Imagerie à forte gamme dynamique HDR Imaging

Yann GOUSSEAU

Télécom Paris - IP Paris

MVA 2022-2023

Capture d'une scène avec de très fortes variations de luminosité...

... avec un appareil photo standard.

Exemples d'images HDR

by Daniel under CC BY 2.0

aspect artificiel ...

mais pratique ancienne !

J. Constable, Salisbury Cathedral from the Bishop's Grounds, 1823.

Illustration suggested by "The art and science of HDR imaging", McCann - Rizzi, 2012

- Dynamique des scènes naturelles souvent >> capacités des capteurs photographiques standards
 - \Rightarrow
 - Zones claires saturées ("brulées") et / ou
 - Zones sombres saturées ou très bruitées
- Dynamique également supérieure à celles des dispositifs de visualisation (écrans/projecteurs/imprimantes)
- ⇒ Comment capturer toute la plage dynamique d'une scène et la visualiser ?

- Que mesure-t-on ?
- Rappels sur l'acquisition des images
- Création d'images HDR
 - Cas statique : un problème statistique
 - Gestion des mouvements
- Visualisation (tone mapping)
- Fusion directe d'expositions différentes

Radiométrie : mesure d'une intensité de radiation (energie) Photométrie : mesure d'une quantité de lumière captée par notre système visuel

Pondération par des courbes de sensibilité

curves from webvision.med.utah.edu

Photométrie

- Luminance : quantité de lumière émise par une source lumineuse
 - Flux lumineux : émission totale en lumens (lm)
 - Intensité lumineuse : emission directionnelle (/ angle solide) en candela (cd)

$$cd = lm/std$$

- Luminosité d'une surface : en cd.m⁻²
- Illuminance : lumière reçue flux lumineux / surface en lm.m⁻² (lux)

Gauche : lux-mètre ; droite luminance-mètre

• Radiance/irradiance : idem en radiométrie

Quelques ordres de grandeur

- Luminance :
 - Etoile $10^{-3}cd.m^{-2}$
 - Neige au soleil $10^4 cd.m^{-2}$
 - Soleil 10⁹cd.m⁻²
- Dynamique généralement comptée en "stops" (dynamique = 2^{stops})
- Oeil humain (avec adaptation) : \sim 25 stops
- Oeil humain (sans adaptation) : \sim 7-15 stops
- Illuminance d'une scène à grande dynamique typiquement entre 15 et 20 stops (10⁶)
- Appareil photo :
 - smartphone \rightarrow 10 stops, souvent moins
 - plein ou moyen formats numériques \rightarrow 15 stops , souvent 12 stops
 - Argentique noir et blanc 13-14 stops
- Ecrans
 - LCD standard .002 $\rightarrow 100 cd.m^{-2}$
 - \sim 12 stops (5000 :1)
 - Nettement plus faible si on n'est pas dans le noir
 - Ecran HDR $.002 \rightarrow 5000 cd.m^{-2}$
 - Ecrans OLED : noirs plus faibles / 20 stops (1000000 :1) à regarder dans le noir !!

Scène HDR typique

Dynamique 17 stops

Scène HDR typique

From "The art and science of HDR imaging", McCann - Rizzi, 2012

Dynamique 14,5 stops (21900 :1)

Comment faire ?

Stratégie classique : le multi-images

Pratique ancienne

Gustave LeGray, 1850. Technique des *ciels rapportés*; le ciel provient d'une autre scène

Autre stratégie en photo argentique : "dodging and burning"

(application "Vivid")

Aujourd'hui pratique de poche Un problème réglé ?

Samsung S9

Apple Iphone 12

Présence de fantômes (ghosting)

Illustration DxO Mark

A partir de I_1, \ldots, I_n acquises avec des temps différents, deux approches :

- Création d'image HDR (généralement sur 32 bits) Compte rendu fidèle de l'irradiance reçue.
 - Compression de la dynamique : tone mapping (typiquement sur 8 bits) Pour visualisation (écran, imprimante)

Fusion d'exposition

Génère directement une image 8 bits (par canal) sans chercher à créer une image HDR.

Première étape :

$$u = Q[(h * s).\Pi_{\Gamma} + n]$$

où

- s scène (émission de photons),
- h : réponse impulsionnelle du système optique et de l'intégration des capteurs (g_{ouv} * g_{flou} * g_{fil} * g_{capt}),
- $\Pi_{\Gamma} = \sum_{\gamma \in \Gamma} \delta_{\gamma}$, échantillonnage
- Q opérateur de quantification
- n bruit, éventuellement dépendant du signal

 \rightarrow image RAW (tramée) Réponse linéaire à l'illuminance

Solution classique pour l'acquisition de la couleur : trame de Bayer

Nécessité d'un démosaïcage (détramage) pour générer $I \in \mathbb{R}^{3.N.N}$.

Deuxième étape :

Balance des blancs et changement d'espace RGB

 $I \to A.I$

avec A matrice 3x3 (généralement diagonale pour la balance des blancs)

- Courbe de réponse $A.I \rightarrow g(A.I)$ (non-linéaire, tone mapping)
- Compression JPEG

- Temps d'exposition
- Ouverture
- Sensibilité (nombre ISO)

- Peut compenser un manque de lumière ou une ouverture faible
- Doit être court pour les objets en mouvement (sinon, flou de mouvement)
- Pour les images RAW, réponse proportionnelle à au

Exemple de flou de mouvement :

Alternative à l'obturation unique : l'ouverture papillonante (flutter shutter)

Ouverture

ouverture D diamètre du diaphragme ; f distance focale ; nombre d'ouverture N = f/D (généralement progression géométrique)

Quand N augmente :

- La profondeur de champs augmente (cf premier cours)
- Les défauts de diffraction augmentent
- Les défauts de vignettage diminuent

changement de profondeur de champs difficile à prendre en compte : on privilégie le multi-images à τ variable (autre possibilité : changement de sensibilité, pas traitée dans ce cours)

```
En négligeant la quantification, on observe

z = C.\tau.R

(images RAW)

ou (en négligeant le matriçage couleur et la compression),

z = g(C.\tau.R),

(images finales)

où
```

- g fonction de réponse
- τ temps d'exposition
- R irradiance
- C constante (dépend de la sensibilité)

Pour retrouver l'information d'irradiance : nécessité d'estimation de g^{-1} (méthodes itératives, moindres carrés, etc.)

... ou de travailler avec des images RAW

Images I_1, \ldots, I_N acquises avec τ_1, \ldots, τ_n (connus).

On suppose que les images sont parfaitement recalées ;

- Appareil sur un pied ou mouvement de caméra compensé
- Scène statique
- Pas de changement d'éclairage (e.g. nuages)

En chaque pixel

Données : z_1, \ldots, z_N valeurs correspondant à τ_1, \ldots, τ_N .

Résultat : l'irradiance *R* (à une constante près), proportionnelle au nombre moyen de photons par unité de temps atteignant le pixel

Création d'images HDR

- z_j = version bruitée de g(Rτ_j) où g est la fonction de réponse de la caméra;
- Estimation de l'irradiance par moyennage des estimateurs pour différents τ :

$$\widehat{\mathbf{R}} = \sum_{j} w(z_j) \frac{g^{-1}(z_j)}{\tau_j},$$

avec $\sum_{j} w(z_j) = 1$.

• De très nombreux choix proposés pour les pondérations w :

Selon g Mann & Picard 1995, Debevec & Malik 1997 dépendant du SNR Mitsunaga & Nayar 1999 critères de variance Robertson et al. 1999, Kirk & Andersen 2006, Granados et al. 2010, Hasinoff et al. 2010

 Pour couleur : traitement par canal Alternative : création dans le domaine luminance-chrominance (Pirinen et al. 2007) • Utilisation des images RAW (fonction de réponse g linéaire et saturation)

- Modèle statistique pour les z_i dépends du paramètre *R* et des particularités de l'appareil photographique (bruit)
- Trouver *R* revient à un problème d'**estimation** à partir des *N* échantillons z_1, \ldots, z_N .

Retour sur la modélisation du bruit

Illustration C. Aguerrebere

- Bruit photonique ("shot noise") → Poisson
 Approchable par une gaussienne N(λ, λ) pour λ grand (λ > 20)
- Bruit thermique résiduel (dark current) négligeable (pour temps d'acquisition < 1*s*)
- Bruit de lecture Gaussien

Approximation gaussienne

Bleu : Poisson ; rouge : normale

Le modèle statistique

- Z₁,..., Z_N v.a. indépendantes (en un pixel donné), mais pas identiquement distribuées,
- $Z_k \sim g \mathcal{P}(\mathbf{R}\tau_k) + \mathcal{N}(\mu_R, \sigma_R^2)$
- Approximation gaussienne : $Z_k \sim \mathcal{N}(g^R \tau_k + \mu_R, g^2 R \tau_k + \sigma_R^2).$

Avec

- g gain de l'appareil
- μ_R, σ_R caractéristiques du bruit de lecture

On s'intéresse à des estimateurs de R de la forme

$$\widehat{\mathbf{R}} = \sum_{j} w_j \frac{z_j - \mu_R}{g \tau_j},$$

- \rightarrow quel est le meilleur estimateur ?
- quelles sont ses performances?
Modèle de bruit

- Z_1, \ldots, Z_N v.a. independantes,
- $Z_k \sim \mathcal{N}(g_R \tau_k + \mu_R, g^2 R \tau_k + \sigma_R^2).$

Borne de Cramer-Rao pour les estimateurs non-biaisés

variance(tout estimateur non-biaisé de R) \geq CRLB,

où

$$\frac{1}{\text{CRLB}} = \frac{1}{2} \sum_{j=1}^{N} \frac{g^2 \tau_j^2}{(g^2 R \tau_j + \sigma_R^2)^2} (2(g^2 R \tau_j + \sigma_R^2) + g^2)$$

Performance

On peut montrer que

Dans le cadre du modèle précédent, il n'existe pas d'estimateur efficace (estiateur non-biaisé atteignant la borne CRLB) pour *R*.

Experimentalement, on observe

- L'estimateur du maximum de vraisemblance (MLE) a de bonnes performances
- la variance du MLE est très proche de CRLB;
- le biais du MLE est très faible ;

En pratique,

- Pas de formule close pour le MLE
- Bonne approximation avec

$$\widehat{C} = \frac{\sum_{j=1}^{N} \frac{x_j}{\sigma_j^2}}{\sum_{j=1}^{N} \frac{1}{\sigma_j^2}},$$
(1)

avec

$$\mathbf{x}_{j} = \frac{z_{j} - \mu_{R}}{g\tau_{j}}, \qquad \sigma_{j}^{2} = \frac{g(z_{j} - \mu_{R}) + \sigma_{R}^{2}}{(g\tau_{j})^{2}}.$$
 (2)

Borne de Cramér Rao pour l'estimation d'irradiance

III. Aguerrebere et al., 2014 (Au plus 4 échantillons par pixel)

Vérité terrain

Mann - Picard

Mitsunaga - Nayar

Difficultés de l'HDR dynamique

Difficultés de l'HDR dynamique

camera motion

Difficultés de l'HDR dynamique

Recalage

- Extraction de points clés (e.g. SIFT)
- Mise en correspondance de points clés
- Algo. estimation robuste (typiquement RANSAC) pour estimer une transformation compatible avec les mises en correspondances.
 - Transformations affines
 - Transformations homographiques

Puis HDR sur les images alignées (e.g. Tomaszewska-Mantiuk 2007)

L'approche précédente est insuffisante si

- Le recallage est insuffisant (e.g. scène non plane et mouvement du centre optique)
- Mouvement d'objets
- Changement de luminosité

camera + object motion

ghosting artifacts

- Compensation du mouvement (e.g. Zimmer et al. 2011) estimation du flot optique /problème mal posé
- Détection du mouvement (e.g. Jacobs et al. 2008) recallage, puis détection des pixels en mouvement, ignorés pour la reconstruction finale
- Méthodes par patchs (e.g. Aguerrebere et al. 2013) On fusionne les pixels ayant un voisinage semblable

Méthode par patchs

Aguerrebere et al. 2013

Avantages :

- Pas besoin de recalage global (sauf pour accélérer les calculs)
- Gère automatiquement les mouvements locaux
- Peu sensible au bruit dans la comparaison des pixels (patchs)
- Prend en compte les redondances inter et intra-images
- Résultat final débruité

Estimation de l'irradiance

Comme dans le cas statique en utilisant les pixels similaires

Une fois sélectionnés les pixels similaires, que l'on suppose suivre la loi $Z \sim \mathcal{N}(\mu(\mathbf{R}), \sigma^2(\mathbf{R}))$ On estime \mathbf{R} comme dans le cas statique :

$$R_{\mathsf{MLE}} = \frac{\sum_{h=1}^{H} w_{\mathsf{MLE}}^{h} x_{h}}{\sum_{h=1}^{H} w_{\mathsf{MLE}}^{h}}$$
$$w_{\mathsf{MLE}}^{h} = \frac{1}{\mathsf{var}(x_{h})} \simeq \frac{g^{2} \tau_{h}^{2}}{g^{2} \tau_{h} x_{h} + \sigma_{R}^{2}}$$

avec $\{x_h\}_{h=1,...,H}$, les pixels semblables selon d(p,q) (seuil).

Sélection de l'image de référence

- L'information est perdue dans les zones saturées
- Nécessité de les remplir : e.g. par inpainting

Sélection de l'image de référence

No underexposed pixels and the fewest saturated pixels

Selected reference

 au_i

- L'information est perdue dans les zones saturées
- Nécessité de les remplir : e.g. par inpainting

Sélection de l'image de référence

- L'information est perdue dans les zones saturées
- Nécessité de les remplir : e.g. par inpainting

Entrées

HDR par patchs

Pas de fantomes

Référence

HDR par patchs

Entrées

Référence

HDR par patchs

Une alternative au multi-images :

expositions spatialement variables [Nayar and Mitsunaga 2000, Aguerrebere et al. 2014, 2017]

Comment visualiser une image HDR (potentiellement 15-20 stops) avec un dispositif traditionnel ? (écran LCD inférieur à 12 stops) \Rightarrow reduction du contraste
Première option, on modifie I en $h \circ I$, avec h un changement de contraste (fonction croissante).

Exemples : transformations gamma (avec gamma < 1), logarithmiques, etc. voir e.g. (Tumblin-Rushmeier 93)

Scène HDR typique

Dynamique 17 stops

Histogramme des valeurs 0-1 ; histogramme 0-570 ; histogramme du log

Tone mapping global

Tone mapping linéaire 0-max

Tone mapping global

linéaire 0-1

Tone mapping global

logarithmique

Pour obtenir une plus grande réduction de la dynamique : préservation du contraste local

- Principe : atténuer le contraste d'une version "cartoon" de l'image tout en préservant le contraste des détails (Durand-Dorsey 2002)
- Soit B = F(I) un filtrage de l'image qui préserve les bords; On considère I = k.F(I) + (I - F(I)), k jouant le rôle d'un facteur d'attenuation.
- Calculs effectués dans le domaine de la log-luminance
- Proposition initiale : F est un filtre bilatéral :

$$F(I)(x) = C(x)^{-1} \sum_{y \in \Omega} g_{\sigma_1}(x - y) \cdot g_{\sigma_2}(I(x) - I(y))I(y).$$

avec

$$C(x) = \sum_{y \in \Omega} g_{\sigma_1}(x - y) \cdot g_{\sigma_2}(I(x) - I(y))$$

 En pratique, de nombreuses alternatives efficaces (décomposition variationnelles cartoon-textures, TV-L1)

Algorithme :

Pour une image couleur I = (R, G, B)

- Calcul de l'intensité L = (a.R + b.G + c.B)
- $L_{base} = F(\log L)$, avec F filtre bilateral
- $L_{detail} = \log(L) L_{base}$
- $L_{out} = k \cdot l_{base} + L_{detail} C$, C constante de normalisation
- $R_{out} = (R/L) \cdot \exp(L_{out})$, idem pour *G* et *B*.
- Possiblement saturation des plus grandes valeurs (ou d'une proportion)

From Durand-Dorsey 2002

From Durand-Dorsey 2002

Base-détail

Base-détail

logarithmique

Principe : attenuation de l'image des gradients

- Calcul de la carte de gradient (∇I)
- Attenuation de la dynamique des gradients
- Reconstruction de l'image par équation de Poisson

Dans un cadre multi-échelles (pyramide gaussienne)

Tone mapping

Gradient

Tone mapping

Base-détail

Fusion d'exposition (Mertens et al. 2007)

Alternative à (création HDR) + (tone mapping) On crée directement une image visualisable (e.g. 8 bits / canal) par fusion des images finales (JPEG) I_1, \ldots, I_N **recalées** En chaque pixel *x*

$$R(x) = \sum_{i=1}^{N} W_i(x) I_i(x)$$

avec

$$W_i(x) = C_i(x)^{\alpha_c} E_i(x)^{\alpha_E} S_i(x)^{\alpha_S},$$

et

contraste

$$C_i(x) = \Delta I_i(x)$$

exposition

$$E_i(x) = \exp\left(-\frac{(I(x) - 0, 5)^2}{2\sigma^2}\right)$$

saturation

$$S_i(x) = std(R(x), G(x), B(x))$$

(a) input sequence

(b) Naive

(c) Blurred

From Mertens et al.

Zones plates bruitées + transitions abruptes

Solution : la fusion est effectuée dans un cadre multi-échelle

$$\mathcal{L}_l(R)(x) = \sum_{i=1}^N \mathcal{G}_l(W_i)(x)\mathcal{L}_l(I_i)(x),$$

Avec \mathcal{L}_l , \mathcal{G}_l les pyramides laplacienne et gaussienne pour une série d'échelles *l*.

Fusion multi-échelles

(e) Multiresolution

From Mertens et al.

Fusion multi-échelles

(a) Exposure bracketed sequence

Pour les scènes dynamiques ... mêmes problèmes que pour la création

Fig. 2: Fused images performed by, (a) non-local exposure fusion (NLEF), and (b) classical exposure fusion [7].

Pour traiter les scène dynamiques : fusion des pixels ayant même voisinage (patch)

Fig. 2: Fused images performed by, (a) non-local exposure fusion (NLEF), and (b) classical exposure fusion [7].

Fig. Ocampo et al. 2016

Fig. Eilertsen et al. 2017

Fig. Eilertsen et al. 2017

Fig. Eilertsen et al. 2017

(b) Discriminator (Single Scale).

(c) Residual Blocks

Générateur : auto-encodeur Discriminateur : PatchGAN / en entrée : concaténation LDR/HDR Fig. Rana et al. 2019

DeepTMO (0.87)

FattalTMO (0.88)

SchlickTMO (0.85)

Fig. Rana et al. 2019

Apprentissage profond pour la fusion (avec ou sans alignement) : Kalantari et al. 2017, Prabhakar et al. 2017 (DeepFuse), Yan et al. 2019, Yang et al. 2021 (GanFuse), etc.