
Video inpainting

MVA 2024-2025

Yann Gousseau
Telecom Paris

Video inpainting

Inpainted video

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

Video inpainting

Original video

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}

Introduction

What are the challenges of video inpainting?

Temporal coherency (possibly over a
large number of frames)

Reconstruction of moving objects /
movement should be realistic

Simultaneous foreground/background
reconstruction

Inpainting with moving background

Dynamic textures / temporal clutter

Extremely long computational times

Inpainting example (from Wexler

et al. 2007)

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}

Some approaches to video inpainting

Greedy patch-based
Patwardan et al. 2005, 2007, Daisy et al. 2016

Specific motions (cyclic, etc.)
Shen et al. 2006, Shiratori et al. 2006, Raimbault et al. 2012

Shift maps + optimization
Granados et al. 2012, Ebdelli et al. 2015

Global patch optimization
Wexler et al. 2004, 2007, Newson et al. 2014, Le et al. 2017, 2019

Optical flow driven
Huang et al. 2016, Bokov et al. 2018

Deep neural networks
Oh et al. 2019, Xu et al. 2019, Li et al. 2020, Gao et al. 2020, etc.

From now on : we focus on patch-based methods relying on a
global optimization

(Wexler et al. 2004, Newson et al. 2014, Le et al. 2019)

Video inpainting algorithm

Notations

Video inpainting algorithm

Video inpainting notation

Inpainting Principle

Input: u|D Output: u|H
Find u|H by minimizing

E(u, φ) =
∑
p∈H

||Wu
p −Wu

p+φ(p)||22

Denoising Principle

Input: noisy ũ Output: denoised û
Find u by minimizing

E(u,w) =
∑
p,q

w(p, q)||W ũ
p −Wu

q ||22

−h
∑
p

H(w(p, ·))

Video inpainting algorithm

Video inpainting notation

Inpainting Principle

Input: u|D Output: u|H
Find u|H by minimizing

E(u, φ) =
∑
p∈H

||Wu
p −Wu

p+φ(p)||22

Denoising Principle

Input: noisy ũ Output: denoised û
Find u by minimizing

E(u,w) =
∑
p,q

w(p, q)||W ũ
p −Wu

q ||22

−h
∑
p

H(w(p, ·))

‡ P. Arias, G. Facciolo, V. Caselles, G. Sapiro, A Variational Framework for Exemplar-Based Image Inpainting,
IJCV 2011

Video inpainting algorithm

Inpainting Principle

Input: u|D Output: u|H
Find u|H by minimizing

E(u, φ) =
∑
p∈H

||Wu
p −Wu

p+φ(p)||22

Challenges

non-convex energy

high dimensionality
(dimension =
5× 5× 5× 3 ≈ 500)

Solutions

alternate minimizations
w.r.t. u and φ

coarse-to-fine processing

approximate nearest
neighbours

Video inpainting algorithm

Core of the approach

Principle: Algorithm (inspired by Wexler
et al.)

Minimise global patch-based functional. Alternate minimizations on u and φ:

E(u, φ) =
∑
p∈H

||Wu
p −Wu

p+φ(p)||22

u0 ← Initialisation(u|D ,H)

1/ φk+1 ← NearestNeighbourSearch(uk)

2/ uk+1 ← VideoReconstruction(φk+1) (aggrega-

tion of patches)

Analogous to non-local regularisation Carried out in a multi-resolution scheme

Y. Wexler, E. Schechtman, M. Irani, Space-Time Completion of Video, PAMI 2007
A. Newson, A. Almansa, M. Fradet, Y. Gousseau and P. Pérez, Video Inpainting of Complex Scenes, SIAM IS 2014

Approximate Nearest
Neighbour (ANN) search

Approximate Nearest Neighbour (ANN) search

High dimensionality of problem means NN search is very slow

Approximate Nearest Neighbour (ANN) search

High dimensionality of problem means NN search is very slow

Previously used ANN search algorithm (kdTrees) very slow

Extend the PatchMatch (Barnes et al. 2009†) algorithm to spatio-temporal case.

PatchMatch: ANN search algorithm for image patches

†C. Barnes, E. Schechtman, A. Finkelstein, D. B. Goldman, PatchMatch: a randomized correspondence
algorithm for structural image editing, ACM Transactions on Graphics (2009)

Approximate Nearest Neighbour (ANN) search

High dimensionality of problem means NN search is very slow

Previously used ANN search algorithm (kdTrees) very slow

Extend the PatchMatch (Barnes et al. 2009†) algorithm to spatio-temporal case.

PatchMatch: ANN search algorithm for image patches

†C. Barnes, E. Schechtman, A. Finkelstein, D. B. Goldman, PatchMatch: a randomized correspondence
algorithm for structural image editing, ACM Transactions on Graphics (2009)

From Barnes et al. 2009

3D extension

Extension of the three steps in 3D:

1 Random
initialisation of
φ

2 Propagation of
good values of
φ

3 Random search
to improve
shifts

3D extension

Extension of the three steps in 3D:

1 Random
initialisation of
φ

2 Propagation of
good values of
φ

3 Random search
to improve
shifts

Source patch

Current nearest neighbour

Unoccluded region

Occlusion

Random initialisationt

y

x

3D extension

Extension of the three steps in 3D:

1 Random
initialisation of
φ

2 Propagation of
good values of
φ

3 Random search
to improve
shifts

t

y

x

(x-1,y,t)

(x,y-1,t)

(x,y,t-1)

Neighbours tested on even
iterations

(x,y+1,t)

(x+1,y,t)

(x,y,t+1)

Neighbours tested on odd
iterations

Propagation

3D extension

Extension of the three steps in 3D:

1 Random
initialisation of
φ

2 Propagation of
good values of
φ

3 Random search
to improve
shifts

t

y

x
Random search

1

2

3
4

Target patch

Current nearest neighbour

Testted nearest neighbours

Unoccluded region

Occlusion

Computational time

High definition example (1120× 754)

10-50 times speedup with 3D
PatchMatch

Still about 4 hours for 10 seconds of
HD (1280 x 720)

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton4'){ocgs[i].state=false;}}

Reconstruction step

Video Reconstruction

Each pixel p is reconstructed using the values predicted by the
nearest neighbours of the patches which contain p.

Weighted mean reconstruction scheme

Video Reconstruction

Problem: weighted average
produces blurry results

u(p) =

∑
q∈Wp

ωqu(p+ φ(q))∑
q∈Wp

ωq

Video Reconstruction

Solution: use best patch at end of
algorithm

u(p) = u(p+ φ(q)),

with q = argmax
j∈Wp

(ωj)

Video Reconstruction

Solution: use best patch at end of
algorithm

u(p) = u(p+ φ(q)),

with q = argmax
j∈Wp

(ωj)

A more complex solution relies on mean shift (Wexler et al.)

Inpainting with mean shift (Wexler et al.) Inpainting with best patch at the last iteration

Multi-scale scheme

The whole scheme is performed in a multi-scale manner

The final result is obtained sequentially, starting at a coarse
resolution

Each time, the result at a given scale is upscaled and then taken as
initialization at the next scale

At the coarsest scale, the results is obtained using an onion peel
method (greedy as the ones seen in the first part of the lecture).

The multi-resolution scheme is necessary to correctly inpaint
structures.

Occluded image Result with one pyramid
level

Result with three
pyramid levels

Textures in image/video
inpainting

Dealing with textures in images and videos

Why do textures pose a problem ?

Original image

Dealing with textures in images and videos

Why do textures pose a problem ?

Inpainted image

Dealing with textures in images and videos

Why do textures pose a problem ?

Incorrect approximate nearest neighbours

Dealing with textures in images and videos

Why do we identify incorrect patches ???

Imagine we want to find the ANN of a random patch:

Patch distance Sum of Squared Differences (SSD):

d(X,Y) =
∑

i=1···N (xi − yi)2.

Dealing with textures in images and videos

Why do we identify incorrect patches ???

Imagine we want to find the ANN of a random patch:

Z

Y
X

?
Which patch is

most similar to X ?

Patch distance Sum of Squared Differences (SSD):

d(X,Y) =
∑

i=1···N (xi − yi)2.

Dealing with textures in images and videos

Why do we identify incorrect patches ???

Imagine we want to find the ANN of a random patch:

Z

Y
X

?
Which patch is

most similar to X ?

Patch distance Sum of Squared Differences (SSD):

d(X,Y) =
∑

i=1···N (xi − yi)2.

Dealing with textures in images and videos

Why do we identify incorrect patches ???

Imagine we want to find the ANN of a random patch:

Z

Y
X

?
Which patch is

most similar to X ?

Patch distance Sum of Squared Differences (SSD):

d(X,Y) =
∑

i=1···N (xi − yi)2.

xi − yi ∼ N (0, 2σ2)

xi − zi ∼ N (0, σ2)

Dealing with textures in images and videos

Why do we identify incorrect patches ???

Imagine we want to find the ANN of a random patch:

Z

Y
X

?
Which patch is

most similar to X ?

Patch distance Sum of Squared Differences (SSD):

d(X,Y) =
∑

i=1···N (xi − yi)2.

E[d(X,Y)] = 2Nσ2

E[d(X,Z)] = Nσ2

Dealing with textures in images and videos

Why do we identify incorrect patches ???

Imagine we want to find the ANN of a random patch:

Z

Y

X

Patch distance Sum of Squared Differences (SSD):

d(X,Y) =
∑

i=1···N (xi − yi)2.

On average, d(X,Y) is twice as large as d(X,Z).

On average, constant patch Z is preferred !

Modified patch distance

We wish to include some information pertaining to the texture.

Idea : include an estimation of the local variance

Modified patch distance

We wish to include some information pertaining to the texture.

Idea : include an estimation of the local variance

A solution (from Liu and Caselles 2013) :

SSD: [R,G,B, αgν ∗ |∇xI|, α gν ∗ |∇yI|]
α: a weighting scalar

gν a gaussian kernel of size ν .

Y. Liu, V. Caselles, Exemplar-Based Image Inpainting Using Multiscale Graph Cuts, IEEE TIP (2013)
J. Bruna & S. Mallat (2013). Invariant scattering convolution networks. IEEE TPAMI, 35(8), 1872–86

Modified patch distance

Example of image created by |∇xI|ν

Modified patch distance

Example of the impact of the modified distance

PatchMatch with regular SSD

Modified patch distance

Example of the impact of the modified distance

PatchMatch with modified SSD

Image example

Inpainting with unmodified patch distance

Image example

Inpainting with “Image Melding” (Darabi et al. 2012)

Image example

Inpainting with modified patch distance

Image example

Original image

Noise example

Inpainting with unmodified patch distance

Noise example

Inpainting with modified patch distance

Noise example

Inpainting with unmodified patch distance

Noise example

Inpainting with modified patch distance

Video example

Original video

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton5'){ocgs[i].state=false;}}

Video example

Unmodified patch distance

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton6'){ocgs[i].state=false;}}

Video example

Modified patch distance

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton7'){ocgs[i].state=false;}}

Complete algorithm

Input Video

Inpainting with moving
background

Inpainting with moving background

Inpainting may need to be done with moving
backgrounds/cameras. Why is this a problem ?

Inpainting with moving background

Inpainting may need to be done with moving
backgrounds/cameras. Why is this a problem ?

Patches are spatio-temporal

The same motion sequence may potentially not be repeated

[
[

[

[

Inpainting with moving background

One possibility, realign patches: would vastly increase time
complexity

Instead, try realigning the whole image (e.g. Odobez and
Bouthemy 1995)

Inpainting with moving background

One possibility, realign patches: would vastly increase time
complexity

Instead, try realigning the whole image (e.g. Odobez and
Bouthemy 1995)

Original video Realigned video

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton8'){ocgs[i].state=false;}}

Inpainting with moving background

Result without realignment

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton9'){ocgs[i].state=false;}}

Inpainting with moving background

Result with realignment

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton10'){ocgs[i].state=false;}}

Inpainting results

Original video

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton11'){ocgs[i].state=false;}}

Inpainting results

Result

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton12'){ocgs[i].state=false;}}

Inpainting results

Original video

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton13'){ocgs[i].state=false;}}

Inpainting results

Result

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton14'){ocgs[i].state=false;}}

Application of video inpainting to scratch restoration

Original video (with synthetic scratches)

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton15'){ocgs[i].state=false;}}

Application of video inpainting to scratch restoration

Restoration using inpainting

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton16'){ocgs[i].state=false;}}

More videos / paper / code : http://perso.

telecom-paristech.fr/~gousseau/video_inpainting/

http://perso.telecom-paristech.fr/~gousseau/video_inpainting/
http://perso.telecom-paristech.fr/~gousseau/video_inpainting/

	Introduction
	Algorithm Overview
	ANN Search
	reconstruction and initialisation
	Textures
	Noise vs. Constant patch
	Modified patch distance
	Video Example

	Moving Fg/Bg
	Binary
	Results

	fd@rm@16:
	fd@rm@15:
	fd@rm@14:
	fd@rm@13:
	fd@rm@12:
	fd@rm@11:
	fd@rm@10:
	fd@rm@9:
	fd@rm@8:
	fd@rm@7:
	fd@rm@6:
	fd@rm@5:
	fd@rm@4:
	fd@rm@3:
	fd@rm@2:
	fd@rm@1:
	fd@rm@0:

