may lead to biases, we chose the alternative strat-
egy that we are going to describe in detail hereafter. First of all, the
expectation operator E involved in its computation has been
approximated by randomly selecting a pixel in N different images
of the database, storing its RGB values in three N-dimensional row
vectors vl;l 2 fR;G;Bg, and then estimating the elements of the
chromatic autocovariance matrices as follows: CRR ¼ vRv t

R=N;
CRG ¼ vRv t

G=N, and so on. Notice that it is possible to compute
the covariances in this way because of the initial subtraction of
the average image.

We then turned our attention to the spatiochromatic covariance

matrices cj;j0

k;k0
with j – j0 and k – k0. To simplify the notation, from

now on we will write cj;j0

k;k0
� cd, where d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj� j0Þ2 þ ðk� k0Þ2

q
.

We compute cd by randomly selecting a different point ðj; kÞ 2 X
in each image of the packet and by considering its four neighbors
ðj� d; kÞ; ðjþ d; kÞ; ðj; k� dÞ; ðj; kþ dÞ, we then count how many of
these neighbors actually fall in the image domain X and we create
the vectors vl and wl;l 2 fR;G;Bg: in wl we store the R;G;B
values of the neighbors of ðj; kÞ that fall in X, while in vl we store
the R;G;B values of the central pixel ðj; kÞ repeated as many times
as the length of wl. We iterate the procedure for all the images of
the packet and we concatenate the values of the random pixels and
their neighbors in the vectors vl and wl, respectively. The estima-

tion of the matrix elements of cd can be done as follows:

Cd
RR ¼ vRwt

R=L; Cd
RG ¼ vRwt

G=L, and so on, where here L denotes the
common length of vl and wl.

4.2. Stability of the covariance computation with respect to the
number of images and the image content

As previously stated, the very large Flickr database allows us
checking the stability of the covariance matrices computation.
We will now introduce the details of the stability tests. If we fix

a threshold e ¼ 10�D;D 2 N, then we consider the estimation of
c0 e-stable when the relative error defined by kc0

Nþ1 � c0
Nk=kc0

Nþ1k
is smaller than e, where c0

N is the estimation of c0 obtained with
N images and k k is the 2-norm. Due to the law of large numbers,
we expect the relative error to decrease proportionally to 1=N.
This is confirmed by our experiments, as can be seen in Fig. 4. A
good trade-off between precision and computational time required

to perform the experiments is given by N ¼ 105, which implies a

10�4-stable estimation of the covariance.
This also explains why small databases of multispectral or

calibrated images, see e.g. Foster et al. (2006); Tkacik et al., 2011;
Olmos and Kingdom, 2004 and Vazquez-Corral et al. (2009),
atiochromatic structure of natural images. Vision Research (2015), http://
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Fig. 1. Excerpt of the Flickr database.

Fig. 2. Excerpt of the RAW database.

8 E. Provenzi et al. / Vision Research xxx (2015) xxx–xxx
though very interesting, cannot be used for the scopes of the
present paper.

With this value of N fixed, we tested the stability of the compu-
tation with respect to the image content by selecting 10 different
packets of N pictures and comparing the estimation of c0. Our tests
have reported differences in the estimation of c0 of magnitude

10�4, which is the same order as the stability error, this confirms
that the coherence of our results with respect to different subsets
of images.
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4.3. Testing the spatial invariance of covariance

Here we discuss the tests that we have performed in order to
check the translation invariance of the covariance. In Fig. 5 we
show the spatial distributions of the chromatic autocovariances
and their linearly stretched version obtained by setting the mini-
mum to 0 and the maximum to 255 in order to enhance the visibil-
ity of the inhomogeneities. Without stretching the images appear
constant. Analogous results have been obtained for the spatiochro-
matic covariances with distance d > 0.
atiochromatic structure of natural images. Vision Research (2015), http://
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Fig. 3. Given a set of 4,000 96 � 128 images taken from the Flickr database, we have extracted from them 1,900,000 non overlapping patches of dimension 5 � 5. We have
then performed the centered PCA on the set of these patches and normalized the principal components between 0 and 1 for visualization purposes. Coherently with the
results of the paper, the principal components are represented by 2D Fourier patterns in the achromatic and color opponent channels. A similar PCA has been obtained in
Hyvarinen (2009), chapter 15.
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All covariances are slightly larger in the upper part of the
images and smaller in lower parts, this is due to the presence
of the sky in many images of the database. We stress again the
fact that the pictorial representation of the second column of
Fig. 5 is exaggerated by the stretching and that the constant
pattern shown by the images of the first column confirms that
the hypothesis of translational invariance of covariance can be
considered verified with a very good degree of approximation,
the variance of the the covariance values along the images being
of order 10�4.
4.4. The chromatic autocovariance matrix c0 and its eigenvalues and
eigenvectors

The expressions of the chromatic autocovariance matrices rela-
tive to the Flickr and RAW databases, c0

Flickr and c0
RAW respectively,

that we have obtained are the following:
Fig. 4. Relative error decay in the estimation of the chromatic autocovariance
matrix elements.
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c0
Flickr ¼

0:0719 0:0651 0:0612
0:0651 0:0713 0:0710
0:0612 0:0710 0:0851

264
375 ð26Þ

c0
RAW ¼

0:0022 0:0021 0:0021
0:0021 0:0021 0:0022
0:0021 0:0022 0:0024

264
375; ð27Þ

which confirm the positivity assumption on c0. Notice that the
covariances observed on the RAW database are much smaller than
those observed on the Flickr database. We believe that this is mostly
due to the fact that the contrast of images posted on Flickr is often
much higher than that of unprocessed RAW images. Despite this
difference, the eigenvectors of the previous matrices are very
similar:

AFlickr ¼ ð0:5483;0:5761;0:6061Þ $ k1 ¼ 0:2080;
PFlickr ¼ ð0:7179;0:0474;�0:6945Þ $ k2 ¼ 0:0170;
Q Flickr ¼ ð0:4289;�0:8160;0:3876Þ $ k3 ¼ 0:0034:

8><>: ð28Þ

and

ARAW ¼ ð0:5679;0:5683;0:5954Þ $ k1 ¼ 0:0065;
PRAW ¼ ð0:7210;0:0055;�0:6930Þ $ k2 ¼ 0:0002;

Q RAW ¼ ð0:3971;�0:8228;0:4066Þ $ k3 ¼ 7:8 � 10�7:

8><>: ð29Þ

We can see that, using a database of real RGB images and not
the idealized visual stimuli of Buchsbaum and Gottschalk, the blue
channel not only appears in the achromatic direction A, but it is
even its dominant component. We also notice the similarity
between the eigenvectors obtained with the Flickr and RAW data-
base and those reported in Ohta, Kanade, and Sakai (1980), which
where also obtained from RGB camera images.

4.5. The exponential decay of spatiochromatic covariance matrix
elements

All the spatiochromatic matrices cd that we have estimated
turned out to be positive. The most prominent cause of positive
correlation values is probably the fact that the spectral
sensitivity functions of cameras are also highly overlapping, see
atiochromatic structure of natural images. Vision Research (2015), http://
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Fig. 6. Graphs of the six distinct spatiochromatic covariance matrix elements in the
linear, (natural) bi-logarithmic and semi-logarithmic scale, respectively, as a
function of the pixel distance d. The values were obtained using the Flickr database.

Fig. 5. First column: distribution of chromatic autocovariances computed through
the Flickr (first row) and RAW (second row) databases between the red channels.
Second column: the intensity of the images of the first column has been stretched
between 0 and 255 to enhance the visibility of the spatial inhomogeneity, that is not
possible to perceive with the non-stretched values. We stress that we do not
introduce the other color channel combinations because they are very similar to
those shown here.
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for instance Jiang et al. (2013). Their decay with respect to
increasing values of d is reported in the linear, bi-logarithmic and
semi-logarithmic scale in Fig. 6 for the Flickr database and in
Fig. 7 for the RAW database.

Let us write the generic element of the matrix cd as
cd
lm;l; m 2 fR;G;Bg. Notice that a power-law behavior for cd

lm would
be represented by a linear relationship in the bi-logarithmic scale,
i.e. logðcd

lmÞ ¼ alm þ blm logðdÞ; blm < 0, which, in fact, is equivalent

to cd
lm ¼ ealm dblm . However, as can be seen in Figs. 6 and 7, the

graphs in the bi-logarithmic scale show a significant deviation
from a linear behavior from d ¼ 100, these distance being
expressed in pixels. This confirm in the color case the fact that
the power-law decay of the covariance is not valid for large pixels
distances, a fact already noticed for gray level images in Huang
and Mumford (1999).

Moreover, notice that the graphs of Figs. 6 and 7 in the
semi-logarithmic scale show a linear decay for all the distances
that we have tested (from 1 to 300 pixels). To quantify this
behavior we have performed a linear fit. The graphical and analyt-
ical expressions of the straight lines approximating the covariance
decay in the semi-logarithmic scale are reported in Figs. 8 and 9.
Note that the largest discrepancy with respect to the linear
behavior is found at very small distances. Nonetheless, we stress
that the linear approximation is very precise, as shown by the
value of the coefficient of determination R2 (which expresses
the percentage of empirical data variance that is described by the
linear approximation) which is greater than 0.98 for all curves.

A linear behavior in the semilogarithmic domain corresponds to
an exponential decay: logðcd

lmÞ ¼ alm þ blmd; blm < 0, is equivalent

to cd
lm ¼ ealm eblm d. Since c0

lm ¼ ealm , we can write

cd
lm ¼ c0

lmeblm d; l; m 2 fR;G;Bg; ð30Þ

where c0
lm is the generic element of the chromatic autocovariance

matrix.
From the point of view of differential equations, this means that

the spatiochromatic covariance clmðdÞ, interpreted as a function of
the pixel distance d, satisfies the following initial value problem:

_clmðdÞ ¼ blmclmðdÞ
clmð0Þ ¼ c0

lm

(
ð31Þ
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i.e. the speed of decay of clmðdÞ is directly proportional to clmðdÞ via
the coefficient blm. The value of these coefficients are listened in
Table 1.

It can be seen that the spatiochromatic covariance relative to
the blue channel decreases less rapidly than that of the red and
green channels. This may be explained by the fact that pictures
in which the sky is present are characterized by large homoge-
neous areas dominated by the blue channel.

The explicit analytical expressions of cd that we have managed
to obtain are interesting for two reasons: firstly, they provide an
atiochromatic structure of natural images. Vision Research (2015), http://
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Fig. 7. Graphs of the six distinct spatiochromatic covariance matrix elements in the
linear, (natural) bi-logarithmic and semi-logarithmic scale, respectively, as a
function of the pixel distance d. The values were obtained using the RAW database.
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accurate model for the covariance that corrects the power-law
decay; secondly, they allow computing the commutators ½c0; cd�
for every distance d > 0. If the coefficients blm were all equal, then
these commutators would be null matrices, however, the differ-
ences in the coefficients of the exponentials make the matrix
Please cite this article in press as: Provenzi, E., et al. On the second order sp
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elements of the commutators different than zero. Fig. 10 shows
the absolute and normalized 2-norms of the commutators as a
function of d. It can be seen that, for small values of d, the
commutators can be considered approximately null, however, as
d increases, they show deviations from the zero matrix, but they
are still small.
4.6. Transformations of the RAW images and their effects on the
statistics

In order to test the effect of the photographic development
pipeline, and of other non-linear transformations, on the
observed statistics, we have transformed the RAW images of the
databases with the logarithmic and an average gamma function
of 0.5. We have found no noticeable difference in the decay. The
only change is in the coefficient bBB which becomes �0.0019
for the Nikon RAW database and �0.0018 for the Canon RAW
database, but, apart from this slight change, all the other
coefficients remain the same.

We have also performed the transformation from RGB to
LMS by using the chromatic adaptation matrix MCAT02 from the
CIECAM02 model, see e.g. Fairchild (2005), to have an indication
of what we would get if we repeated our experiments on cone
activation data. Qualitatively, the behavior of spatiochromatic
covariances remains the same, the only small quantitative change
being represented by the fact that the exponential decay is slightly
faster, as can be seen by the coefficients reported in Table 2.

A further and, in our opinion, more significative test that we
have performed on RAW images is the following: we have
transformed the initial data with the so-called Michaelis–Menten
(also known as Naka-Rushton) equation, see Shapley and
Enroth-Cugell (1984, Chap. 9), i.e. IlðxÞ# IclðxÞ=ðI

c
lðxÞ þmc

lÞ, where
ml is the average intensity value in the chromatic channel l and
c ¼ 0:74 (the value corresponding to the rhesus monkey retinal
photoreceptors). This equation models the photochemical trans-
duction from radiance to action potential performed by retinal
photoreceptors and plays a major role in the adaptation mecha-
nisms of human vision.

We then repeated the spatiochromatic covariance computa-
tions on this new transformed database and we have found again
an exponential decay, but this time with exactly the same coeffi-
cients for all the chromatic combinations, i.e. blm ¼ �0:0033, for
all l; m 2 fR;G;Bg. This can be explained by the fact that the
photochemical transduction process normalizes the dynamic range
of the data to the interval ½0;1� and sets the average value of each
chromatic channel to 1=2.

The by-product of photoreceptors’ photochemical transduction
is the rearranging of radiance values so that all the spatiochromatic
covariance matrices commute perfectly. Up to our knowledge,
this test has never been performed before.

We notice that the presence of the three average radiance
values in the photoreceptors’ photochemical transduction
formula and the fact that they are normalized to the same value
1/2 is crucial for the rearrangement of the slopes blm.

As already remarked, RAW data provide a good approximation
of real physical irradiance, thus we believe that this test gives an
interesting hint about the consequence of photochemical transduc-
tion on covariance of natural visual stimuli. However, a better
choice would be to perform this test on multispectral radiance
values, in fact the irradiance acquired in the RAW data is integrated
with respect to the RGB camera sensitivity functions, which are
very different than the cone sensitivity curves. This is not yet
possible due to the lack of a large database of natural multispectral
images. We will turn back to this issue in the discussion section.
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Fig. 8. Graphics of the linear approximations of the spatiochromatic covariance matrix elements in the semi-logarithmic scale (data obtained from the Flickr database). The
coefficient of determination R2 is greater than 0.98 for all the linear approximations.
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4.7. The power spectrum

We are now going to analyze the consequence of an exponential
model for the covariance decay on the power spectrum. As recalled
in Section 2.1, we can theoretically relate the autocovariance decay
with the power spectrum Sðf Þ via the Fourier transform. Using the
notation of Section 2.1.2 and applying the Fourier transform to the
Please cite this article in press as: Provenzi, E., et al. On the second order sp
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analytical expression of the spatiochromatic autocovariance given
by Eq. (30) we get that

Slðf Þ /
1

1þ f
bll

� �2 ; l 2 fR;G;Bg: ð32Þ
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Fig. 9. Graphics of the linear approximations of the spatiochromatic covariance matrix elements in the semi-logarithmic scale (data obtained from the RAW database). The
coefficient of determination R2 is greater than 0.98 for all the linear approximations.
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If f=bll

� �2
	 1, i.e. if f 	 bll, then we can neglect the term 1 at the

denominator of Slðf Þ and approximate it with a power law with

respect to f. Since the order of magnitude of bll is 10�3, this means

that Slðf Þ can be approximated by a power law for values of f 	 10�3.
Please cite this article in press as: Provenzi, E., et al. On the second order sp
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The plots of Slðf Þ in the bi-logarithmic scale reported in Fig. 11
confirm this fact: for small values of f (which correspond to large
values of d for the covariance) the power spectrum deviates from
the linear fit, as f increases (corresponding to smaller values of d
for the covariance), the linear fit becomes more and more precise.
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Table 1
Slopes of the straight lines which approximate the spatiochromatic covariance graphs
in the semilogarithmic scale for the Flickr and the RAW databases.

Flickr Database RAW Database (Nikon) RAW Database (Canon)

bRR ¼ �0:0028 bRR ¼ �0:0023 bRR ¼ �0:0022
bGG ¼ �0:0026 bGG ¼ �0:0021 bRR ¼ �0:0020
bBB ¼ �0:0022 bBB ¼ �0:0020 bRR ¼ �0:0019
bRG ¼ bGR ¼ �0:0028 bRG ¼ bGR ¼ �0:0022 bRR ¼ �0:0021
bRB ¼ bBR ¼ �0:0028 bRB ¼ bBR ¼ �0:0022 bRR ¼ �0:0021
bGB ¼ bBG ¼ �0:0025 bGB ¼ bBG ¼ �0:0021 bRR ¼ �0:0020

Table 2
Slopes of the straight lines which approximate the spatiochromatic covariance graphs
in the semilogarithmic scale for the RAW databases in the LMS coordinate system.
These slopes are slightly higher (in absolute value) with respect to those reported in
the second and third column of Table 1.

(LMS) RAW Database (Nikon) (LMS) RAW Database (Canon)

bRR ¼ �0:0026 bRR ¼ �0:0025
bGG ¼ �0:0025 bGG ¼ �0:0023
bBB ¼ �0:0022 bBB ¼ �0:0021
bRG ¼ bGR ¼ �0:0026 bRG ¼ bGR ¼ �0:0024
bRB ¼ bBR ¼ �0:0024 bRB ¼ bBR ¼ �0:0024
bGB ¼ bBG ¼ �0:0022 bGB ¼ bBG ¼ �0:0022
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This is coherent with the graph of the covariance in the
bi-logarithmic scale reported in Fig. 6: for small values of d the
graph is linear, but as d increases the curve deviates from linearity.

This explains why the covariance can be thought to have a
power-law decay when it is analyzed only by means of the power
spectrum.
5. Discussion and perspectives

We have provided a theoretical analysis of the relationship
between translation invariance of the covariance and the decorre-
lated spatiochromatic features of digital RGB images, supported by
several numerical tests.
Fig. 10. Left: Graph of the 2-norm of the commutators between the spatiochromatic co
2-norm of the commutators, the normalization is done over the mean value of 2-norm of
obtained with the Flickr database. Second row: data obtained with the RAW database.
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Our analysis has been motivated by the will to understand
the basic mathematical reasons underlying the appearance of a
separable spatiochromatic basis of uncorrelated features when
the PCA is performed over patches or whole natural images.

In order to investigate this property, we have built the spati-
ochromatic covariance matrix of an abstract three-chromatic
image and we have shown that, under the assumption of spatial
invariance and commutativity, their eigenvectors can be written
as the Kronecker product of the cosine Fourier basis times an
achromatic plus color opponent triad.
variance matrices as a function of pixel distance d. Right: Graph of the normalized
the product matrix performed from left to right and from right to left. First row: data
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Fig. 11. Average power spectra. First row: Flickr database, the slopes of the linear approximations are �1.4429, �1.4229, �1.4384, from left to right. Second row: Raw
database, the slopes of the linear approximations are �1.6666, �1.7182, �1.6698, from left to right. Notice that the initial bump showed by the power spectra of the images
taken by the Flickr database is shared with the graph reported by Pouli, Cunningham, and Reinhard (2010, p. 68), Fig. 10.
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The numerical tests that we have conducted have shown that
the assumptions are verified with a good degree of approximation,
both when we consider the pictures of a large database of a million
natural RGB images taken from the popular website Flickr and also
those of a database of RAW images that we have taken. In order to
explicitly link the correlation radius to the geometrical properties
of the images in the database, one would need a database with
known parameters: camera sensitivity functions, focal length, dis-
tance to the objects in the scene, and so on. The constitution of
such a database constitutes an interesting research perspective.

In particular, the analysis of the commutativity of spatiochro-
matic covariance matrices have led to a lateral result that it is
worth underlying: our tests have shown that the spatial covariance
decays exponentially and not following a power law. As recalled in
the introduction, the failure of the power law decay has already
been reported in the literature of natural image statistics, but our
result on the exponential decay is novel. Moreover, we have shown
that the decay speed is not the same for all the combinations of
chromatic channels: the autocovariance decay of the blue channel
being the slowest and the R–B covariance decay being the fastest.

The slower decay of the blue autocovariance can be explained
by the fact that many pictures of natural environments contain
large homogeneous areas of blue. The faster decay of the
red-blue covariance instead can be explained by the fact that the
sensitivity curves of red and blue have the smallest overlapping.

With the two databases of RAW images that we have built by
using two different cameras, we have performed experiments that
we deem interesting for research about human vision. Firstly, we
have confirmed that the covariance decay of RGB RAW images is
qualitatively coherent with that of the Flickr database.

Secondly, since RAW images give a representation of the phys-
ical radiance (integrated with respect to the camera sensitivity
functions) we operated a transformation of these data to LMS
values and repeated the tests about covariance decay. We have
found that the transformation does not change the qualitative
behavior of previous results, the only qualitative change being a
slight increment in the decay speed.

Another experiment that, up to authors’ knowledge, provides
new information that can be useful for human vision studies is
the transformation of the RAW images according to the photo-
chemical transduction formula. Differently from the RGB to LMS
conversion, we have found that the photochemical transduction
transformation changes significantly the results of our experi-
ments. In fact, the negative coefficients in the exponentials which
represent the spatiochromatic covariance decay turned out to be
the same for every combination of chromatic channels for the
transformed data. This can be explained by the normalization of
the dynamic range of the data to the interval ½0;1� and of their
average value to 1=2.

From a mathematical point of view, we stress that this property
implies the perfect commutativity of all spatiochromatic covari-
ance matrices. This means that, if we take into account also the
first adaptation stage provided the photochemical transduction in
the analysis of our visual data, then the mathematical results
about tensor product separability of spatiochromatic features are
satisfied with even better numerical accuracy.

We stress that, at this stage of the research, the numerical
results that we have obtained cannot be considered wholly
exhaustive to infer properties of the HVS. To do that, a large
unbiased database of multispectral images should be carefully
built in such a way that the camera sensitivity functions have no
influence on the data of the database.

The visual content of multispectral images can be integrated
with the retinal sensitivity functions to generate the LMS cone
activation values that will become the new input for our
mathematical framework.
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Large multispectral databases of natural environments are not
yet available because of the difficulty of taking a multispectral
image in non-controlled conditions without producing artefacts,
a problem similar to the well known ‘ghosting effect’ in high
dynamic range imaging. However, recent advances in camera
sensors and post-processing algorithms may allow in the near
future the creation of such databases and the extension of the
results of this paper.
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