
COPY-MOVE FORGERY DETECTION BASED ON PATCHMATCH

Davide Cozzolino, Giovanni Poggi, Luisa Verdoliva

Universitá Federico II di Napoli, DIETI, 80125 Naples Italy

ABSTRACT

In this work we propose a new algorithm for copy-move forgery de-
tection and localization, based on the fast computation of a dense
nearest-neighbor field. To this end, we use PatchMatch, an iterative
randomized algorithm for nearest-neighbor search, which exploits
the regularity of natural images to converge very rapidly to a near-
optimal and smooth field. We modify the basic algorithm to gain ro-
bustness against rotations, while keeping the original computational
efficiency. Experimental results show the proposed technique to out-
perform almost uniformly all tested reference techniques in terms of
both accuracy and speed.

Index Terms— Digital Image forensics, copy-move forgery de-
tection, patchmatch.

1. INTRODUCTION

In recent years, research on image forensics has focused especially
on passive techniques which detect manipulations based only on the
analysis of the image content. Many different approaches have been
proposed to detect and localize a forgery [1], and much attention has
been devoted to the copy-move case, where portions of the image
are cut and pasted elsewhere in the same image to duplicate or hide
objects of interest.

In fact, this is probably the simpler and certainly the most com-
mon form of image manipulation. Identical or similar regions in the
image are discovered based on matching. Virtually all such algo-
rithms are based, although with many variations, on the following
three steps: featuring: suitable features are associated with all pix-
els, or with a limited set of keypoints; matching: for each pixel of
interest, the best matching pixel is located based on the associated
features; post-processing: the displacement field is filtered and pro-
cessed to detect actual copy-moved regions.

The techniques proposed in the literature can be grouped in two
large classes, depending on whether the matching is performed for
each pixel, generating a dense displacement field, or for just some
selected keypoints, in which case the field is sparse. This preliminary
choice impacts heavily on complexity. In the first case, a matching
score must be computed, in principle, for all couples of pixels, with
a complexity proportional to N2, with N the image size. Reducing
this complexity is probably the main issue in this class of algorithms.
In the second case, instead, after locating a small number M � N
of image keypoints, the matching is restricted to these points, and
the complexity, proportional to M2 reduces hugely.

The first approach is typically performed through some match-
ing procedure applied to each block to detect the most similar block
in the image. Given the potentially huge complexity, featuring is re-
quired to be intrinsically simple, and to produce features as short as
possible. Using the native RGB pixel values is a legitimate choice,
which satisfies obviously the first requirement, but not the second.
In the literature, features are typically extracted in some transform

domain, like PCA, DCT, Wavelet [2], aimed at reducing their di-
mensionality, through decorrelation of coefficients, and/or gaining
robustness with respect to noise, compression, and other common
forms of distortion. A major challenge is to detect copy-moves
in the presence of rescaling and rotation. In [3], a Fourier Mellin
Transform (FMT) is applied on image blocks, and the magnitudes
of Fourier coefficients are then re-sampled and transformed into
log-polar coordinates, obtaining feature vectors invariant to rotation,
scale and translation. In [4] the mapping into log-polar coordinates
is carried out in the spatial domain producing a one-dimensional
descriptor robust to geometric transformations. Another interesting
approach [5] is based on the rotation-invariant Zernike moments,
which turn out to guarantee increased robustness also w.r.t. additive
white Gaussian noise and JPEG compression.

In keypoint-based methods, where the number of matching
scores to be computed is orders of magnitude smaller, much more
complex and longer features can be used, with intrinsic invariance
properties, such as SIFT, employed for example in [6] and [7], or
SURF, used in [8]. These techniques are usually much faster than
those based on dense matching. However, they are also intrinsically
less accurate. In particular, since keypoints are associated with high
entropy regions, copy-moves involving only smooth regions remain
mostly undetected. This is not a minor problem, considering that
quite often these manipulations concern pieces of background, gen-
erally smooth or highly textured, which are copied to hide objects
of possible interest. As a consequence, there is a clear performance
gap w.r.t. dense-matching techniques as shown in the benchmarking
paper [9].

Once established that dense-matching is the most promising ap-
proach for reliable copy-move detection, the major focus of research
should be on speeding up the matching phase without impairing the
quality of the displacement field. Exhaustive search is obviously not
an option, barring the trivial case of very small images. Some early
techniques [3, 4] relied on lexicographic sorting, which is fast but
rather prone to errors when the image quality is not high. More re-
cently, approximate nearest neighbor search based on kd-trees and
locality sensitive hashing has gained some popularity for copy-move
detection [10, 11, 9, 5], as it is more robust to image impairment and
can be still pretty fast.

In this paper we propose a new fast and reliable technique for
copy-move detection based on the Patchmatch algorithm. Patch-
match was proposed originally in [12] to compute the approximate
nearest neighbor field (NNF) of an image, with application to a num-
ber of editing tasks. Leveraging on the intrinsic regularity of natural
images, it performs an iterative randomized search procedure which
converges very quickly to a smooth and reliable NNF. The authors
themselves generalized the algorithm in [13] under several points of
view, including the ability to find matches after resizing and rescal-
ing of objects. Given its properties, PatchMatch looks as the perfect
tool to carry out copy-move detection, and indeed this possible ap-
plication, among many others, was pointed out already in [13].

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 20145312

We devised a first Patchmatch-based copy-move algorithm in
the context of the First IEEE Forensics Challenge [14, 15, 16]. Here,
we propose a much more sophisticated algorithm using state-of-the-
art tools for all phases of the detection process. In particular, we
modify the PatchMatch algorithm itself in order to deal effectively
with rotations without significantly increasing the processing time
and without impairing the performance in all other situations. The
resulting technique is extremely fast, accurate and robust, providing
a competitive performance under all major conditions of practical
interest.

In the rest of the paper, after providing some more detail on the
PatchMatch algorithm, we describe the proposed copy-move detec-
tion technique, and in particular the improved managing of rotations,
and finally we present experiments results.

2. THE PATCHMATCH ALGORITHM

PatchMatch [12] is a fast randomized algorithm which finds dense
approximate nearest neighbor matches between image patches.

A NNF is defined formally as a function f : I → R2 which
associates an offset or displacement f(x, y) ∈ R2 with each pixel
(x, y) of the image I . Switching to a more compact vectorial nota-
tion, z = (x, y) is the reference pixel of patch P (z), and therefore
z + f(z) points to the nearest neighbor patch. The exact nearest
neighbor patch minimizes a suitable distance measure D(·, ·), that is

f(z) = arg min
φ:z+φ∈Ω,f �=0

D(P (z), P (z+ φ)) (1)

where Ω is the image support. Finding the exact NNF, however,
is computationally infeasible so we look for an approximation of
it, and keep using the acronym NNF for the sake of simplicity. It
should be underlined that, for most applications, the exact NNF is
not necessarily the best one, and regularity is an additional important
property. This is well-known, for example, in the context of video
coding, where a regular motion-compensation field is much more
compressible, hence preferable, than a more chaotic one.

Patchmatch is an iterative algorithm. Initially, displacements are
set by sampling at random and uniformly the image support: z +
f(z) ∼ U(Ω). Most of these displacements are of little use, but
it is very likely that a certain number of them will be optimal or
near-optimal. The main idea of PatchMatch is to propagate good
displacements.

In the generic iteration, in fact, the image is raster scanned top-
down and left-to-right, and for each pixel z the current offset is up-
dated as

f(z) = arg min
φ∈{f(z),f(zu),f(zl)}

D(P (z), P (z+ φ)) (2)

where zu and zl are the pixels above and to the left, respectively, of
the current one. Therefore, if a good displacement is available for
a given pixel of a region with constant displacement, this will very
quickly propagate, filling the whole region below and to the right
of it. To avoid biases, the scanning order is then reversed (bottom-
up and right-to-left) at every other iteration, involving pixels below
zd and to the right zr of the current one. Of course, this idea is
based on the fundamental hypothesis that the true NNF is mostly
regular, composed of a relatively small number of regions with the
same displacement, and would be totally ineffective, for example,
with a white noise field.

The above propagation procedure is obviously greedy, and as
such suboptimal. Therefore, to minimize the risk of being trapped
in local minima, after the updating of eq.(2), a similar one is tried

based however on random sampling of the NNF. The new candidates
fi, i = 1, . . . , L are chosen as

fi = f(z) + 2i−1Ri (3)

where Ri is a bi-dimensional random variable uniform in {−1, 0, 1}×
{−1, 0, 1} excluding (0,0). In practice, new candidates are taken,
one for each grid, on square grids centered on f(z) = f0 and with
exponentially increasing radii. The random-search updating reads
therefore as

f(z) = arg min
φ∈{f0,f1,...,fL}

D(P (z), P (z+ φ)) (4)

For an image of, say, 1024×1024 pixels, L ≤ 10. Consider-
ing that the procedure typically converges after a few iterations, the
whole computational load is in the order of 102 patch distance com-
putation as opposed to 106 for full-search, which fully explains the
algorithm speed.

3. DEALING WITH ROTATION: A MODIFIED
PATCHMATCH FOR PIECE-WISE LINEAR NNFS

The basic algorithm described above finds only a single nearest-
neighbor, and does not deal with scale changes and rotations. In a
subsequent paper [13], however, the same authors generalized and
extended it under several respects. The Generalized PatchMatch
algorithm is able to find k nearest neighbors, instead of just one,
to search across scales and rotations, going beyond mere transla-
tions, and to match patches based on arbitrary descriptors and dis-
tances, not just sum-of-squared-differences on patch colors. It must
be pointed out, however, that the three extensions are mutually ex-
clusive, and their combination does not seem straightforward.

To deal with rescaling and rotation, generalized PatchMatch
looks for nearest neighbors in a four-dimensional space (x, y, θ, s),
with θ the rotation angle and s the scale factor. Of course, this
extended search increases somewhat the complexity, but the result-
ing algorithm can be still considered relatively fast. However, the
experimental analysis described in next Section shows this version
of PatchMatch to cause a significant loss in the forgery detection
performance, definitely not worth the increased robustness against
rotations. Our conjecture is that with the enlarged optimization
space, a large number of suboptimal matchings are available, which
trap the algorithm into local minima. The random search itself be-
comes probably less effective in such a large space, and does not
help escaping from such minima.

Given these dismaying results, we propose here a simple mod-
ification of the basic PatchMatch algorithm which deals pretty well
with rotations without impairing the performance in their absence.
To deal with resizing, instead, we will rely on the intrinsic robustness
of the algorithm for scales close to 1 and, if necessary, on brute-force
search, which makes sense for just one dimension.

The proposed modification concerns exclusively the propaga-
tion phase, namely, the displacement updating step of eq.(2). In the
original algorithm, the current displacement for pixel z is compared
with two other candidate displacements, those available for pixels
zu and zl which precede z along rows and columns in the scanning
order. In practice, the displacements f(zu) and f(zl) can be seen
as the causal zero-order predictions of f(z) along image rows and
columns. Of course, zero-order predictors are effective only in con-
stant regions, namely, in our context, in the presence of copy-moves
with rigid translations, where the NNF is uniform. Since rotated
copy-moves correspond instead to a linearly varying NNF, a first-
order prediction should work correctly in this case. We therefore

ICIP 20145313

Fig. 1: Examples of genuine and forged images from our dataset.

enlarge the set of candidates to be used in equation (2) including
also

f1(zu) = f(zu) + Δf(zu) (5)

f1(zl) = f(zl) + Δf(zl) (6)

where

Δf(zu) = f(zu)− f(zuu) (7)

zuu is the pixel above zu, and similar definitions hold for the other
predictor. Therefore, to keep reasoning on the vertical first-order
predictor, if f(zu) and f(zuu) follow correctly the local affine trans-
formation induced by the rotated copy-move, the correct NNF will
quickly propagate to the rest of the interested region within two iter-
ations. Moreover, thanks to the zero-order predictor, and the random
sampling of eq.(3), it is not difficult to reach the required initial con-
ditions which triggers the whole process.

It is worth underlining that this modified version of PatchMatch,
dealing in general with NNFs that are piece-wise linear, as opposed
to piece-wise constant, can be expected to deal effectively also with
scale changes, provided a scale-invariant feature is used.

4. EXPERIMENTAL RESULTS

To assess the performance of the proposed PatchMatch-based meth-
ods, also in comparison with established reference techniques, we
carried out a number of experiments on a dataset available online
(www.grip.unina.it) of 80 images of dimension 768×1024-pixel.
For each image we generated a realistic copy-move forgery by rigid
translation and the corresponding forgery map. Then we considered,
one at a time, the most typical deviations from this ideal condition,
that is, noising, JPEG compression, rotation and rescaling, varying
the main parameter of interest, e.g., the JPEG quality factor, and
generating the corresponding forged images with the help of the
software tool proposed in [9]. Two examples of genuine and forged
images are shown in Fig.1.

As synthetic measures of performance we use the F-measure,
which can be defined as

FM =
2 TP

2 TP + FN + FP
(8)

where TP (true positive), FN (false negative), and FP (false positive)
count, respectively, the number of detected forged pixels, undetected
forged pixels, and wrongly detected genuine pixels. Results are then
averaged on all 80 images. Complexity is measured in terms of aver-
age running time on a desktop PC with two 2 GHz Intel Xeon cores,
used in single-thread modality.

4.1. Performance of the proposed technique

The proposed technique follows the general three-step structure
outlined in Section 1, with feature extraction, matching, and post-
processing. As features we use either the original RGB values or
the Zernike moments (ZM), always with relatively large blocks of
16×16 pixels. Although the Zernike moments possess useful rota-
tion invariance properties and have proven quite robust to various
forms of processing, the generalized version of PatchMatch which
deals with rotation and rescaling works only with RGB values, so we
must necessarily include this combination. For the matching step,
we use of course PatchMatch, in the basic (B-PM) and generalized
(G-PM) versions, and in the modified (M-PM) version proposed
here. For the post-processing we resort to standard state-of-the-art
tools. In particular, spurious matches are filtered out, eliminat-
ing also matches with displacement shorter than a given threshold.
Then, surviving matches are collected in groups that follow the same
transformation pattern, by means of the Same Affine Transformation
Selection (SATS) algorithm proposed in [11]. Overall, we consider 4
techniques, with all the meaningful matching+feature combinations
of the set {B-PM, G-PM, M-PM}×{RGB, ZM}.

Fig.2 shows, for all these combinations, the average F-measure
computed after various types of image impairments. The basic al-
gorithm (B-PM+RGB) provides a very good performance in gen-
eral, with F = 0.906 in case of simple translation. Moreover, it is
quite robust to noise and also to limited rotation and resizing. Perfor-
mance is instead relatively poor in the presence of JPEG compres-
sion, and drops sharply for scale changes above 20% and rotation
angles beyond 10 degrees. By replacing RGB values with Zernike
moments (B-PM+ZM) we obtain a much higher robustness to JPEG
compression, because of the intrinsic filtering associated with the
more compact ZM representation. In addition, thanks to the rotation
invariance of the moments, performance improves in the presence
of rotation, with angles up to about 30 degrees. For larger angles,
the F-measure drops again, due to the inability of the propagation
phase to follow rotations. This problem is eventually solved by re-
sorting to Generalized PatchMatch (G-PM-RGB), which provides a
nearly constant F-measure over all rotation angles. Unfortunately,
we also observe a significant performance loss in most other situa-
tions, including pure translation with an F-measure of 0.808 as op-
posed to the 0.906 obtained with the basic version. As said before,
this is probably due to the higher probability of finding local minima
in the higher-dimensional search space. On the contrary, the pro-
posed technique with modified PatchMatch and Zernike moments
(M-PM+ZM) shows a remarkable robustness to rotation at all an-
gles, and provides the very same performance of the basic version
(B-PM+ZM) in all other situations, with a very limited increase in
complexity.

Detailed results on computational efficiency, measured by aver-
age CPU-time, are reported in Table 1. Computing ZM features has
a small initial cost, which is largely compensated in the matching
phase, since shorter feature vectors are used. The use of generalized
PatchMatch causes, as expected, a significant increase in the match-
ing time and also in the post-processing phase, probably because the
NNF is less regular.

ICIP 20145314

0.00 0.02 0.04 0.06 0.08 0.10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
−

m
ea

su
re

Noise (Normalized standard−deviation)

B−PM+RGB
B−PM+ZM
G−PM+RGB
M−PM+ZM

100 90 80 70 60 50 40 30 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
−

m
ea

su
re

JPEG−compression (QF)

B−PM+RGB
B−PM+ZM
G−PM+RGB
M−PM+ZM

0.5 0.8 0.91 0.95 1 1.05 1.09 1.2 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
−

m
ea

su
re

Resizing (Scale)

B−PM+RGB
B−PM+ZM
G−PM+RGB
M−PM+ZM

0° 4° 10° 20° 30° 60° 90° 180°
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
−

m
ea

su
re

Rotation (Angle)

B−PM+RGB
B−PM+ZM
G−PM+RGB
M−PM+ZM

Fig. 2: F-measure of PatchMatch-based techniques computed on the test dataset after AWGN addition, JPEG compression, resizing, and
rotation.

0.00 0.02 0.04 0.06 0.08 0.10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
−

m
ea

su
re

Noise (Normalized standard−deviation)

proposed
Zernike
Bravo
KPCA
SIFT

100 90 80 70 60 50 40 30 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
−

m
ea

su
re

JPEG−compression (QF)

proposed
Zernike
Bravo
KPCA
SIFT

0.5 0.8 0.91 0.95 1 1.05 1.09 1.2 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
−

m
ea

su
re

Resizing (Scale)

proposed
Zernike
Bravo
KPCA
SIFT

0° 4° 10° 20° 30° 60° 90° 180°
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
−

m
ea

su
re

Rotation (Angle)

proposed
Zernike
Bravo
KPCA
SIFT

Fig. 3: F-measure of proposed and reference techniques computed on the test dataset after AWGN addition, JPEG compression, resizing, and
rotation.

Technique Featuring Matching SATS total

B-PM+RGB 0.05 69.80 29.48 99.33

B-PM+ZM 2.13 16.50 28.80 47.43

G-PM+RGB 0.05 230.24 76.32 306.61

M-PM+ZM 2.13 19.54 33.06 54.73

Table 1: CPU-time (seconds) for PatchMatch-based techniques.

4.2. Comparison with the state-of-the-art

To conclude this analysis, we repeated all experiments for a number
of reference techniques recently proposed in the literature, whose
code is available online or can be reproduced easily and without
uncertainties. The techniques are shortnamed here as Zernike [9],
BRAVO [4], K-PCA [18], and SIFT [17]. Results, reported in Fig.3,
show that the proposed technique outperforms almost uniformly all
the other. In particular, except for large scale changes, it is much
better than the keypoint-based SIFT technique which, on the other
hand, is the only one that can exhibit a significantly smaller average
CPU-time, less than 4s (Table 2). Moreover, it is consistently better,
although only slightly, and has about the same CPU-time of Zernike,
which uses a randomized kd-trees search [19]. All other techniques,
besides being less effective, exhibit much larger CPU times, up to
900s.

Technique mean st. dev.

proposed 54.74 50.47

Zernike [9] 53.91 11.71

Bravo [4] 102.78 10.40

K-PCA [18] 936.09 13.25

SIFT [17] 3.71 2.78

Table 2: CPU-time (seconds) for proposed and reference techniques.

5. CONCLUSIONS

We proposed a new copy-move detector based on PatchMatch, an
iterative randomized algorithm for fast nearest-neighbor search.
Thanks to the efficient NN search engine, we could consider dense
descriptors, generally more reliable than keypoint-based descrip-
tors, and still keep complexity under control. We also proposed
a modification of PatchMatch which deals effectively with rotated
copy-moves without increasing complexity. Performance is almost
uniformly superior to that of state-of-the-art reference techniques.

Currently, we are experimenting with new features, invariant to
both rotation and resizing. In both cases, the NN field is character-
ized by a local linear behavior, hence the first-order predictor used
in the modified version of PatchMatch to propagate displacements
is expected to be equally effective. Furthermore, we aim to replace
SATS, relatively slow with regular fields, with faster techniques.

ICIP 20145315

6. REFERENCES

[1] J.A. Redi, W. Taktak and J. Dugelay, “Digital image forensics:
a booklet for beginners,” Multimedia Tools and Applications,
vol. 51, no. 1, pp. 133–162, jan. 2011.

[2] S. Bayram and H.T. Sencar and N. Memon, “A survey of copy-
move forgery detection techniques,” proc. of IEEE Western
New York Image Processing Workshop, 2008.

[3] S. Bayram and H.T. Sencar and N. Memon, “An efficient and
robust method for detecting copy-move forgery,” IEEE Inter-
national Conference on Acoustics, Speech, and Signal Process-
ing, pp. 1053–1056, apr. 2009.

[4] S. Bravo-Solorio and A.K. Nandi, “Automated detection and
localisation of duplicated regions affected by reflection, ro-
tation and scaling in image forensics,” Signal Processing,
vol. 91, pp. 1759–1770, 2011.

[5] S.-J. Ryu, M. Kirchner, M.-J. Lee and H.-K. Lee, “Rotation
invariant localization of duplicated image regions based on
Zernike moments,” IEEE Transactions on Information Foren-
sics and Security, vol. 8, no. 8, pp. 1355–1370, aug. 2013.

[6] X. Pan and S. Lyu, “Region duplication detection using image
feature matching,” IEEE Trans. on Information Forensics and
Security, vol. 5, no. 4, pp. 857–867, dec. 2010.

[7] I. Amerini, L. Ballan, R. Caldelli, A. Del Bimbo and G. Serra,
“A SIFT-based forensic method for copy-move attack detec-
tion and transformation recovery,” IEEE Trans. on Information
Forensics and Security, vol. 6, no. 3, pp. 1099–1110, 2011.

[8] B.L. Shivakumar and S. Baboo, “Detection of region duplica-
tion forgery in digital images using SURF,” International Jour-
nal of Computer Science, vol. 8, no. 4, pp. 199–205, 2011.

[9] V. Christlein, C. Riess, J. Jordan, and E. Angelopoulou,
“An evaluation of popular copy-move forgery detection ap-
proaches,” IEEE Trans. on Information Forensics and Security,
vol. 7, no. 6, pp. 1841–1854, 2012.

[10] A. Langille, and M. Gong, “An efficient match-based duplica-
tion detection algorithm,” Canadian Conf. on Computer and
Robot Vision, pp. 1–8, 2006.

[11] V. Christlein, C. Riess and E. Angelopoulou, “On rotation in-
variance in copy-move forgery detection,” IEEE International
Workshop on Information Forensics and Security (WIFS),
pp. 1–6, 2010.

[12] C. Barnes, E. Shechtman, A. Finkelstein, and D.B. Gold-
man, “PatchMatch: a randomized correspondence algorithm
for structural image editing,” ACM Transactions on Graphics,
vol. 28, no. 3, 2009.

[13] C. Barnes, E. Shechtman, D.B. Goldman and A. Finkel-
stein, “The Generalized PatchMatch Correspondence Algo-
rithm,” European Conference on Computer Vision, vol. 6313,
pp. 29–43, 2010.

[14] http://ifc.recod.ic.unicamp.br/fc.website/index.py?sec=0.

[15] D. Cozzolino, D. Gragnaniello and L. Verdoliva, “Image
forgery detection through residual-based local descriptors and
block-matching,” IEEE International Conference on Image
Processing (ICIP), 2014.

[16] D. Cozzolino, D. Gragnaniello and L. Verdoliva, “Image
forgery localization through the fusion of camera-based,
feature-based and pixel-based techniques,” IEEE International
Conference on Image Processing (ICIP), 2014.

[17] I. Amerini, L. Ballan, R. Caldelli, A. Del Bimbo, L. Del Tongo
and G. Serra, “Copy-move forgery detection and localization
by means of robust clustering with J-Linkage,” Signal Process-
ing: Image Communication, vol. 28, no. 6, pp. 659–669, 2013.

[18] M. Bashar, K. Noda, N. Ohnishi and K. Mori,, “Exploring du-
plicated regions in natural images,” IEEE Transactions on Im-
age Processing, vol. PP, no. 99, 2010.

[19] M. Muja and D.G. Lowe, “Fast approximate nearest neighbors
with automatic algorithm configuration,” International Confer-
ence on Computer Vision Theory and Applications, pp. 331–
340, 2009.

ICIP 20145316

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

