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ABSTRACT

In order to overcome the limited depth of field of usual photographic

devices, a common approach is multi-focus image fusion (MFIF).

From a stack of images acquired with different focus settings, these

methods aim at fusing the content of the images of the stack to pro-

duce a final image that is sharp everywhere. Such methods can be

very efficient, but when a global geometric alignment of images

is out-of-reach, or when some objects are moving, the final image

shows ghosts or other artefacts. In this paper, we propose a generic

method to overcome these limitations. We first select a reference im-

age, and then, for each image of the stack, reconstruct an image that

shares the geometry of the reference and the sharpness content of the

image at hand. The reconstruction is achieved thanks to a specially

crafted modification of the PatchMatch algorithm, adapted to blurred

images, and to a dedicated postprocessing for correcting reconstruc-

tion errors. Then, from the new image stack, MFIF is performed to

produce a sharp result. We show the efficiency of the result on a

database of challenging cases of hand-held shots containing moving

objects.

Index Terms— Multifocus image fusion, computational pho-

tography, focus stacking, non-local methods, PatchMatch.

1. INTRODUCTION AND PREVIOUS WORKS

Imaging devices usually have a limited depth of field and objects

outside this area are out of focus. This is especially problematic with

large camera sensors, large apertures or for macro photography. A

simple solution to this problem is to acquire the scene at multiple

depths of field and then to combine the images to produce a blur-

free image [1]. This task is usually referred to as multi-focus image

fusion (MFIF). In favorable cases, these approaches will output an

image that is sharp everywhere.

Most MFIF techniques rely on two steps: the sharp regions are

first localized and then fused into a final image. These techniques

differ on how the information is extracted, which domain (image

domain or transform domain) it is taken from and how it is com-

bined. Classically, a decision map is first computed, either at pixel

level [2], using patches [3, 4] or computing regions [5, 6, 7]. In all

cases, the identification relies on a sharpness measure, which can be

computed through various differential operators [4], through spatial

frequency [8, 2, 5], drawing on wavelet decompositions [9, 10], or

through the use of a convolutional neural network [11, 12]. The final

fusion is often obtained as a weighted sum of the chosen pixel values,

which usually necessitates some care to avoid artefacts and visible

seams. A common approach to avoid these defects is to use mul-

tiresolution methods, such as the Laplacian pyramid [13] or wavelet

transforms [9, 14, 15, 10, 16].

The strongest limitation of all MFIF methods is their limited

ability to deal with motion, be it camera shake or motion due to

moving objects in the scene. A classical way to limit the influence

of camera shake is to register the images before the fusion [17, 18].

However, this approach fails when the scene is not planar or when

the camera has moved away from its optical center, which is very

common in practice and yields mis-registrations. As a result, ghosts

appear in the final fused image. Methods working at pixel level are

particularly exposed to these errors. Region based methods are more

robust to small mis-registration errors, see e.g. [7], but to a limited

extent. Moreover, none of these methods is able to deal with moving

objects. In a different direction, and still to deal with motion, several

works have proposed to refine the decision map using spatial coher-

ence, either through image matting techniques [19] or through the

use of dense SIFTs [20]. By doing so, these methods attain a better

robustness to mis-registration errors or to object motions. However,

the decision map they refine is built from all images under the hy-

pothesis that the geometrical content is the same in these images. For

this reason, they cannot deal with non-rigid deformations or strong

mis-registrations. More generally, none of the methods in the litera-

ture can ensure the global geometrical coherency of the result in case

of general objects or camera motion.

In this paper, we propose a radically different way to deal with

motion to perform MFIF. Instead of assuming that images have

roughly the same geometric content, with possible small displace-

ments, we first choose a reference image (or canvas) that will impose

its geometry to the final result. For each image of the stack (source

image) a new image is created by reconstructing the canvas with the

content of the source. The reconstruction is performed using patch

correspondences. This yields a new stack of images having different

levels of blur but being geometrically coherent. From this stack, a

final sharp image is then created using a classical MFIF procedure.

At this stage, potentially any MFIF procedure can be used. The

general spirit of this approach is inspired by various contributions

to the problem of high dynamic range imaging [21, 22, 23], as well

as the reconstruction capacity of the algorithm PatchMatch [24],

and more generally by the non-local approaches to image restora-

tion [25]. The proposed method is, to the best of our knowledge,

the first non-local approach to multi-focus image fusion. The main

challenge to develop such an approach is to be able to accurately

compare local elements extracted from images having different lev-

els of blur, as well as to deal with visual artefacts that may result

from inaccurate patch comparisons. In this paper, we address these

issues and develop an efficient motion-aware MFIF method. After

detailing our approach in Section 2, we give results of the proposed

scheme on several very challenging cases in Section 3. More results

can be found on a dedicated website [26].

2. METHOD

As explained in the introduction, the aim of this paper is to adapt

MFIF to cases where objects are moving, or where accurate image

registration is out-of-reach. The approach can potentially be adapted

to any MFIF procedure designed for registered and static scenes (a

situation that, from now on, we call the static case). In this section,



we first describe the specific MFIF procedure that we choose for the

static case and then present our approach to deal with motions.

2.1. The static case

Let us denote Ii a stack of N perfectly aligned images that differ

only by their in-focus regions. The goal is to obtain an image F
which is at least as sharp as any image of the stack, at all pixels. If a

perfectly trustable measure of sharpness (or blur) was available then

the simplest way to fuse this stack of images would be

F (x) = Ik(x) where k = argmaxiSi(x) (1)

where Si(x) is the sharpness measure of image Ii at pixel x. Many

local measures have been proposed and studied in the literature [4].

They all boil down to a local average of the magnitude of some

derivative of the image. We propose to use the Local Total Varia-

tion (LTV) defined as

Si(x) = LTVσ(Ii)(x) = (‖∇Ii‖ ∗Kσ) (x) , (2)

where σ is a parameter that governs the locality of the measure,

∇ designates the gradient operator, and Kσ is a Gaussian kernel

whose standard deviation is σ. The parameter σ is fixed to 5 in

all experiments to achieve a classical trade-off between locality and

robustness to noise. This blur measure could be replaced by any

other reasonable measure without significantly changing the con-

tent of the paper. With such a simple decision rule as (1), the deci-

sion map argmaxi Si may present abrupt changes that create seams

that transform into unpleasant artificial discontinuities in the recon-

structed image. To avoid these problems, we propose, as done in

[27], to fuse the images in a multiscale fashion that will avoid the

jittery nature of a winner-take-all decision map.

Multiscale fusion : The original idea presented in [27] for ex-

posure fusion is to mix the Laplacian pyramids of the images Ii us-

ing the Gaussian pyramid of weights that are computed at the finest

level. In our case, we will use as weights Wk attached to image Ik
an indicator of whether the image Ik is the sharpest of the stack, thus

Wk(x) = 1 if k = argmaxiSi(x). The Laplacian pyramid of the

fused image F is built as follows

Ll(F ) =
N∑

i=1

Gl(Wi)Ll(Ii) , (3)

where Ll is the level l of the Laplcian pyramid and Gl the Gaussian

one. Then the Laplacian Pyramid permits the reconstruction of F
(the coarsest level of F being an average of all the coarsest versions

of Ii).

2.2. The dynamic case

On dynamic settings, the standard fusion presented above produces

errors where motion has occurred. As reviewed in the introduction,

few methods have attacked the problem of dealing with motion for

MFIF. The approaches either propose to first align images [17, 18],

or to refine a static displacement map [19, 20]. None of these ap-

proaches is able to maintain a global geometrical coherency or to

fully avoid ghosting due to moving objects.

Here we take another route. We first fix one image as a refer-

ence image that we call canvas. This image will serve as a geometri-

cal reference. For each other image in the stack, that we call source,

we reconstruct the canvas using this source. We end up with as many

images as there are in the original stack. All images have the geome-

try of the reference image and the sharpness of their source. Finally,

since these images are perfectly aligned we apply the method for

the static case to this new stack. This approach is inspired by re-

cent works in exposure fusion and is made possible by solving the

challenging problem of pairing patches originating from the same

underlying object but with different blurs.

Reconstruction of canvas : We have N images I1...N and we

choose the one with the highest total variation as a canvas. To sim-

plify the presentation we suppose that the canvas (reference image)

is I1. We reconstruct N new images J1,...,N that will be fused by

a static case MFIF method to obtain the final result. The reference

stays in the new stack unchanged, J1 = I1 and the others are ob-

tained as

Ji(x) = Ii(ϕi(x))

where ϕi is a displacement map that, for each patch P in I1, finds the

patch in Ii most similar to P (nearest neighbor in the patch space).

Thus, Ji has the geometry of I1 and the sharpness of Ii. The dis-

placement map is obtained using a modified PatchMatch algorithm

[24]. Compared to the classical PatchMatch algorithm, the distance

between patches has to be robust to blur. The next paragraph details

the solution we propose to this challenging task.

The modified PatchMatch : Given two images A = I1 and

B = Ii, and a distance D between local neighborhoods (patches),

the PatchMatch algorithm heuristically finds a geometrical mapping

ϕ that minimizes
∑

x
D(PA(x), PB(ϕ(x))), where PA(x) is the

patch centered on x in A. The algorithm is usually used with D be-

ing the L2 distance. But in our case, this choice fails badly because

of the varying amount of blur. To mitigate this, we combine two so-

lutions. The first is to replace the L2 distance by a more blur-robust

comparison, and the second is to apply PatchMatch in a multi-scale

manner. That is to say, we obtain a displacement map for a coarse

version of the images, interpolate it to a finer scale and take this as a

seed for the PatchMatch at the finer scale (by doing so, we constrain

the search in PatchMatch at a finer scale not to deviate too much

from the coarser displacement map). We repeat this process until the

finest scale is attained. This multiscale approach enforces coherence

of the final result. As for the distance D (expressed as depending on

two pixel positions x in A and x′ in B ), we chose to use

D(x,x′)= λ1‖µ(PA(x))−µ(PB(x
′))‖2

︸ ︷︷ ︸

Color

+λ2‖θθθA(x)−θθθB(x
′)‖2

︸ ︷︷ ︸

Orientation

+λ3‖RA(x)−RB(x
′)‖2

︸ ︷︷ ︸

Descriptors

, (4)

where µ(PI(x)) ∈ R
3 is the average color of a patch around x,

θθθA(x) ∈ R
2M is the vector made of the unit normalized gradient

(gradient divided by its amplitude) in an M -pixel neighborhood of

x and RA(x) is a SIFT descriptor extracted around x in image A.

The first term is very robust to noise and blur as the average value

within a patch does not change when it is blurred. The second one

helps to pair patches around edges as these patches have a very dis-

criminative map of directions. The third term, SIFT descriptor, adds

robustness to blur and geometrical distortions. While other choices

are interesting, such as the invariant moments from [28] or its more

recent extensions, we found that the combination proposed above

is flexible enough to deal with most situations. Combined with the

multi-scale map derivation described before, this provides us with

a consistent map that in most cases reconstructs an image Ji which

reflects well the local informations of image Ii and the global geom-

etry of I1.



Algorithm 1 Non-Local Multi-Focus Image Fusion

Input: Stack of multi-focus images Ii, with i ∈ [1, N ]. Patch size p, search
window size w, number of levels n. Reorder so argmax

∫
‖∇Ii‖ = 1.

Makes use of: PatchMatch(A,B,M ,p,w) : returns the displacement map
between images A and B, using an initial displacement map M .
Goal: Build a set of aligned images Ji and fuse into final result F .

1: procedure IMAGE REGISTRATION W.R.T. I1
2: for each image i ∈ [2, N ] do

3: Ti: Homography between I1 and Ii.
4: Ii = Ti(Ii) ⊲ Ii is globally aligned with I1.
5: end for

6: end procedure

7: procedure PATCH RECONSTRUCTION OF I1 FROM Ii
8: for each image i ∈ [2, N ] do

9: ϕn: initialize displacement map with identity.
10: for level l = n to 1 do

11: rl = Gl(I1) ⊲ Downsampling of factor 2l.
12: sl = Gl(Ii)
13: ϕl = PatchMatch(rl, sl, ϕl, p, w) ⊲ Displacement map
14: ϕl−1 = Upsample(ϕl) ⊲ Except when l = 1
15: end for

16: ϕ̂ = bilateral(ϕ1) ⊲ Map regularization (Eq.(5))
17: Zi = SW (ϕ1) ⊲ The sum of all weights (Eq.(6))
18: Ji(x) = Ii(ϕ̂(x)) ⊲ Canvas filled with pixels of Ii.
19: end for

20: end procedure

21: F = Weighted-Fusion(Ji, Zi) ⊲ MFIF for the static case

Post processing of the displacement map and fall-back strat-

egy : Throughout our experiments we found that, at fine scale, the

displacement map found before still has a one or two pixel-wide jit-

ter. More precisely, in regions where I1 is very blurry, the function

ϕ(x) tends to have sticky values: its span looks like separated lines

parallel to the dominant edge in the area. It is actually not surprising

that a fine position cannot be found by means of patch comparisons

when one of the images has a very low frequency content. To sup-

press this jitter we post-process the map ϕ to make it more similar

to a piece-wise translation

ϕ̂(x) = x+
1

Z(x)

∑

|t|<s

(ϕ(x+ t)− (x+ t))wx(t) (5)

wx(t) = e
−

‖ϕ(x+t)−(ϕ(x)+t)‖2

(2σ2) and Z(x) =
∑

t

wx(t) (6)

Notice that this filtering is nothing else but a bilateral filtering ap-

plied to the vector field ϕ(x)−x and actually allows for discontinu-

ities of the final map ϕ̂. A related method is used in [29].

Finally, it may also happen that an object found in I1 does not

appear anymore in Ii. Two things may happen then. Either a similar

object is found enabling the reconstruction, or no resembling object

is found in which case the mapping ϕ has discontinuity. The first

case is not so problematic and images usually carry enough self-

similarities so that the reconstruction is acceptable. In the second

case, we detect the rapid variations of ϕ by setting a threshold on

Z(x) (sum of all wx). If Z(x) is too small and Wi(x) = 1 of

equation (3) then we set Wi(x) = 0 and W1(x) = 1 regardless of

sharpness. This is a fall-back solution: we keep the information of

the reference image when we are not sure of the reconstruction Ji.

The general overview of our method is shown in Algorithm 1.

3. EXPERIMENTS AND RESULTS

Experimental framework The classical way to evaluate MFIF

methods is to measure the discrepancy between results and a given

ground truth, see e.g. [4]. No-reference evaluations have also been

proposed, basically by evaluating the ability of the fusion method to

accurately account for the different images in the stack, see e.g. [20].

In both cases, many alternatives to the classical and limited L2 norm

can be used. However, all such evaluations are made under the

hypothesis that the scenes are registered and still (with no moving

objects). Now, the purpose of the present paper is precisely to deal

with mis-registration errors and moving objects. To the best of our

knowledge, no database of dynamic images provides a ground truth.

For this reason, results are evaluated visually on a database of chal-

lenging scenes. The database is made of 34 image stacks. We have

acquired 25 handheld captures of scenes with complex geometry

and many moving objects. We also use 9 static image stacks that

are classically used in the MFIF literature. We provide comparisons

of our method (thereafter abbreviated as NL-MFIF) with the static

case, as well as with two state-of-the art methods [20] and [12]. In

all three cases, we first globally align the images for fairness of the

comparison. We also study the interest of defining measure (4) by

comparing our results with the use of PatchMatch and the L2-norm,

as well as the interest of the proposed post-processing by including

the results without applying Eq.(5). Due to space constraints, we

only show 3 scenes in the paper, but all image sets and results can

be found on a dedicated website [26].

Parameters setting In all experiments, NL-MFIF is parameter-

ized as follows. We use patch size p=5 to extract the color and

orientation terms of equation (4). The SIFT descriptors are com-

puted with more histograms than in the original descriptor, 7×7×8,

in order to enclose more geometric information. The parame-

ters λ in (4) were chosen as the inverse of the mean contribution

of each of the three terms on perfectly aligned images, yielding

λ1,2,3=[0.0845, 0.0533, 8.7266]. The multiscale search was set to

n=4 levels for input images of 667×1001 pixels and w=5. For the

map filtering (Eq.(5)) and fall-back strategy, we used local windows

of size s = 40 and σ=10 and a threshold on Z of 0.5s2.

Results A first observation is that in the case of static and perfectly

registered scenes, the NL-MFIF method does not deteriorate the re-

sult from the plain (static) MFIF method, although the reconstruction

task is non-local. These experiments are not included in the paper

but are visible on [26]. Second, it is clear from the presented experi-

ments that the use of the blur-robust distance and the fall-back strat-

egy are crucial ingredients of the proposed approach. Last, the pro-

posed approach clearly outperforms the two recent methods [20, 12],

respectively based on SIFTs and CNN, as far as the avoidance of

ghosts and artefacts is concerned. This can be seen on Figure 1.

On the first two scenes, both methods [20, 12] are producing ghosts,

while they cannot deal with the mis-registration of the third scene.

Both problems are correctly handled by the proposed method.

4. CONCLUSIONS

We have presented a MFIF method dealing with hand-held acquisi-

tion conditions and moving objects. The method boils down to the

construction of a stack of images having the geometry of a given

reference and variable levels of blur, inherited from the original in-

put images. The method compares favorably to two state-of-the-art

methods on challenging scenes.

Perspectives of this work include its application to other static

MFIF schemes, the development of a subjective evaluation protocol,

the application to the context of macro photography.



(a) Source A. (b) Source B. (c) Static MFIF. (d) PatchMatch with L2 Norm.

(e) NL-MFIF without Eq.(5). (f) NL-MFIF. (g) Fusion from [12]. (h) Fusion from [20].

(i) Source A. (j) Source B. (k) Static MFIF. (l) PatchMatch with L2 Norm.

(m) NL-MFIF without Eq.(5). (n) NL-MFIF. (o) Fusion from [12]. (p) Fusion from [20].

(q) Source A. (r) Source B. (s) Static MFIF. (t) PatchMatch with L2 Norm.

(u) NL-MFIF without Eq.(5). (v) NL-MFIF. (w) Fusion from [12]. (x) Fusion from [20].

Fig. 1. MFIF on dynamic cases with moving objects and non-planar scenes. For each scene we display the fusion with the MFIF method for

static cases, the dynamic MFIF setting using the PatchMatch with L2 norm, our method, NL-MFIF, without and with the bilateral filtering

(Eq.(5)) and the methods by Liu’s et al. with CNN’s [12] and Dense SIFT [20].
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