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Image Inpainting

Inpainting (disocclusion) : How to fill missing regions in images ?
Should be done in a plausible way.
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3D inpainting

(Bobenko, Schroder, 2005)



3D inpainting

(Kawai, Sato, Yokoya, 2009)



3D inpainting

(Harary et al., 2014)



Virtual view synthesis

(Buyssens et al., 2015)



Video inpainting

Inpainted video


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}





Video inpainting

Original video


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}




Historical example

The commissar vanishes (from www.newseum.org)



Applications

Image and video editing

Video post-production, visual effects

Restoration of old materials (photographs and movies)

Zoom, super-resolution, deinterlacing

Multi-image restoration (moving objects)

Etc.



Human visual system and occlusions

Objects are (mostly) opaque → most objects are only partially
visible !

Our visual system is able to infer missing parts by amodal
completion.



Amodal completion

T−junction

T−junction

Curves are interpolated smoothly between T-junctions

G. Kanizsa, Organization in Vision: Essays on Gestalt Perception, Pr¨ager,
1979
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Amodal completion

G. Kanizsa, Organization in Vision: Essays on Gestalt Perception, Pr¨ager,
1979



Amodal completion supersede common sense/previous knowledge !





First approach to inpainting (desocclusion) : Masnou-Morel 1998
Mimicks the human visual system

T−junction

T−junction

Virtual contour model = Euler elastica = argmin

∫ L
0

(α+ β|κ|2)ds

with boundary constraints of order 1



Express differential geometry reminder

C : [a, b]→ R2 is a Jordan curve
if C(p1) 6= C(p2) for p1 6= p2.

the choice of the parametrization C is of course not unique

L(a, p) : length of C between a and p
parametrization is called arc-length parametrization if
dL
dp = 1

If C is twice differentiable and C ′(p) 6= 0

the tangent vector is defined as
−→
T = C′(p)

|C′(p)|

the normal vector
−→
N is such that (

−→
T ,
−→
N ) is a direct

orthonormal basis



curvature
∃k such that

1

|C ′|
d
−→
T

dp
= k
−→
N

and k is independent of the parametrization

k
−→
N is called the curvature vector

For an arc-length parametrization :

−→
T = C ′(s),

d
−→
T

ds
= k
−→
N = C ′′(s)

(because L(a, p) =
∫ p
a |C

′(u)|du, so that |C ′(s)| = 1.

writing C(p) = (x(p), y(p)), we get

k =
y′′x′ − x′′y′

(x′2 + y′2)3/2



the curvature satisfies k(p) = r(p)−1, where r(p) is the radius
of the circle that best approximate the curve at C(p)
(osculating circle)

In practice, one can approximate the curvature by the
difference between two consecutive direction of the tangent
vector (more robust than direct second order derivatives).

k ≈ θ

∆s



From curves to images: using the level set framework

Level lines of a (gray level) image are lines of constant intensity or,
”equivalently”, the boundaries of {x, u(x) ≥ t}.

Figure: Graph of f(x, y) = 3y
x2+y2+1



From curves to images: using the level set framework

Level lines of a (gray level) image are lines of constant intensity or,
”equivalently”, the boundaries of {x, u(x) ≥ t}.

Figure: Graph of f(x, y) = 3y
x2+y2+1 (viewed from above)



From curves to images: using the level set framework

Level lines of a (gray level) image are lines of constant intensity or,
”equivalently”, the boundaries of {x, u(x) ≥ t}.

Figure: Some level lines



From curves to images: using the level set framework

Set of lines : ”the topographic map” of the image

Figure: A topographic map



From curves to images: using the level set framework

Set of lines : ”the topographic map” of the image



Adaptation to inpainting: using the level set framework
(Masnou-Morel 1998)

Level sets Xu
t = {y : u(y) ≥ t} ⇐⇒ u(x) = sup

{
t : x ∈ Xu

t

}
Level lines = Boundaries of level sets

Level lines reconstruction ⇐⇒ Image restoration
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Adaptation to inpainting: using the level set framework
(Masnou-Morel 1998)
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( ∑
Paired
junctions

∫
(α+ β|κXu

t
|p)dH1

)
dt ⇐⇒

∫
|∇u|

(
α+ β

∣∣∣div
∇u
|∇u|

∣∣∣p)dx
Minimization over collections of curves Classical minimization

⇓ ⇓
Constructive approach Global approach



Many works have followed :

• variational/PDE approaches
(Masnou-Morel 1998, Chan-Shen 2001, Caselles et al. 2001,

Bertalmio et al 2001, Tschumperlé-Deriche 2004, Bornemann and

Märtz 2007, Schönlieb - Bertozzi 2011, Chizhov et al. 2021, etc.)

• examplar-based, patch-based
(Efros-Leung 1999, Wei-Levoy 2000, Efros-Freeman 2001, Ashikmin

et al 2001, Harrison 2001, Criminisi-Pérez-Toyama 2004,

Pérez-Gangnet-Blake 2004, de Bonet 1997, Igehy-Pereira 1997,

Komodakis 2007, Kawai et al. 2009, Arias et al. 2011, Liu-Caselles

2013, Wang 2013, Newson et al. 2014, Daisy et al. 2015, etc.)
Two main trends:

greedy (sequential)
global, patch-based optimization (parallel)

• inpainting in transform domains
(Elad et al. 2005, Chan et al. 2006, Fadili et al. 2007, Cai 2008)

• Convolutional neural networks
(Pathak et al. 2016, Iizuka et al. 2017, Yu et al. 2018, 2019, Liu et

al. 2018, Nazeri et al. 2019, Yi et al. 2020, Saharia et al. 2021,

Lugmayr et al. 2022, etc.)



Variational/PDE methods

Simplest approach : heat equation
Image I and hole (occlusion) Ω

∂I

∂t
= ∆I inside Ω

and
I = I0 outside Ω

Information is propagated by averaging :

Blurred results



In a discrete setting :

∆(u)(i, j) ≈ u(i+1, j)+u(i−1, j)+u(i, j+1)+u(i, j−1)−4u(i, j)

un+1(i, j)− un(i, j) = δt∆un(i, j)

un+1(i, j) = (1− 5δt)un(i, j)

+δt (un(i+ 1, j) + un(i− 1, j) + un(i, j + 1) + un(i, j − 1) + un(i, j)) ,

→ local smoothing



Variational/PDE methods

Bertalḿıo, Sapiro, Caselles, Ballester (2000)

Introduce the term ”inpainting”

Evolution equation :

∂u

∂t
= ∇∆u · ∇⊥u

(+anisotropic diffusion for stabilization)

Idea : a measure of smoothness (∆u) is ”transported” along
the isophotes directed by ∇⊥u
by analogy with a transport equation ∂u

∂t = −div(u~v),

where ~(v) is the speed. If ~v is constant, then

∂u

∂t
= −∇(u).~v

Efficient for small and non-textured occlusions

Many variants and follow-up
(see e.g. Partial Differential Equation Methods for Image
Inpainting, Schoenlieb, 2016)





From Bertalmio et al. 2000
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Variational/PDE methods

Alternative: the denoising viewpoint

Chan, Shen (2001) (Total variation)∫
A
|∇u|dx+

λ

2

∫ c

Ω
|u− u0|2dx,

A being the image domain

Chan, Kang, Shen (2002) & Esedoglu, Shen (2002)
(Mumford-Shah-Euler)∫

Ω\A
|u− u0|2 dx+

∫
Ω\K
|∇u|2dx+

∫
K

(α+ β k2)ds.

and many, many other contributions (higher-order inpainting,
topological analysis, fractional-order inpainting, etc.) !



Variational/PDE methods

Advantages : fast, mathematical interpretation (strong geometrical
property)
Main limitation : no texture

15× 15 patches are removed (from Masnou et al. 2011)



Variational/PDE methods

Advantages : fast, mathematical interpretation (strong geometrical
property) Main limitation : no texture

Large inpainting using the Total Variation



Nonlocal methods : from texture synthesis to inpainting

The patch-based texture synthesis method of Efros and Leung
(that we saw in the texture synthesis lecture) can be
straightforwadly applied to the inpainting problem

Many patch-based methods followed from the 2000’s

Ill. Levina-Bickel 2006 - Efros-Leung 1999



Application to inpainting

Many papers, and many methods :

Drori et al. 2003 (multiscale sampling)

Criminisi et al. 2004, Pérez et al 2014 (greedy approach,
priority order for the filling-in) → next slides

Sun et al. 2005 (user-assisted method to help the recovery of
geometric structures)

Wexler et al. 2005, Newson et al 2017 (global patch-based
energy, heuristic for the minimisation) → second part of the
lecture

Komodakis et al. 2007 (variational and patch-based strategy,
minimization with belief propagation)

Cao et al. 2011 (patch-based strategy with automatic
geometrical guide)

Arias et al. 2011 (variational framework for non-local
patch-based inpainting)

Liu-Caselles 2013 (multi-scale graph-cut)

and a lot more...



→ synthèse par ”patchs” (Efros-Freeman 2000,
Pérez-Gangnet-Blake 04)



Principe (Pérez-Gangnet-Blake 04)

Soit Ω la région à reconstruire, 0 < p < q deux paramètres.
Soit B(x, p) le patch centré sur x de rayon p et
C(x, p, q) = B(x, q) \B(x, p).

1) soit x0 ∈ ∂Ω ayant un nombre de voisins maximum dans
Ωc.

2) soit y0 ∈ Ωc qui minimise la norme L2 entre C(x0, p, q) \Ω
et C(y0, p, q) \ (Ω + y0 − x0).

3) pour chaque x ∈ B(x0, p) ∩ Ω soit I(x) = I(x+ y0 − x0).

4) remplacer Ω par Ω \B(x0, p) et itérer.



Nombreuses variantes de cet algorithme (choisir au hasard un
patch proche, injecter de l’invariance en considérant des rotations
des patchs, etc.)
Les résultats dépendent de

1 paramètres p, q
en général préférable de choisir p > 0 (patchs au lieu de pixels)
p grand → meilleur respect de la géométrie, moins
d’”innovation”
q grand → meilleures transitions entre patchs

2 ordre de remplissage:
quel x0 ∈ ∂Ω choisir à chaque itération ?
[Criminisi-Pérez-Toyama ’04] : x0 minimise une fonctionnelle
dépendant de

i) la géométrie de Ω,
ii) la géométrie des lignes de niveau autour de x0.
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However these methods may fail at reconstructing long-range
geometric features, e.g. long edges

Different approaches have been proposed for the simultaneous
restoration of geometry and texture (Bertalmio et al ’03, Fadili-Starck

’05, Tschumperlé et al. 2006, Cao et al. 2011, etc.)

Usually rely on hybrid approaches
=⇒ Possible solution : use a geometric guide computed on a
simplified image



Geometrically guided exemplar-based inpainting
(Cao et al. 2011)

Step 1: compute a geometric sketch



Step 2: restore the geometric sketch by interpolation of the level
lines with Euler spirals

Euler elasticae are solutions of

Min

∫ L

0
(1 + |Ψ′(s)|2)ds (Ψ = angle(tangent,horizontal axis))

under endpoints and end-tangents constraints.

Euler-Lagrange equation: (Ψ′)2 = 1 + λ cos Ψ + µ sin Ψ.

After linearization (Ψ′)2 = 1 + λ+ µΨ whose solutions are Euler
spirals:

Curvature= affine function of arc-length

Very useful in civil engineering, industrial design, typography.
Also used as a model for shape completion in vision.



Step 2: restore the geometric sketch by interpolation of the level
lines (e.g. with Euler spirals)



Step 3: use the reconstructed sketch as a geometric guide

New metric between patches = Linear combination of a L2 metric
on the original image (conditioned by the inpainting domain) and a
L2 metric on the (complete) geometric sketch (Many possible
variants)







Image with missing region



Method from Cao et al. ’11



Global optimization-based approaches

Initiated by the works of Demanet et al. 2003, Wexler et al.
2005

The missing region is reconstructed by stiching patches from
the images, whose coherence is ensured by an iterative
approach

→ texture + relatively good global geometric coherence (best
approaches to date without learning)

→ detailed for video inpainting in the second part of the
course



And of course ... CNNs

Many approaches developped from Convolutional Neural Networks
(CNN) (Pathak et al. 2016, Iizuka et al. 2017, Yang et al. 2017,
Liu et al. 2018, 2019, Yi el al. 2020, Suvorov et al. 2022, Lugmayr
et al. 2022, etc.)

Use ideas from autoencoders, Generative Adversarial Networks
(Goodfellow et al. 2014) or more recently diffusion models

Implicitely use information not from the inpainted image (this
was sometimes done explicitely before, see Hays-Efros 2007)

Training can involve several millions images and weeks of
computation



Global architecture of the method from Iizuka et al. 2017



From Iizuka et al. 2017



From Iizuka et al. 2017
Typically outside the reach of patch-based methods



ccn-based method ; the image is aligned, as in the training dataset

after a 10 pixels translation

patch-based method

Experiment courtesy of E. Bonnail



May yield artefacts



May yield artefacts



Contextual attention (DeepFill, Yu et al. 2018)

Hybrid method (CNN / patch-based) Take into account patches
near the missing region at training time

Illustrations from Yu et al. 2018



Other evolutions

Edge connect (Nazeri et al. 2019)
Learn a sketch reconstruction component

Free-form image inpainting (DeepFill v2, Yu et al. 2019)
Use of Gated convolution

Contextual residual aggregation (Yi et al. 2020)

Local inpainting in the Fourier domain(LAMA, Suvorov et al.
2022)

Diffusion models (REPAINT Lugmayr et al. 2022, PALETTE
Saharia et al. 2022, latent diffusion models, aka stable
diffusion, Rombach et al 2022, text-guided inpainting,
Smartbrush 2023, etc.)



Diffusion models for inpainting

Rely on Denoising Diffusion Probabilistic Models (DDPM)

DDPMs generate images by progressive denoising of a noise
input (Sohl-Dickstein et al. 2015, Ho et al. 2020)

“Denoising” rely on a CNN trained to reverse the following
process

More precisely, the network is trained to learn µθ and Σθ of
the process



REPAINT, Lugmayr et al. 2022

The framework is adapted to the inpainting task



REPAINT, Lugmayr et al. 2022

enables unprecedented quality and diversity



REPAINT, Lugmayr et al. 2022

Reasonable generalization capacity

trained on a relatively generic scene database (Places2)

trained on a face database (CelebA-HQ)

Experiments courtesy of N. Cherel



REPAINT, Lugmayr et al. 2022

But rely on huge networks ...

about 500M parameters

memory impact is about 3GB for 256x256 images

heavy environmental impact of the training stage :
for celebA-HQ (30000 images):
500h + training time, about 10kg CO2



And it is getting
bigger and bigger !

Strong need for frugal or at least lightweight approaches



A possible solution : internal approaches
The model is learned for the image/video at hand.



Problem setting 1/2

Framework from Denoising Diffusion Probabilistic Models 1.

Forward process:

q(xt|xt91) = N
(√

1 9 βtxt91, βtI
)

Backward process:

pθ (xt91|xt) = N (µθ(xt, t), σ
2
t I)
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Problem setting 2/2

Neural network fθ is used to predict the mean of pθ(xt−1|xt

, y

)
and is optimized for a denoising L2 loss.

For image inpainting, we
have additional inputs:

Ex0,xt,t
[
w(t)‖x0 − fθ(xt, t)‖22

]
Where xt is the noisy image.

y = x ◦ (1−M) is the clean masked
image, M the mask.

xt t

y M



Problem setting 2/2

Neural network fθ is used to predict the mean of pθ(xt−1|xt, y)
and is optimized for a denoising L2 loss. For image inpainting, we
have additional inputs:

Ex0,xt,t,M
[
w(t)‖x0 − fθ(xt, y,M, t)‖22

]
Where xt is the noisy image. y = x ◦ (1−M) is the clean masked
image, M the mask.

xt t y M



Network architecture

Figure: UNet with 160k parameters for image inpainting



Internal learning



Baseline training

Training

repeat
x0 ∼ q(x0), t ∼ U([1, T ])
xt ∼ q(xt|x0)
Take gradient descent step on
∇θ‖x0 − fθ(xt, t)‖2

until converged

Inference

xT ∼ N (0, I)
for t = T, . . . , 1 do

xt−1 ∼ N
(
µθ(xt, t), σ

2
t I
)

end for
return x0
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Interval training

Training for interval i

repeat
x0 ∼ q(x0), t ∼ U([τi+1, τi])
xt ∼ q(xt|x0)
Take gradient descent step on
∇θ‖x0 − fθ(xt, t)‖2
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xt−1 ∼ N
(
µθ(xt, t), σ
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end for
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Interval training

+ model specialized for
each inference phase

+ remove weighting in
the loss

− single use
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Texture inpainting

Comparison with:

Patch-based method
of Newson et
al.(2017) 2

DeepFill: inpainting
network with
attention (2018) 3

RePaint: large
diffusion model
(2022) 4
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Interval training - results

Baseline Interval Baseline Interval



Line drawing

Train set Patch RePaint Ours



Non-stationnary images

The method is unable to create new content and to infer
completely unseen structures.



Works also for videos ... exemples on next set of slides.
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