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ABSTRACT
In this paper, a robust, automatic and pixel-precision spatial line
scratch detection algorithm is proposed. This algorithm deals with
still images and may be followed by a temporal analysis to im-
prove detection performances. By relaxing some of the hypotheses
used in previous algorithms, detection of a wider range of scratch
types is possible. The algorithm’s robustness and lack of exter-
nal parameters is ensured by the combined use of an a contrario
methodology and local statistical estimation. In this manner, over-
detection in textured or cluttered areas is greatly reduced. Experi-
ments demonstrate the algorithm’s ability to deal with difficult sit-
uations, in particular in the presence of noise, texture and slanted
or partial scratches. Comparisons show the algorithm’s advantages
over previous work.
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1. INTRODUCTION
Digital film restoration is a subject of increasing interest to re-

searchers and film archives alike. Old films, including cultural her-
itage masterpieces, are being digitally remastered and transferred
into new, higher quality formats and distributed through various
means such as DVD, BluRay or HD cinema. A recent example of
this is George Mélies’s "Voyage dans la Lune" (1908).1 Further-
more, with recent improvements in the areas of video indexing and
retrieval, online access to vast archives such as those of the BBC
and the INA is becoming ever easier. Combined with this is the
tremendous amount of work required for the manual restoration of
even one film. For instance, the restoration of the aforementionned
fifteen minutes Mélies movie took about one year. For these rea-
sons, it is crucial to develop automatic or semi-automatic tools for
film restoration.

1Partly restored by Technicolor, presented at the Cannes Film Fes-
tival 2011.
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Some of the most common defects in films include dust/dirt,
blotches, flicker and line scratches. While the first three are tem-
porally impulsive, line scratches are persistent, meaning that they
remain for several frames in the same spatial position. This means
that detection and restoration algorithms need to be tailored specifi-
cally to this defect. Spatially speaking, line scratches are thin bright
or dark lines which are roughly straight and vertical. In this paper
we present a new approach to spatial line scratch detection with
an algorithm that provides a pixel-precision detection. We relax
several of the hypotheses made in the state-of-the-art algorithms
(such as the verticality and straightness of scratches), allowing the
algorithm to detect a wide range of scratch types. We rely on the
a contrario methodology for the automatic setting of parameters.
Furthermore, a local statistical estimation makes the method adap-
tive and able to deal with textured regions that are prone to over-
detection. To our knowledge, there is no previous example in the
literature where the a contrario methodology is combined with a
local statistical estimation. The advantages of the approach will be
demonstrated in Section 4 on a series of degraded film sequences
and discussed in comparison with previous work.

The plan of the paper is as follows. In Section 2 we briefly re-
call previous work. In Section 3 we present the new method sug-
gested for scratch detection. Finally, experimental validations are
presented in Section 4.

2. PRIOR WORK
Scratch detection algorithms can be divided into two categories

: spatial and temporal. As acknowledged in a very recent review
[16], both approaches are complementary and benefit from one an-
other’s advantages.

Temporal approaches may be found in [12], [10], [11], [8] and
[18]. The main goal of temporal filtering is to reject false detec-
tions which may arise during the spatial detection stage. In the first
three papers, Joyeux et. al rely on a sinusoidal hypothesis concern-
ing scratch motion for this rejection step. Another method which
exploits temporal information is [8], where the authors use the lo-
cal matching error between frames to determine if a detection is a
true scratch or a vertical structure. Finally, in [18], Wang et. al use
hidden Markov models to detect defects in films, based on tempo-
ral changes in the pixel’s greyscale or colour values. Unfortunately,
this last work supposes that the defects are temporally impulsive,
which is usually not the case for line scratches.

In this work, we decided to concentrate on a spatial approach,
which could be followed by temporal filtering. The spatial step
still presents some challenging problems, as explained below.

The first work concerning spatial line scratch detection was car-
ried out by Kokaram [14], and introduced a scratch model which
is widely used in other papers (eg. [4] and [2]). This scratch



model is based on an empirical observation concerning the shape
of scratches, notably the presence of “side-lobes” either side of a
scratch. In [14] and [2] the horizontal profile of a scratch is mod-
elled by a damped sinusoid caused by light diffraction during the
film scanning process. These approaches are still considered to be
among the most efficient for scratch detection (see the recent re-
view in [16]) and will be compared to the approach proposed in
this paper. In other methods, such as [1] and [17], scratches are
detected in the wavelet domain. The Hough transform is used in
both [14] and [5] to detect prominent lines. Finally, Kim et. al use
neural networks in [13] to establish scratch texture characteristics,
which is followed by morphological filtering.

There are several unresolved problems in the literature concern-
ing spatial scratch detection. Firstly, the scratch is represented as a
straight, vertical line. While this may be the case in the examples
which are commonly shown in most of the papers, it is not true
in general. In some examples, the slant of the scratch may be quite
significant, which renders the vertical representation almost useless
for restoration purposes. Also, line scratches may be constituted of
several segments of differing slopes, making the common vertical
representation inefficient. We relax several of the hypotheses found
in other work, allowing our algorithm to detect a wider variety of
scratches.

Furthermore, experiments show that existing algorithms cope
badly in noisy or textured regions. This problem is directly ad-
dressed in the present paper, through the automatic and adaptive
setting of detection parameters.

3. PROPOSED ALGORITHM
The proposed algorithm is composed of two steps. The first is

a pixel-wise scratch detection step, where we decide whether each
pixel is potentially part of a line scratch. After this, we use a con-
trario methods to group the scratch pixels into visually significant
scratch segments. The resulting grouping procedure is both auto-
matic and adaptive and could be applied to different detection tasks.

3.1 Pixel-wise detection criteria
First of all, we introduce a test to distinguish potential scratch

points from other pixels. There are several ways such a scratch
profile could be detected, such as morphological filters ([11], [13]),
or 1D extrema detection. The method presented here is a variant
of the classical test used by Kokaram [14], which thresholds the
following difference :

e(x,y) = Gs(x,y)−Ms(x,y), (1)

where Gs(x,y) is a vertically sub-sampled version of the input im-
age, and Ms(x,y) is a horizontally median filtered version of Gs(x,y).
This criterion determines whether the considered pixel is visibly
out of sync with its horizontal surroundings. We change this dif-
ference slightly, by taking the median value of a local horizontal
neighbourhood without the value of the pixel in question. This
avoids the pixel having any influence on the median value. Also,
we prefer to use a 3x3 Gaussian filter for noise reduction rather
than vertical sub-sampling, in order to retain as much information
about the scratch as possible. While this step induces some loss in
precision, it is necessary due to the high amounts of noise and film
grain in old films.

Unfortunately, this criterion alone may detect unwanted edges.
To avoid this, another criterion concerning the average grey-level
values either side of the scratch is used. We stipulate that these
averages must be coherent to a certain extent, to avoid detecting
intensity fronts. A visual illustration of our pixel-wise detection
criteria may be seen in Figure 1.
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Figure 1: Line scratch profile and pixel-wise detection criteria.

(a) Original frame (b) Binary detection image

Figure 2: Binary detection image from “Laurel and Hardy”.
White pixels are detected and black pixels are not.

The previous criteria may be expressed as follows. Let Ig(x,y)
be the Gaussian filtered (we use a standard deviation of 1 pixel)
grey level image. Let Im(x,y) denote the median value over a local
horizontal neighbourhood of pixel (x,y), and Il(x,y) and Ir(x,y) be
the left and right horizontal averages. The two Boolean criteria are

c1(x,y) : |Ig(x,y)− Im(x,y)| ≥ smed

c2(x,y) : |Il(x,y)− Ir(x,y)| ≤ savg (2)

where, smed and savg are grey-level thresholds. We can therefore
define the binary image as

IB(x,y) =
{

1 if c1(x,y) and c2(x,y)
0 otherwise (3)

In the present algorithm, the median filter has a width of 5 pixels
and the value of smed is set to 3. These values are the same as in
[14] and also appeared to us to be good empirical choices. The left
and right averages are each taken over 3 pixels on either side of the
5 central pixels, and savg has been experimentally set to 20.

Once this binary detection image is obtained (see Figure 2). In
the figure, the white points are detected as potential scratch pixels
whereas the black points are not. Once such a detection image is
obtained, the points must be grouped into significant scratch seg-
ments.

3.2 Scratch point grouping and validation
Because of false detections due to noise and texture (see Fig-

ure 2), a robust approach is needed to group the pixels into seg-
ments. One may do this by using the Hough transform, as in [14]
and [5]. Unfortunately this method has some serious drawbacks,



such as thresholds which need frequent tuning. These problems
can be addressed by the use of a contrario methods as used for
alignment detection by Desolneux et al. in [7].

3.2.1 A contrario line segment detection
In a word, the a contrario methodology is a generic way to detect

visual objects in digital images. Detection thresholds are set in
order to control the number of false detections in a white noise
image, or more generally under a background model. This model
usually relies on an independence assumption on the basic elements
to be grouped for the detection.

First of all, we present the a contrario approach as it is used
to detect line segments [6]. Given a line segment made of l pix-
els, x1, . . . ,xl , a random variable Xi is associated with each pixel
xi. Xi is equal to one if the pixel is aligned with the segment and
0 otherwise. Aligned pixels are those whose gradient orientation
is orthogonal to the direction of the segment, up to some precision.
Let Sl = ∑Xi be the number of aligned pixels. Detection thresholds
are set by computing the distribution of Sl under some background
model. In the case of line segments, the background model speci-
fies that the Xi’s are independent random variables, each having a
Bernoulli distribution of parameter p (the precision on the gradient
orientation alignment). Under the background model, the distribu-
tion of Sl is the binomial law, and hence

Pr(Sl ≥ k0) =
l

∑
k=k0

(
l
s

)
pk(1− p)l−k =: B(p;k0, l). (4)

The last step of the detection procedure relies on a control of the
expected number of false detections. For this, given a segment of
length l having k0 aligned pixels, its number of false alarms (NFA)
is defined as

NFA(l,k0) = NtestsB(p;k0, l), (5)

where Ntests is the total number of segments to be tested. With the
exploration strategy used in [6], we have Ntests = M2N2, with M
and N the linear dimensions of the image. A segment is detected if
NFA(l,k0)≤ ε for some parameter ε . The rationale for this thresh-
old is that it implies that the expected number of detections under
the background model (false detections) is less than ε , see [7].

3.2.2 Locally adaptive grouping for line scratch de-
tection

We now rely on the same principles to group pixels that have
been detected by the pixel-wise procedure of Section 3.1. We must
first define a background model to represent the binary image ob-
tained with Equation (3). In the case of orientation grouping (see
Section 3.2.1), it is sound to assume that any pixel in the image
has the same probability to be aligned with a given segment, what-
ever its position. In the present case, the probability that a pixel
is labelled as being a potential scratch point (IB(x,y) = 1, with the
notations of Section 3.1) varies greatly depending on the area of
the image. In particular, strongly textured or cluttered areas yield
many more detections than smooth regions, as seen in Figure 2.
Moreover, the visibility of scratches depends on their local neigh-
bourhood. To account for this, the background model is now con-
sidered as a binary image in which labels are independent and the
label probability of each pixel varies spatially. The computation of
this probability will be based on a locally adaptive estimation.

The label probability for a given pixel is estimated as the max-
imum detection density on four squares of equal size surrounding
the pixel. Detection density is defined as the proportion of pixels,
contained within a square, whose labels equal 1. In all experiments,

Figure 3: Summary diagram of the proposed algorithm.

the square size is the width of the image divided by a constant,
which we set to 30. We use four squares for the estimation in order
to deal with cases where the pixel is on the edge of several areas of
differing detection density.

Under this background model - where the probability that a pixel
is labelled is spatially varying - the probability for a given segment
to have more than k0 pixels with a label value of 1 is no longer
given by a binomial distribution, and is quite costly to estimate. An
approximation is therefore needed. In [7], Desolneux et. al suggest
the use of Hoeffding’s inequality ([9]), which provides an upper
bound on the probability that the sum of some independently dis-
tributed random variables exceeds a certain value. In the present
case, the interest of this approximation is that it it still holds when
the variables are not identically distributed ([9]). Therefore, it pro-
vides us with an approximation of Pr(Sl ≥ k0), where again Sl is
the number of pixels having a label value of 1 along a segment of
length l. The approximation is the following :

Pr(Sl ≥ k0)≤ H(l,k0) := e−l(r log r
pm

+(1−r) log 1−r
1−pm

), (6)

where pm is the average detection probability along the segment,
r = k0

l , and pml < k0 < l. We therefore define the number of false
alarms of a segment as

NFA(l,k0) = NtestsH(l,k0). (7)

A segment is detected if its NFA is smaller than ε (such a segment is
said to be “ε-meaningful”). Thus, the expected number of detected
segments under the background model is smaller than ε . In all
experiments, we use the parameter ε = 1.

This choice is reasonable, since ε is a bound on the expected
number of false detections under the background model. However,
it may be further tuned to fit the user’s needs, depending on whether
he or she wishes to place importance on recall or precision.

Furthermore, as explained in [6], detection results vary slowly
with respect to ε , meaning making it an easy parameter to tune,
if so desired. An illustration of this may be seen in Figure 4. In
this figure, ε varies by several orders of magnitude, yet the f1-score
remains high for values of ε in the interval [10−30,1010].

Since scratches are roughly vertical, we test all segments with
a maximum deviation from the vertical direction of ±10 degrees.
We discretise these angles by 0.5 degrees. The Ntests parameter is
therefore set to M2NΘ, where Θ is the number of angles tested. In
the present paper, we have chosen Θ = 40.

3.2.3 Maximality
With the previous detection procedure, many nested segments
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Figure 4: f1-score curves with respect to ε .

are detected. In order to keep only one detection for such nested
segments, we use the notion of maximality, as introduced in [6].
A segment is maximal meaningful if it neither contains nor is con-
tained by a segment which is more meaningful (that is, a segment
with a smaller NFA). Therefore, we only accept segments which
possess this property.

It may be shown (see [7]) that maximal meaningful segments
start with a detected pixel preceded by an undetected pixel, and end
similarly (see [7]). Knowing this, the number of segments tested,
and therefore the computational cost, is greatly reduced. This re-
sult relies on the original definition of the NFA (Equation (5)) and
the properties of the binomial law, however it may be shown (see
Annex A) that this property remains true using Hoeffding’s approx-
imation.

3.2.4 Exclusion principle
Since scratches have a width of several pixels, many slanted seg-

ments correspond to the same scratch. In order to refine the detec-
tion, we use an exclusion principle as defined in [7], which states
that a pixel may belong to one scratch only. If a pixel s is contained
by several segments, then the most meaningful segment retains s.
All other segments which contain s have it removed. The NFAs of
the modified segments are recalculated, and those that are no longer
ε-meaningful are thrown away. The entire algorithm is represented
in Figure 3.

3.2.5 Algorithm speed-up
In order to speed-up the procedure, we apply a pre-selection of

scratches candidates. For this, we apply a very permissive Hough
transform to IB, and only analyse the lines which correspond to
local maxima. Tests show that no or very few real scratches are lost
by this pre-processing.

4. RESULTS
In this section, the results of the algorithm are shown, and its

performance is compared with a state-of-the-art algorithm (see [3])
with respect to three criteria : recall, precision and the F1-score.
While another recent method [13] exists, it is a supervised algo-
rithm (contrary to Bruni’s and ours, which are automatic) and con-
tains several parameters which are not given in the paper, such as
the number of nodes in the input and hidden layers of the neural
network, making implementation impossible without testing a se-
ries of architectures. In order to show the importance of having a
locally adaptive noise model, we also compare our results to those
of our algorithm when a global noise estimation is used. We have
estimated this by taking the average probability of a pixel having a
label value of 1 in the whole image.

Tests were carried out on six film sequences of varying length
and difficulty. The first three (“Knight”, “Sitdown” and “Star”)

are common in the scratch detection literature, and are found in
Kokaram’s book, referenced in [15]. “California” and “Laurel and
Hardy”, contain straight, vertical scratches, similar to the first three
examples. The last one (“Les Choses de la Vie”) contains scratches
which are more difficult to detect (not completely straight, slanted
and/or faint). Figure 5 shows some examples of our detection re-
sults, compared with those of the algorithm presented in [3].

In these experiments, we have retained the parameter values as
presented throughout the paper, in particular ε = 1. The parame-
ters for Bruni’s algorithm are those given [2] and [3], apart for the
scratch colour parameter (black or white), which was set manually
for each sequence. In these experiments, for the evaluation of recall
and precision purposes we allow a distance of 2 pixels between the
annotated centre of the scratch and the detected centre. Therefore,
we do not enforce the exclusion principle, which would be redun-
dant. All sequences were annotated by hand, by one of the authors.
This was done by manually noting the beginning and end point of a
scratch segment. For scratches which were not completely straight,
separate segments were annotated. The annotations, comparisons
and also a short demonstration video, may be found at the following
address : http://www.enst.fr/~gousseau/scratch_detection.

4.1 Recall
Recall is based on the percentage of annotated scratch pixels

detected. Bruni’s method provides a column index to locate the
scratch. From a restoration point of view then, the detected pixels
are all those in the given column. The recall results can be seen in
Table 1.

The results show that for the first five sequences, recall is similar
in both algorithms. In the remaining ones, we see our algorithm’s
strong points : it is able to detect the difficult scratches. This may be
explained by our algorithm’s ability to detect and represent slanted
and disjointed scratches as a collection of segments with varying
length and angle. Our recall remains high for all sequences.

4.2 Precision
In order to be fair for precision evaluation, we judge our algo-

rithm on a pixel-wise basis, whereas we will consider a column
given by Bruni’s algorithm to be correct if it touches at least one
scratch pixel. Thus, our evaluation methodology confers a consid-
erable advantage on Bruni’s method, since a column has only to
touch one scratch point in order to be correct. Nevertheless, our
algorithm our algorithm is able to outperform Bruni’s in five out of
six of the sequences. The results of the precision evaluation may be
seen in Table 1. In should be noted that the sequences “Sitdown”
and “Star” are highly degraded, and not all the defects detected are
annotated as scratches. True precision is therefore underestimated.

Our algorithm is able to outperform Bruni’s in terms of precision
due to the a contrario grouping and validation process, which limits
the number of false detections as long as our noise model holds.
The adaptive nature of the model means that false detections may
be avoided in a wide range of texture and noise.

Furthermore, the use of local noise estimation becomes evident
with these results. In images with textured areas, such as “Laurel
and Hardy” (see Figure 2), global noise estimation produces many
false detections.

4.3 F1-score
The F1-score is defined as the harmonic mean of the recall and

precision :

F = 2
recall ∗ precision
recall + precision

(8)



Table 1: Recall, precision and F1 values comparison, in percentage. We compare Bruni’s results, and ours with global and local noise
estimation. Note that local estimation degrades recall only slightly, while precision improves greatly.

Film Recall (%) Precision (%) f1-score (%)
Bruni’s Global Local Bruni’s Global Local Bruni’s Global Local

Knight 100.0 90.10 81.97 29.54 37.09 63.47 45.61 52.55 71.54
Sitdown 80.93 85.02 77.66 56.47 63.49 71.73 66.52 72.69 74.58
Star 95.00 96.92 90.00 56.87 37.10 41.59 71.15 53.66 56.88
California 82.07 94.91 88.71 10.79 22.51 69.24 19.07 36.39 77.77
Laurel and Hardy 41.87 81.83 66.01 8.84 24.75 44.41 14.60 38.01 53.10
Les Choses de la vie 43.43 88.44 82.54 25.06 43.06 51.40 31.78 57.92 63.35

This score illustrates the performances of the methods more clearly
than either the recall or precision alone. The results show that our
algorithm retains a good F1-score for all of the sequences, and out-
performs Bruni’s algorithm in five out of six sequences.

In an interactive restoration process, this parameter (ε) can be
changed by the user to fit his or her needs. For instance, even
though the F1-score may favour one result, the user may want
to achieve a certain recall, or conversely, ensure that few false
alarms occur. This is highly dependant on the subsequent restora-
tion which is available, and therefore linked to the final quality of
the restored film. In Figure 4, the evolution of the f1-score with
respect to ε may be seen.

4.4 Robustness to noise and texture
In this section, some visual evidence is given which shows our

algorithm’s robustness to noise and texture, and the usefulness of
having such properties. This can be seen in the images in Figure 6.
Due to the highly textured nature of the images, false positives are
detected, when we try to use our algorithm with no local noise es-
timation. When we introduce local noise estimation, detections are
limited in areas with high noise density, which illustrates one of the
strong points of our algorithm. In the image of the monkey, we pro-
duce one false alarm with local noise estimation, which is coherent
with our threshold.

4.5 Scratch detection in high definition images
In Figure 7, an example of a high definition image containing

scratches is given. This example is interesting since, as was men-
tioned at the beginning of the paper, the restoration of films is be-
ing done for formats of high resolution. To the best of the authors’
knowledge, no other high definition example exists in the litera-
ture. It can be seen that the algorithm from [3] is unable to detect
the faint, white scratches present on the right hand side of the im-
age, whereas the proposed method locates them with a high degree
of spatial precision.

5. CONCLUSION
In this paper we have presented a precise line scratch detection

algorithm which uses an a contrario validation step to determine if
the detected segments are visually significant or not. Our algorithm
provides a precise description of the detected scratches, which is
not given by any other fully automatic algorithm. Furthermore,
it has similar performance to the state-of-the-art in simple cases,
and outperforms the latter considerably in more difficult situations.
This validates one of the main goals of detecting as many types of
scratch as possible. Finally, our algorithm is parameterless, and its
evaluation was carried out without any sequence-dependant tuning.
Future research will address the problem of distinguishing thin ver-
tical structures from line scratches, which is a source of many false
detections. The use of temporal information such as scratch and

scene motion should help to achieve this reliably.
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APPENDIX
A. MAXIMALITY PROPERTY AND HOEFFD-

ING’S APPROXIMATION
In this section, we prove two properties of the meaningful seg-

ments defined using the NFA relying on Hoeffding’s approxima-
tion, Formula 7. These properties are necessary for speeding up the
search for maximal segments, as explained in Section 3.2.3. These
properties are as follows :

• If one appends a 0 (non-detected pixel) to the segment, its
meaningfulness decreases

• If one appends a 1 (detected pixel) to the segment, its mean-
ingfulness increases

Using Formula 7, this reduces to :

H[l,k]≤ H[l +1,k], (9)

and

H[l,k]≥ H[l +1,k+1], (10)

where H is defined as

H(l,k) = exp(−k log
k
l p
− (l− k) log

l− k
l(1− p)

), (11)

where l p < k < l. Since the exponential function is strictly in-
creasing, we need to study the following function :

f (k, l) =−k log
k
l p
− (l− k) log

l− k
l(1− p)

. (12)

Now, let us try to prove Equations (9) and (10).
For Equation (9) to be true, we need for the partial derivative of

f with respect to l to be positive :

∂ f (k, l)
∂ l

= k
1
l
− [log

l− k
l(1− p)

+(l− k)
∂

∂ l
log

l− k
l(1− p)

]. (13)

We have the partial result :

∂

∂ l
log

l− k
l(1− p)

=
k

l(l− k)
.

Therefore,

∂ f (k, l)
∂ l

=
k
l
− log

l− k
l(1− p)

− (l− k)
k

l(l− k)

= log
l− l p
l− k

We know that l− l p > l− k, because l p < k (condition for the Ho-
effding approximation). Therefore, the right hand term of Equa-
tion (13) is strictly positive, so that f (k, l) increases strictly when
l increases. This means that when a 0 is appended to a segment,
its meaningfulness decreases (since its probability increases). We
have proven the first inequality (Equation (9)) in the case of Ho-
effding’s approximation.

Now we prove Equation (10). This inequality corresponds to the
increase in meaningfulness (and therefore the decrease in probabil-
ity) when a 1 is appended to a segment. This case is slightly more
complicated, since two variables (k and l) vary at the same time.
We know, however, that they vary at the same rate, since we are
adding 1 to both of them. We can therefore consider k and l fixed,
and add a new variable to each of them, which we shall name t.
We can therefore study the partial derivative of f (k+ t, l + t) with
respect to t.

We have

f (k+ t, l + t) =−(k+ t) log
k+ t

(l + t)p
− (l− k) log

l− k
(l + t)(1− p)

,

so that :

∂ f (k+ t, l + t)
∂ t

= − log
k+ t

(l + t)p
− (k+ t)

∂

∂ t
log

k+ t
(l + t)p

− (l− k)
∂

∂ t
log

l− k
(l + t)(1− p)

.

Now

∂

∂ t
log

k+ t
(l + t)p

=
l− k

(k+ t)(l + t)
,

and

∂

∂ t
log

l− k
(l + t)(1− p)

=− 1
l + t

,

so that

∂ f (k+ t, l + t)
∂ t

= − log
k+ t

(l + t)p
− (k+ t)

l− k
(k+ t)(l + t)

+ (l− k)
1

l + t

= log
l p+ t p

k+ t
.

This is strictly negative, since l p < k and t p < t. Therefore,
f (k, l) decreases when k and l increase together. Therefore, we
have in particular, that H(l+1,k+1)<H(l,k), meaning that mean-
ingfulness increases if a 1 is appended to a segment. Thus, the
second inequality (Equation 10) holds.

We have proven the two necessary properties for a segment to be
maximal meaningful in the case of Hoeffding’s approximation, thus
we can safely prune the search for maximal meaningful segments.


