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Abstract The a contrario approach is a principled method
for making algorithmic decisions that has been applied suc-
cessfully to many tasks in image analysis. The method is
based on a background model (or null hypothesis) for the
image. This model relies on independence assumptions and
characterizes images in which no detection should be made.
It is often image dependent, relying on statistics gathered
from the image, and therefore adaptive. In this paper we pro-
pose a generalization for background models which relaxes
the independence assumption and instead uses image depen-
dent second order properties. The second order properties
are accounted for thanks to graphical models. The modified
a contrario technique is applied to two tasks: line segment
detection and part-based object detection, and its advantages
are demonstrated. In particular, we show that the proposed
method enables reasonably accurate prediction of the false
detection rate with no need for training data.
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1 Introduction

Common algorithms in computer vision, such as, edge de-
tection and object recognition, involve decisions. These de-
cisions typically calculate some scalar function and test it
against a threshold. The quality of the decision is usually
very sensitive to the chosen function and the threshold value.
A common approach to such decision procedures follows
the Bayesian methodology; see, e.g., Weber et al. (2000),
Konishi et al. (2003). The decision is optimized so that it
minimizes a cost function related to two types of errors: false
alarms and misses. Statistical models, required for this min-
imization, are usually learned in a training phase. Costly to
collect and label, the training data often does not best repre-
sent the true distribution of the test data. Moreover, even if it
does, the optimized parameters are best only on the average
and are not necessarily optimal for the particular image at
hand.

An alternative, general, non-Bayesian approach for deci-
sion making and parameter tuning, suggested several years
ago (Desolneux et al. 2000, 2008), has already been applied
successfully to diverse tasks; see e.g., edge detection (Des-
olneux et al. 2001), histogram mode selection (Desolneux
et al. 2008), robust point matching (Moisan and Stival 2004)
or local feature matching (Rabin et al. 2009). Denoted a con-
trario, this powerful methodology quantifies the Helmholtz
principle that “we do not perceive any structure in a uniform
random image” (Desolneux et al. 2008). See Fig. 1 for an
illustration of this principle.

In a contrario decisions, the parameters (e.g., the thresh-
olds) are set so that a decision algorithm would not acciden-
tally detect too many visual events (such as edges, lines, fa-
miliar objects, etc.) in a “random” image. The random image
and the implied false detection rate are specified by a prob-
abilistic background model. Unlike a common approach in
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Fig. 1 A line is perceived only when it cannot be considered an ac-
cidental event. Every one of the 4 subplots contains one 16-point line
and some uniformly distributed random points. The line is perceived

only when the additional point density is low and the accidental line
formation hypothesis can be disqualified

computer vision, this background model is not determined
by an off-line training phase, but instead relies on crucial
statistical independence assumptions, as well as, in many
cases simple data distributions inferred from the image it-
self. A detection decision is associated with some false de-
tection rate in this model. A decision is accepted if this rate,
denoted NFA (number of false alarms), is low. The detected
event is called meaningful precisely because it would not be
detected in a noise image. A meaningful event is therefore
consistent with the Helmholtz principle.

A contrario decisions have several advantages. First, be-
cause the background model depends on the image, it fol-
lows that the decision parameters (e.g., thresholds) are tuned
adaptively to the image at hand and not by optimizing aver-
age performance over some training set, which may be non-
representative for specific images. Second, every a contrario
decision is accompanied by a reliability estimate, the NFA.
Third, the algorithmic process becomes very flexible. There
is a uniform criterion for all decisions, even if made with dif-
ferent features and different models (Desolneux et al. 2008).

A common practice in computer vision is to use image
data for normalizing the cost function on which the deci-
sion relies. The best example would perhaps be the decision
used for SIFT based matching (Lowe 2004). This decision
matches a point A to a point B if the appearance (SIFT) dis-
tance between A and B is lower than all other distances of
points from A, but also requires that the ratio between the
minimal distance and the second-smallest distance of some
point from A be small. This ratio is in fact a crude indica-
tor of false alarm possibility. Thresholding it is nevertheless
extremely effective (Lowe 2004). Unlike a contrario, this
criterion does not rely on quantitative analysis and therefore
does not allow the error probability to be bounded.

The reliability estimate, NFA, in a contrario approaches
corresponds to the background model and not to the real im-
age. Somewhat surprisingly, the NFA is often indicative of
the number of false detections in the actual image. In princi-
ple, however, an image is not a white noise realization, and
the independence assumption is a simplification: it may lead
to decisions which are meaningful for the model, but are not
accurate predictions of failures in the real image. This is in-
deed the case for several common tasks.

The goal of this study is to extend the a contrario ap-
proach to a more general scope. We develop here statistical
background models which do not rely on independence as-
sumptions, and evaluate their power to make meaningful and
effective decisions. After discussing the proposed extension
in a general context, we focus on two tasks, which demon-
strate both the need for the more complex model and the
effectiveness of the proposed solution: line segment detec-
tion in natural texture and object detection using part based
methods. In the first case, which was the first task analyzed
using the a contrario approach (Desolneux et al. 2000), the
support to a line segment comes from pixels along the line
with gradient directions consistent with it. Many images (or
image parts) do not contain apparent lines, and yet, the gra-
dient directions in nearby pixels cannot be considered inde-
pendent. In the second case, which is a new application of a
contrario decisions, objects are detected by comparing im-
age patches to corresponding model parts. The patches may
be close and even overlapping and hence their similarities to
the model parts are not independent.

In a sense, our approach challenges and generalizes the
interpretation of Helmholtz principle. The aforementioned
“uniform random image” is usually taken to be white noise
(Desolneux et al. 2008), but we argue that many moderately
correlated random images are still considered uniformly ran-
dom by a human observer.

Detecting objects in correlated noise was considered
mostly in the signal processing community and in max-
imum likelihood or Bayesian decision contexts; see Van
Trees (1965, p. 287) for typical examples. These decision
approaches differ from the proposed approaches in many re-
spects. First, they model the object to be detected as an ideal
clean image. Then they model the distortion explicitly by ad-
ditive colored and usually Gaussian noise. Then they specify
some image statistics and analytically calculate their distri-
bution, with and without the object. The decision rule and
the implied error rate follow. This approach is rigorous but
works mostly for detection methods based on linear filter-
ing (i.e., correlation detector), which is very limited in many
computer vision tasks.

We are aware of only one paper discussing a contrario
detection using a background model that explicitly mod-
els dependence (Grosjean and Moisan 2009). The approach
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in this paper differs from ours and is related to the signal
processing approaches discussed above. It provides stronger
results on a more limited scope. In Grosjean and Moisan
(2009), the goal, motivated by mammography analysis, is
to detect spots over textured regions. The considered back-
ground model is colored noise, obtained as the convolu-
tion of white noise with some kernel. Thus the background
model completely specifies the type of images where no de-
tection is expected. Spots are detected by thresholding a lin-
early filtered version of the image, which makes the thresh-
olds computable. In contrast, the background model consid-
ered in the present work only specifies second order depen-
dencies between some sub-events to be grouped, but it per-
mits the prediction of performances of non-linear detection
tasks, such as alignment detection.

Other methods take an indirect approach and transform
the dependent image data into another representation where
the components are more independent. Comparing image
patches using PCA components, for example, lends itself
better to a contrario decisions (Sabater et al. 2012) than
comparing them using pixel values directly. Another re-
cent work replaces the independence assumption with the
exchangeability assumption (which allows, for example, to
sample without replacement) and thus induces a dependence
possibility (Flenner and Hewer 2011).

The paper continues as follows: The next section dis-
cusses the a contrario decision method briefly and pro-
poses the extension beyond independence based assump-
tions. The next two sections discuss the two previously men-
tioned tasks, and appropriate solutions relying on second or-
der dependencies. The proposed generalizations are experi-
mentally tested in the context of the two tasks and compared
to the original method. Some suggestions for future research
are considered in the last section.

2 Independence in A Contrario Decisions

2.1 The Classic A Contrario Approach

As discussed above, the a contrario methodology proposes
to make decisions only by considering false detections in
random images. More precisely, decisions are made by con-
trolling the number of false detections in a background
model, which is the core of the a contrario approach. This
background model is based on independence assumptions
and some marginal distributions extracted from the test im-
age, on which the decision is made. These empirical distri-
butions make the model related to the image at hand, and the
decision adaptive to it.

To calculate the probability for false detection and the
implied expected number of false detections, the NFA, the
detection event is usually specified as a function of simpler

events which we call sub-events. The key assumption here
is that these sub-events are independent. As an example,
consider the task of straight segment detection (alignment)
(Desolneux et al. 2000, 2008). A segment hypothesis l is
supported by a pixel on it if the gradient orientation in this
pixel is approximately orthogonal to the hypothesized seg-
ment. The algorithm accepts the hypothesis (i.e., a detection
event occurs) if at least k pixels support the line segment.
The approximate orientation orthogonality of a single pixel
is a sub-event in our notation. The background model con-
sidered in Desolneux et al. (2000) is based on the assump-
tion that these orientations are independent. This model is
justified in a white noise image when the pixels consid-
ered are sufficiently far from each other (typically two pixels
apart).

Other a contrario decisions may rely on different crite-
ria for accepting a hypothesis, and may use, for example,
the sum of continuous random variables associated with the
sub-events (Rabin et al. 2009). Almost always, they rely on
independence to estimate the probability of detection.

2.2 The Price Paid for Assuming Independence

The independence based probability model is surprisingly
effective but nonetheless has several drawbacks:

1. The independence assumption may not match the image
and the particular sub-events considered for the detec-
tion. Often, sub-events are positively correlated, which
makes the independence based NFA estimate overly opti-
mistic. That is, while the expected number of false detec-
tions in white noise may be indeed lower than the chosen
ε, the number of false detections in real images may be
far higher.

2. In order to comply with the independence assumption,
the designer of a contrario procedures has to choose the
sub-events so that they are unrelated enough. In the align-
ment detection described above, for example, the gra-
dient directions are estimated using s × s masks. Then
the gradient direction is sampled every s pixels, which
guarantees that the directions are independent (in white
noise). Choosing large masks implies that the informa-
tion in many pixels is ignored. Choosing small masks,
on the other hand, may lead to inaccurate direction es-
timates, especially when the image is binary or of high
contrast. In some cases, as in curve (Muse et al. 2006)
or SIFT (Rabin et al. 2009) matching, the choice of the
sub-events involves a non-trivial tradeoff between inde-
pendence and discriminative power.

2.3 A Contrario Without Independence

In principle, the background model could be more complex
and could allow some dependence between the sub-events.
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This necessitates a background model specifying the joint
distribution of the sub-events, and not only their marginals.
The rest of the procedure can then remain unchanged: the
decision is made by calculating the expected number of
false alarms, NFA, using the modified background model
and comparing it to a threshold.

As done in several a contrario applications, we shall es-
timate the more complex model from the given image. Note
that the enhanced background model does not need and
should not reflect the true probability model of the given im-
age. Such a theoretically perfect model would consider any
visual event present in the image, whether it is of interest to
the application or not, as “background”, and would therefore
be unable to detect anything in this image. Care should thus
be taken not to make the model overly powerful. Besides, es-
timating a very high order model from a single image would
be unfeasible due to the curse of dimensionality.

We propose a model that is just a little more complex
than the independence based model. In this paper we shall
consider simple graphical models that are based only on a
subset of first and second order statistics. That is, let Xi be
a binary random event which gets the value ‘1’ when the
ith sub-event succeeds. Then the models we use here are
parameterized by the probabilities {P(Xi),P (Xi,Xj )}.

Rather than giving a general formulation and then reduc-
ing it for the particular tasks, we prefer a more concrete de-
scription of the formulation in the context of two tasks. The
next section describes a relatively simple variation on the
alignment task, which uses a Markov model to specify the
background model. Then, Sect. 4 describes a more elabo-
rate part-based object detection algorithm, which uses a tree-
based graphical model to specify the background model.

3 Line Segment Detection Using Second Order
Statistics

As already said, most a contrario methods validate events
that are unlikely under the hypothesis of i.i.d. sub-events.
In particular, the original line segment detection method in-
troduced in Desolneux et al. (2000) relies on the following
background model: orientations of the gradient at each pixel
are independent and uniform random variables. It is shown
in Desolneux et al. (2000) that, for pixels that are 2 pixels
apart, this hypothesis is exactly satisfied in Gaussian white
noise and is almost true in some other white noise signals
such as uniformly distributed white noise.

While the i.i.d. model works surprisingly well for detect-
ing line segments and edges in natural images, it is obvi-
ously not justified for some images in which lines should
not be detected. A simple example would be micro-textures
that can be modeled as colored noise (Galerne et al. 2010).
When the original segment detection procedure, runs on a

colored noise image, many lines are erroneously detected;
see Fig. 5 for a 512 × 512 image obtained as the convolu-
tion of white noise with a Gaussian kernel (s.d. = 5), where
about 3500 segments are detected. Similarly, lines are de-
tected in natural textures; see Fig. 6.

The validity of the independence assumption in natu-
ral images may be challenged by performing a χ2 test
on the empirical joint probability of pixel alignments;
see Sect. 5.1.1. Such a test clearly concludes to non-
independence, even in the absence of alignments in images.

Our hypothesis is that the excessive detections reported
above arise from the use of an inadequate background
model. It is therefore of interest to investigate more elab-
orate background models that would preclude detection in
these arguably structureless situations. In this section, after
reiterating the original segment detection procedure, we ex-
plain how to refine the detection by modeling the dependen-
cies between adjacent pixels.

Original Segment Detection For a segment S having
length l, let X1, . . . ,Xl be the functions taking value one
when the gradient orientation at the ith pixel is perpendicu-
lar to the orientation of S, up to a precision angle pπ (with
0 < p < 0.5), and zero otherwise. Then, L(S) = ∑l

i=1 Xi is
the number of aligned pixels in S.

The principle of a contrario detection is to consider a
random segment S′ and to set a threshold T on L(S′) so
that P(L(S′) ≥ T ) is small enough. The random segment
is assumed to follow the structureless background model
already mentioned. In the original formulation (Desolneux
et al. 2000), the background model specifies the variables
Xis as i.i.d. Bernoulli variables with parameter p. This is the
case if the gradient orientations at different pixels are i.i.d.
uniformly distributed variables on [0,2π]. Therefore, for a
segment S′ of length l, following the background model im-
plies that the number of aligned pixels follows a binomial
distribution. That is,

P
(
L

(
S′) ≥ k

) =
l∑

i=k

(
l

i

)

pi(1 − p)l−i .

The NFA of a given (deterministic) segment S is then de-
fined as

NFA(S) := N4P
(
L

(
S′) ≥ L(S)

)

= N4
l∑

i=L(S)

(
l

i

)

pi(1 − p)l−i , (1)

where the image is of size N × N . The segment is validated
if NFA(S) ≤ ε, where ε is a constant. This definition is valid
because, by using this decision step, the mathematical ex-
pectation of the number of detected segments in the back-
ground model (white noise) is less than ε. This result relies
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on the linearity of mathematical expectation, and on the fact
that N4 is the number of segments in the image (N2 choices
for each extremity of a segment). It is usually reasonable to
set ε = 1, therefore ensuring no more than one detection in
white noise, on the average.

Other a contrario line detection methods such as the
LSD (Grompone von Gioi et al. 2010) or the multi-segment
detector (Grompone von Gioi et al. 2008) rely on the inde-
pendence assumption as well.

Detection with Second Order Modeling In this section, we
consider a background model in which some low order de-
pendencies between sub-events are modeled, and propose to
base the setting of the decision function L(S) on it. We spec-
ify the background model, determining the joint distribution
of the variables X1, . . . ,Xl by a Markov chain of order one.
That is, we specify that for all 1 < i ≤ l,

P(Xi = xi |Xi−1 = xi−1, . . . ,X1 = x1)

= P(Xi = xi |Xi−1 = xi−1).

The background model is isotropic (identical for all seg-
ment orientations) and homogeneous (stationary) so that
for all lines it is characterized by the transition probabili-
ties, P(X1 = x1|X0 = x0), for x1, x0 ∈ {0,1}. For brevity
we sometimes refer to the values of these probabilities as
P(1|1),P (1|0), etc. These values are learned from the im-
age at hand, simply by computing empirical frequencies, as
further detailed in the experiments in Sect. 5. Observe that
segments are not oriented, so that the Markov chain is in fact
assumed to be reversible. This is however not a limitation,
since it is easily seen that a two-state Markov chain is always
reversible.

The probability under the background model to observe
a segment with length larger than or equal to k is then com-
puted as

P
(
L

(
S′) ≥ k

) =
∑

x1+···+xl≥k

P (X1 = x1)

×
l∏

i=2

P(Xi = xi |Xi−1 = xi−1). (2)

Then, segments are detected exactly as before. That is, a seg-
ment S with L(S) aligned pixels is kept if

NFA(S) := N4P
(
L

(
S′) ≥ L(S)

) ≤ ε,

where S′ is a segment following the background model. Ob-
serve that, as in the original NFA, this quantity only de-
pends on L(S), the number of aligned points in S. More-
over, if P(X1 = x1|X0 = x0) = P(X1 = x1|X0 = 1−x0) for
x1, x0 = 0,1 then both NFAs (in the dependent and indepen-
dent cases) are identical, as is easily seen from Formula (1)

and (2). Another implication of this formula is the minimal
length a segment should have to be detected, obtained in a
way similar to the independent case. For both cases, the min-
imal segment length is easily obtained from the NFA associ-
ated with segments where all pixels are aligned. This mini-
mal length is equal to (log(ε) − 4 log(N))/ log(p) in the in-
dependent approach, as may be seen from Formula (1), and
equal to (log(ε)−4 log(N)− log(P (1)))/ log(P (1|1)) in the
dependent approach, as may be seen from Formula (2). Ob-
serve that this second quantity involves a conditional proba-
bility that is learned from the image. We will see in the ex-
perimental section that statistics on a typical natural image
yield larger minimum lengths in the dependent case than in
the independent one, and more generally that detection using
the dependent approach is more conservative, that is, yields
less detections.

Practical Computation of the NFA The expression (2) for
the probability P(L(S) ≥ k) seems computationally hard to
evaluate. Note that because it depends on the transition prob-
abilities, which, in turn, depend on the specific tested im-
age, it cannot be precomputed. We now show that it may be
computed efficiently, in polynomial time, using a dynamic
programming algorithm (Cormen et al. 1990). In order to
compute P(L(S′) ≥ k), we write Yi = ∑l

j=i Xj and com-
pute P(Yi ≥ k) (for all k ∈ [0, l − i + 1]) by a descending
induction on i. Indeed, we first observe that for i ≤ l − 1,

P(Yi ≥ k) = P(Yi+1 ≥ k|Xi = 0)P (Xi = 0)

+ P(Yi+1 ≥ k − 1|Xi = 1)P (Xi = 1).

Next, we have that, for x ∈ {0,1} and k′ ≥ 1,

P
(
Yi+1 ≥ k′|Xi = x

)

=
∑

y∈{0,1}
P

(
Yi+2 ≥ k′ − y,Xi+1 = y|Xi = x

)

= P
(
Yi+2 ≥ k′|Xi+1 = 0

)
P

(
Xi+1 = 0|Xi = x

)

+ P
(
Yi+2 ≥ k′ − 1|Xi+1 = 1

)
P

(
Xi+1 = 1|Xi = x

)
.

(3)

Note that P(Yl ≥ k′|Xl−1 = x) may be easily computed:
P(Yl ≥ 0|Xl−1 = x) = 1,P (Yl ≥ 1|Xl−1 = x) = P(xi =
1|Xi−1 = x),P (Yl ≥ 2,3, . . . |Xl−1 = x) = 0. Therefore,
P(Yi ≥ k), for all k, can be computed by induction. Note
that this computation, which takes O(l2) time and O(l2)

space, is performed only once using l = N
√

2 (maximum
length for a segment in the given image) in order to allow
the computation of the NFA for all possible segments.

Experimental results using the second order modeling of
segments are presented and discussed in Sect. 5. The inter-
ested reader may skip the next section, devoted to part-based
object detection, and go directly to the experiments.
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4 A Contrario Based Object Detection

4.1 The Detection Task

We now consider the task of object detection, where a de-
cision is made as to whether an object belongs to a given
category. The common approaches to this well-studied task
use part-based representations that can handle the high vari-
ability of objects in the same category and detect them ac-
curately; see some examples in Vidal-Naquet and Ullman
(2003), Fergus et al. (2007), Zhang et al. (2007), Sivic et al.
(2005).

Due to the difficulty in modeling the appearance of ob-
jects, detection algorithms are usually constructed from ex-
amples, using learning techniques. They are trained as clas-
sifiers, using training sets containing images of objects from
the category to be detected (positive examples, or targets)
and images of objects from other categories (negative exam-
ples, or non-targets). The detection function is specified up
to a set of parameters, and these are optimized by minimiz-
ing some combination of miss and false detection training
errors. The detection reliability is evaluated by testing the
algorithm on a set of validation data. Naturally, when the
test conditions differ from the training conditions, both the
detection performance and its predictability may deteriorate.

The detection algorithm considered in this paper uses
very limited training data and the information in the given
image (inside and outside the subimage candidate window)
to decide whether an object belongs to a given category. The
part-based model is specified from a training set contain-
ing only positive examples. Important parameters, such as
the appearance similarity threshold and the actual number
of parts, are not specified in advance (i.e., in the training
phase) but determined using the a contrario tools, from the
(test) image statistics.

In practice, we found that using an independence as-
sumption, while it indeed adapts to the image and performs
reasonably well, results in many more false detections than
it should. Investigating this problem was actually the moti-
vation for our proposed non-independence based a contrario
approach. With the independence assumption removed and
replaced with a simple second order statistics based model,
predictions of the number of false detections became fairly
accurate.

4.2 A Part-Based Model

The detection algorithm compares the description of the ob-
ject category (model) to subimage candidates and decides
independently, for every subimage, whether it belongs to the
model category.

We consider a relatively simple part-based approach.
Both the model and the subimage candidates are repre-
sented in the same way, by a set of local descriptors, which

Fig. 2 An example of the part-based model. Red rectangles corre-
spond to the image patches, which are used for the calculation of the
appearance part descriptors. Blue rectangles are the part location re-
gions S M

k (Color figure online)

are specified by locations and appearances. Specifically, the
model M consists of K parts, contained in a bounding box:
M = {Mk = {S M

k , A M
k } k = 1,2, . . . ,K}, where S M

k is
the part location and AM

k is the part appearance. The di-
mensions of the bounding box are part of the model as well.

The part location S M
k describes the location of the part

center in normalized coordinates: every bounding box is
mapped to a 1 × 1 square and every point is associated with
normalized coordinates in this square. See Fig. 2 for an ex-
ample of the model part locations.

The appearance descriptor is calculated from an image
patch corresponding to a part. We used the popular his-
togram of local intensity gradient orientations (HOG) (Dalal
and Triggs 2005), which is a simplified version of the SIFT
descriptor (Lowe 2004). Following Dalal and Triggs (2005),
the descriptors are constructed as follows: A 16 × 16 patch
describing the part is divided into 4 smaller spatial regions,
each of size 8 × 8, denoted cells. After smoothing, each
cell is described by a local 1D weighted (9 bin) histogram
of gradient orientations. The histograms of the four cells
are concatenated into a one-dimensional vector. The 36-
dimensional vector is normalized to make it more robust
to illumination changes and shadows. This vector is the ap-
pearance descriptor associated with every part and its cor-
responding 16 × 16 image patch. For more details on HOG
descriptors, see Dalal and Triggs (2005).

The parts and parameters characterizing the model can be
specified in many ways. Both the detection process proposed
below and the accompanying analysis would be similar for
different model choices. In particular, we could specify the
model using a semi-supervised algorithm (see, e.g. Fergus
et al. 2007) and optimize its choice so that it would per-
form best on training data. However, achieving competitive
performance was not our goal here, and may not be possi-
ble with this relatively simple detection method. Moreover,
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following the a contrario spirit, we preferred to specify the
model with as little training data as possible.

To specify the model, we used only positive example im-
ages, with the objects marked by a bounding box. One of
these images was arbitrarily selected to be the source of all
parts, and all others served as a validation set. Intuition tells
us that a good part should be close, in location and in appear-
ance, to regions describing the same part in many images of
the same category. All 16 × 16 patches in the bounding box
of the selected image were considered, one by one (in arbi-
trary order), as candidates to be a model part. A tested patch
was selected to be a model part if the following two require-
ments were met: a. In at least two-thirds of the (30) valida-
tion images, there was a patch that was close to the tested
patch in appearance and in space. b. The tested patch was
not close in space to an already selected model part. Patches
were considered to be close in appeareance if Euclidean
distance between appeareance descriptors was smaller than
0.05. Patches were considered to be close in space if the
maximal difference between both patch center coordinates
was less than 0.1.

4.3 The Detection Process

The detection process follows a standard procedure and tests
the presence of the object at multiple locations in a given
test image. Every location specifies a subimage candidate.
Each subimage is described by a set of features, Cn, which,
similarly to the model parts, consists of spatial (location)
and appearance (histogram of gradients) descriptors.

The set of local descriptors associated with the subim-
age is compared to the model. The following notation will
be useful. We say that the kth part is δ-detected for a given
subimage candidate if there is a feature in Cn satisfying two
demands: a. its location is close enough (closer than a given
threshold �S) to the model part’s center and b. the distance
between its appearance and that of the kth part is smaller
than δ. (The metric and the threshold δ are specified be-
low.) When appropriate we omit the explicit reference to the
threshold δ.

Detecting many parts provides strong evidence that the
subimage candidate is indeed an instance of the model. In
practice, some parts are often occluded or significantly de-
formed. Therefore, we adopt the following simple decision
rule:

Decision rule Accept the subimage candidate as an object
instance if a sufficient number (Kmin) of parts are δ-detected.
Otherwise, reject this hypothesis.

To use this simple decision rule effectively, we should
have a method for setting the threshold δ. The a contrario
analysis provides this threshold indirectly as explained be-
fore. Essentially, given a subimage candidate, the analysis

uses the minimal δ value for which this candidate is ac-
cepted (most conservative decision), and calculates the ex-
pected number of false detections (NFA) associated with this
threshold in a background model. The subimage candidate is
accepted if the NFA is small enough. Because the NFA de-
pends on the given image, the uniform threshold on the NFA
is an image adaptive threshold on the appearance distance.
We now give a complete pseudo-code for the detection pro-
cess.

Formal description of the detection process
Input: an image I , a model with K parts, and a thresh-

old ε.

1. Sample the image in a stride of 4 pixels, extract a set of
features {cl = (S c

l , Ac
l , )}Ll=1. Ac

l is the HOG appearance
descriptor calculated over a 16 × 16 pixel region and S c

l

is the corresponding location (center of the region).
2. Specify a set of subimage candidates (denoted {Rn}Nn=1)

using some dense spatial grid; see the note below. De-
scribe every subimage candidate by the corresponding set
of features Cn.

Cn = {
cl : S c

l ∈ Rn

}
.

Normalize the feature coordinates relative to the candi-
date subimage so that all normalized spatial coordinates
are in [0,1]. The notation S c

l,n is used for the normalized
coordinates.

3. For every subimage candidate Rn described by Cn (1 ≤
n ≤ N ):
(a) For every model part Mk (1 ≤ k ≤ K) of the model

M, find the distance d(Cn, Mk) between the subim-
age candidate and the kth part as follows:
(i) Find all candidate features that satisfy the fol-

lowing spatial constraints for this part, and de-
note them by Cn,k

Cn,k �
{
cl : cl ∈ Cn and

∥
∥S c

l,n, S M
k

∥
∥∞ ≤ �S

}
,

where ‖.‖∞ is the L∞ norm (maximal entry) on
the 2D plane.

(ii) The distance between the subimage candidate
and the kth model part is the minimal distance
between the appearance descriptors in Cn,k and
the model part appearance,

d(Cn, Mk) �
{

∞ Cn,k = ∅
minc∈Cn,k

dA(Ac, A M
k ) otherwise

(4)

where dA is the L1-norm distance between ap-
pearance descriptors.
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Fig. 3 An example of the detection process. (a) A few of the model
candidates (subimages) extracted from the image. The number inside
the rectangle is the appearance distance between the model and the
candidate. The blue rectangle is the best candidate found in this image.
(b) A closer look at a single candidate. The blue rectangles correspond

to (some of) the features extracted from the candidate. The green di-
amond markers denote the corresponding feature location. A feature
may match a model part if its center is in the corresponding (red) re-
gion. Note that more than one feature corresponds to every model part
(Color figure online)

(b) Normalize d(Cn, Mk) to get dnorm(Cn, Mk) as de-
scribed in Sect. 4.4.2.

(c) Calculate the distance between the model and the
subimage candidate as

d(Kmin)(Cn, M)

� Kminth smallest distance of
{
dnorm(Cn, Mk)

}K

k=1. (5)

See Fig. 3 for an example of the detection process.
(d) Calculate the expected number of false detections,

NFA(Cn, d(Kmin)(Cn, M)), that would occur if we
apply a decision rule that accepts this subimage can-
didate in a random image; see Sect. 4.4. Decide to
accept the candidate as a model instance if the NFA
is smaller than a threshold ε.

Notes

1. For multiscale detection, we repeat this process with a set
of scaled versions of the input image. We used Ns = 8
scaled versions of the image I with a scaling step of
s = 1.08 (multiplicative). This modification only makes
a difference in calculating the NFA; see Sect. 4.4.4. Oth-
erwise the algorithm is unchanged.

2. As described above, the algorithm is specified up to the
distance normalization and the NFA estimation, which
are described below.

3. The threshold ε is meaningful: it is the expected number
of false detections. It can be specified according to the
task requirements but does not depend on the model or
the image. Therefore it does not need tuning.

4. In our implementation, the candidate subimages have
a size of 128 × width so that each subimage has the

same height/width ratio as the bounding box used for the
model. The centers of the candidate subimages are on
a 4 × 4 grid. The other parameters of the algorithm are
the spatial uncertainty in part location �S, always set as
�S = 0.1, and the number of parts Kmin, to which the
detection is not very sensitive; see Sect. 5.2.

5. A more elaborate version of the algorithm, not pre-
specifying the number of parts Kmin, is possible as well.
In this version we simply repeat the detection process
with different values of Kmin. Like the multiscale ver-
sion, this modification only makes a difference in calcu-
lating the NFA; see Sect. 4.4.4. Otherwise the algorithm
is unchanged.

4.4 Predicting the NFA with Independent Parts

4.4.1 The Background Image Model

An arbitrarily chosen subimage is usually not similar to the
model, and its appearance distance from the model is there-
fore large. Accepting subimage candidates associated with
a large appearance distance to the model, d(Kmin)(Cn, M),
implies, intuitively, that candidates which do not correspond
to the model still have a high probability of acceptance.

To estimate the false detection probability, we need the
distribution of such distances for randomly picked candi-
dates. This distribution is, however, both too complex and
unknown. Using the a contrario methodology, we replace
it with a well-defined probability of a “background model,”
which is still related to the given image.

This background model does not provide an explicit dis-
tribution for full images, and is rather a model for a subim-
age candidate. Moreover, this model is specified only par-
tially, by the set of the distances {d(C′, Mk)}Kk=1 between an
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object model part and the random image candidate C′. These
distances, which are regarded as random variables, are as-
sumed to be characterized by a simple joint distribution, sat-
isfying that the K distances are either independent random
variables or weakly dependent variables. We start with the
classic and simpler case, where the variables are supposed
to be independent, and then consider, in Sect. 4.5, the gen-
eralized, more complicated, one. For the simpler case, the
marginal probability distributions {P(d(C′, Mk) ≤ α)}Kk=1
are estimated empirically from a set of subimage candi-
dates C :

P
(
d
(
C′, Mk

) ≤ α
) = 1

‖C‖#
{
C′′ ∈ C, d

(
C′′, Mk

) ≤ α
}
.

(6)

The set C is usually the set of all subimage candidates in the
given image. When assuming independence between parts,
the (estimated) marginal probabilities completely specify
the joint distribution, and therefore suffice for the analysis.

4.4.2 Normalizing d(Cn, Mk)

Calculating the distance between a model and a subim-
age candidate, as defined in (5), requires that the distances
associated with the model parts be sorted. To compare
the distances meaningfully, they should be brought to the
same scale or, in other words, normalized. As in Muse
et al. (2006), the normalized distance dnorm(Cn, Mk), cor-
responding to the un-normalized distance d(Cn, Mk), is de-
fined as:

dnorm(Cn, Mk) = P
(
d
(
C′, Mk

) ≤ d(Cn, Mk)
)
, (7)

where the probability function P is taken from (6).
An additional advantage of this normalization is that the

distance becomes meaningful by itself: it is the empirical
probability that we get a distance of at most d(Cn, Mk)

if we pick a random candidate following the background
model. Using the notation introduced in Sect. 4.3, it is the
probability that the kth part is d(Cn, Mk)-detected in a ran-
dom candidate. Note that the normalized distance distribu-
tion is uniform in [0,1].

4.4.3 Calculating the Probability of a False Alarm for a
Specific Subimage Candidate

Consider a subimage candidate Rn, represented by its set
of features Cn. Recall that d(Kmin)(Cn, M) is the Kminth
smallest distance from a part of the model to Cn, as defined
by Formula (5). By the Helmholtz principle, this subim-
age should be accepted only if its distance from the model
is small enough to be very unlikely in a random situation
(the background model). Let us write PFA(Cn,Kmin, M)

for the probability that, under the background model, a can-
didate subimage contains at least Kmin parts at distance
d(Kmin)(Cn, M) from the model. Observing that
P(dnorm(C′, Mk) ≤ α) = α, we get,

PFA(Cn,Kmin, M) =
K∑

l=Kmin

(
K

l

)
(
d(Kmin)(Cn, M)

)l

× (
1 − d(Kmin)(Cn, M)

)K−l
. (8)

4.4.4 NFA Calculation

After computing the probability of false detection for a par-
ticular subimage candidate (in the previous section), the next
step is to control the number of false detections when the
detection procedure is run on the whole image. Calculating
the probability of one false detection or more in the image
is complex due to the dependencies between the detection
events corresponding to the different candidates. Therefore,
the a contrario methodology uses a simpler criterion: the ex-
pected number of false detections in a random image. Recall
that N is the number of candidates in a single image associ-
ated with the basic (coarsest) scale and with a specific Kmin

value. Then, the expected number of false detections is sim-
ply

NFA(Cn,Kmin, M) = N · PFA(Cn,Kmin, M).

For the multiscale version let Ns be the number of scaled
versions of the input image that are used. These versions are
scaled by a multiplicative scale factor s (set as 1.08 in our
implementation). The number of candidates decreases by s2

when scaling down the image. Therefore the total number of
candidates is N(1 + s2 + s4 + · · · + s2Ns ), which by using
geometric progression, gives

NFA(Cn,Kmin, M) = N
1 − s2Ns

1 − s
· PFA(Cn,Kmin, M).

Running the detection process with more than one value
of Kmin would also be possible. Let Nk be the number of
Kmin values that are used. Then the number of candidates
that are tested is simply NkN and

NFA(Cn,Kmin, M) = NkN · PFA(Cn,Kmin, M).

The actual decision whether to accept the sub-image candi-
date as a model instance is made by comparing the NFA to a
threshold ε, and accepting the sub-image if the NFA is lower
than ε.

4.5 Predicting the NFA with Dependent Parts

The background model described in the previous section is
based on the assumptions that the distances between the can-
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didate and the various model parts are i.i.d. random vari-
ables. This assumption can naturally be challenged, espe-
cially as the parts may be spatially close or even overlap-
ping, which makes their content related. We found indeed
that predicting the false detection rate using this simple
background model gives inaccurate results. The actual num-
ber of false detections in most non-target images is much
larger than ε, implying that the independence based model
is not a good background model for the real image; see
Sect. 5.2. Therefore, we now propose a generalized back-
ground model, which better fits the task of part-based detec-
tion in natural images.

Note that the detection process is almost the same. The
only change is in the decision step, where the NFA is calcu-
lated in a different way.

4.5.1 A Background Model from a Tree-Based Distribution

As in the independence based analysis, we regard part detec-
tion as a random event and calculate the probability of object
detection in the background model from the joint detection
probabilities of the different parts.

Unlike the classic a contrario approach, we consider the
case where the detection of different parts may be corre-
lated. We know intuitively that the detections of two parts
are more correlated when the spatial distance between them
is smaller. This observation is indirectly supported by our
experiments.

We describe this correlation model using a graph G =
(V ,E), where the vertices, V = {vk}Kk=1, correspond to the
model parts, and the weights of the edges Eij are spatial
distances between the parts in the model. A set of random
binary variables X = {Xk}Kk=1 is associated with V , with Xk

taking the ‘1’ value when the kth part is detected and ‘0’
otherwise.

Every pair of variables (Xi,Xj ) is, in principle, corre-
lated. To handle the dependencies in a tractable way, we ap-
proximate the joint distribution specified by all the correla-
tions (which is a second order approximation of the true dis-
tribution) by a simpler one which depends only on some of
the stronger correlations. Specifically, we describe the joint
probability of part detections P(X1, . . . ,XK) by a graphi-
cal model where the graph is the minimum spanning tree
(MST) of G. That is, the joint probability depends only on
the correlations associated with the edges of this MST. Note
that while the tree topology is specified by the distances,
the joint probability is specified by the actual (estimated)
correlations associated with the edges. Assuming that the
correlations are monotonically non-increasing with the dis-
tance, choosing the distribution specified by this tree (see
below) is better than choosing a distribution specified by
any other tree, in the sense that the resulting distribution is
the best approximation of the true distribution according to

Fig. 4 Minimum spanning tree for the model parts

the Kullback-Leibler divergence (Chow and Liu 1968). See
Fig. 4 for an illustration of the MST model, corresponding
to one model image.

Thus, the joint probability of the part detection events is
specified by:

P(X1, . . . ,XK) = P(Xroot)

K∏

k=1,k 
=root

PC(Xk), (9)

where

PC(Xk) = P(Xk|Xparent(k)), (10)

and where root is some vertex of the MST that is chosen
to be the root, and parent(k) is a parent of a vertex (part)
k in the MST. Recall that the joint probability of a directed
graphical model does not depend on the choice of the root
(Pearl 1988).

4.5.2 Estimating the Empirical Distributions
P(Xk|Xparent(k))

The variables {Xk} are binary. Therefore every distri-
bution PC(Xk) is specified by 2 probabilities, P(Xk =
1|Xparent(k) = 0), P(Xk = 1|Xparent(k) = 1). For brevity
we sometimes refer to the values of these probabilities as
P(1|0), P(1|1), etc. Both the PC(Xk) and the P(Xroot) dis-
tributions are empirically estimated from the image itself.
Note that the MST specifying the graphical model does not
depend on the threshold δ but the detections do. Therefore,
the distributions are estimated for a range of δ values. Let
Xk,m be the indicator

Xk,m =
{

0 dnorm(Cm, Mk) > δ

1 dnorm(Cm, Mk) ≤ δ
(11)

corresponding to the threshold δ, the kth part, and the candi-
date Cm (1 ≤ m ≤ N ). We use the index m (and not n) here
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to emphasize that these candidates are used to construct the
empirical distribution, and not to test a particular candidate.

The empirical probabilities, Pδ(Xk|Xparent(k)) and
Pδ(Xroot), are estimated by:

Pδ

(
Xk = xk|Xparent(k) = xparent(k)

)

= |{m : Xk,m=xk, Xparent(k),m =xparent(k),1 ≤ m ≤ N}|
|{m : Xparent(k),m = xparent(k),1 ≤ m ≤ N}| ,

Pδ(Xroot = xroot) = |{m : Xroot,m = xroot,1 ≤ m ≤ N}|
N

,

(12)

where xk, xparent(k), xroot ∈ {0,1}.
Note that the MST structure (connectivity) depends on

distances and is therefore completely identical for evaluating
different hypotheses in the same image and also in different
images. The MST correlations and the implied conditional
probabilities depend on the particular image. They will be
the same for all hypotheses in the same image but may be
different from image to image, which is an advantage, be-
cause this way the decision process adapts itself to image
similarities.

4.5.3 PFA Calculation with Dependent Parts

Suppose that the joint distribution, P(X1, . . . ,XK), is cal-
culated as described above. Recall that the model is de-
tected when at least Kmin parts of the model are detected.
Then PFA(Cn,Kmin, M) is the sum of joint assignments of
{Xk}Kk=1 satisfying

∑K
k=1 Xk ≥ Kmin. From (9), it follows

that

PFA(Cn,Kmin, M)

=
∑

∑K
k=1 Xk≥Kmin

P(X1, . . . ,XK)

=
∑

∑K
k=1 Xk≥Kmin

Pd(Kmin)(Cn,M)(Xroot)

×
K∏

k=1,k 
=root

Pd(Kmin)(Cn,M)(Xk|Xparent(k)), (13)

where the sum is over all vector assignments satisfy-
ing

∑K
k=1 Xk ≥ Kmin. As before, NFA(Cn,Kmin, M) =

N · PFA(Cn,Kmin, M). We will see in the experiments
(Sect. 5.2) that using the MST background image model
gives much more accurate predictions than when assuming
independent parts.

4.5.4 Fast PFA(Cn,Kmin, M) Calculation

Straightforward calculation of PFA(Cn,Kmin, M) requires
evaluating the sum of approximately 2K different detection

combinations and might be prohibitive for a large number
of parts. Note that PFA(Cn,Kmin, M) must be calculated
online, as part of the detection phase, because it is based on
the given image. We now describe an efficient yet precise
algorithm for PFA calculation in the MST model.

Our goal is to calculate the probability of detecting at
least Kmin parts, PFA(Cn,Kmin, M). We solve this prob-
lem by solving another problem: calculating the probability
of detecting exactly k parts, where 0 ≤ k ≤ K . The latter
problem is solved for all k’s simultaneously. Similarly to the
simpler model described in Sect. 3, the solution is recursive.
It decomposes a tree into the root and several unconnected
subtrees. Each subtree contains a single child of the root.
The probability of detecting k parts is calculated for each
subtree and then merged to get the result for the whole tree.
The following terms are used:

• T : MST with K nodes/parts.
• i: (1 ≤ i ≤ K), an index, corresponding to one model part

and one node in the MST.
• Xi : A binary variable describing whether the part is de-

tected.
• ch(i): The set of children of node i, as specified by the

tree structure, and the choice of the root.
• Ti a subtree containing the node i as a root, and all its

descendants.
• Pk(Ti |xi): The probability to detect exactly k parts in the

subtree Ti conditioned on its root value xi ∈ {0,1}.
• P(Ti |xi): The (K +1) dimensional vector of probabilities

P(Ti |xi) = {Pk(Ti |xi)}Kk=0.
• Pk(T ): The probability to detect exactly k parts in model

tree T .
• P(T ): The (K + 1) dimensional vector of probabilities

P(T ) = {Pk(T )}Kk=0.
• δxi

is a (K + 1) dimensional vector where all entries are
zero except one entry which is 1. For xi = 0, it is the first,
while for xi = 1 it is the second.

From the definitions above, it follows that

PFA(Cn,Kmin, M) =
K∑

k=Kmin

Pk(T )

P (T ) = P(Troot|Xroot = 0) · P(Xroot = 0)

+ P(Troot|Xroot = 1) · P(Xroot = 1).

P (Troot|xroot) is defined recursively by calculating
P(Ti |xi) for all children of the root. Each P(Ti |xi) is calcu-
lated in the same way. Recall that the distribution of a sum of
two random variables is the convolution of the two original
distributions. The number of detected parts in a tree is the
sum of the number of detected parts in the subtrees and the
tree’s root. Therefore, given the distributions of the number
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of detected parts in each of the subtrees as well as the distri-
bution of the root, they are convolved to get the distribution
of the number of detected parts in the tree. Explicitly,

P(Ti |xi) = δxi
∗ (∗n∈ch(i)

(
P(Tn|Xn = 0)

× Pδ(Xn = 0|Xi = xi)

+ P(Tn|Xn = 1)Pδ(Xn = 1|Xi = xi)
))

, (14)

where ∗ is the convolution operator. The inner convolution
is between all children of the node i, and the outer one cor-
responds to the convolution with the root distribution. Note
that as we calculate conditional distributions, the value xi

is known and therefore the corresponding distribution δxi
is

known (and specified above). The final algorithm is again a
kind of dynamic programming algorithm where the proba-
bilities are calculated by backward induction starting from
the leaves. For every node we need to calculate only two
probability vectors P(Ti |xi); one for xi = 0, and one for
xi = 1. Therefore the calculation is extremely efficient. In
our experiments we found that it takes no longer than 4 ms
(Python implementation, with 2.8 GHz CPU) for a model of
up to 30 parts.

5 Experiments

This section describes the empirical testing of the proposed
detection procedures.

5.1 Line Segment Detection Using Second Order Statistics

The proposed approach for line segment detection differs
from the original method (Desolneux et al. 2000) in that it
uses second order dependencies. These are inferred from the
image at hand. As demonstrated below, taking second order
statistics into account yields results that are significantly dif-
ferent from the original method. We run every test using the
two versions described in Sect. 3:

1. The original a contrario method (Desolneux et al. 2000),
based on the independence assumption (and a uniform
distribution of orientations). It is denoted here original.

2. The proposed method, which uses a dependence model
learned from the image. It is denoted as dependent.

For both methods, the precision at which a pixel is con-
sidered aligned with a segment is chosen to be p = 1/16.
Unless otherwise specified (as in Experiment 4, Sect. 5.1.2)
the detection is performed by considering evidence from
pixels that are 2 pixels apart (as in Desolneux et al. 2000).

For the dependent method, edge orientation statistics are
calculated from the test image. Recall that for a given line
and a pixel with index i, we write Xi for the variable equal
to one if the pixel is aligned with the line (up to precision p)

Table 1 Estimated conditional probability of orientation consistency
at adjacent pixels, for various images. The “Lena” image is the classic
512 × 512 version. The “land” and “wall” images are visible in Fig. 6,
bottom, and 7, bottom, respectively. The colored noise is obtained by
filtering a white noise image with a Gaussian kernel with std = 5

P (0|0) P (0|1)

Lena 0.9465946 0.780059

Land 0.943820 0.815936

Wall 0.943294 0.823705

Colored noise 0.971864 0.417353

and 0 otherwise. From now on, we will call Xi the consis-
tency of pixel i (the pixel i is said to be consistent with the
considered line if Xi = 1). All lines that start and end on
the image borders were considered for the computation of
these statistics. In most experiments, where a sampling step
of 2 was used, all pixel pairs whose locations along the line
differ by 2 were used to estimate the second order statis-
tics. That is, we used the pixel pairs for which there is ex-
actly one pixel on the line between the two pixels in the
pair. Then, P(Xi = 1,Xi−1 = 1), for example, is estimated
by the fraction of pairs taking values (1,1). The statistics
estimates were averaged over all lines. We first give some
numerical values for these estimated statistics in Sect. 5.1.1.
Then, in Sect. 5.1.2, we show detection experiments on sev-
eral images. Finally, in Sect. 5.1.3, we investigate the valid-
ity of the first order Markov assumption on orientations as
well as the potential of higher order modeling.

5.1.1 Orientation Dependency

As a first result, we display the conditional probability esti-
mated on several images by the procedure described above.
We write P(0|0) for P(Xi = 0|Xi−1 = 0), etc. In all cases,
the estimated value P(Xi = 1) was, not surprisingly, very
close to the theoretical p = 1/16 value. As may be seen from
Table 1, the second order statistics differ for images with dif-
ferent content. P(0|0) was usually around 0.95, which is a
little higher than P(0). P(1|1) varied significantly, roughly
from 0.1 to 0.6. The estimated probability for two adjacent
pixels to both be consistent is much greater in natural images
than under the independence assumption. Since we consider
pixels to be adjacent when they are at a distance two apart,
this observation is not due to the 2 × 2 neighborhood used
to compute the gradient.

From these values, we can also perform a χ2 test on the
consistency at adjacent pixels (at a distance of 2 apart). For
the land image in Fig. 7, bottom, using 5.4M samples and
the values from Table 1, we conclude the non-independence
of samples with probability one, up to machine precision.
Such extreme confidence in the test is due to the high num-
ber of samples. This, in addition to detection experiments
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Fig. 5 Line segment detection
in colored noise (σ = 5) with
the two algorithms described
above, using ε = 1.0

Table 2 Number of detected segments in colored noise obtained from Gaussian kernels with varying standard deviation σ , using both the original
and the dependent methods (average over 20 runs)

σ 1 3 5 10 20 50

Number of segments—original 0.0 174.9 2923.0 20918.9 37011.0 32443.0

Number of segments—dependent 0.0 0.0 0.5 2.3 47.9 1895.0

in colored noise displayed in the next section, justifies the
modeling of the dependency between pixels to detect seg-
ments.

5.1.2 Detection Experiments

In this section, we compare the two detection methods (de-
pendent and independent) on several images. In all exper-
iments and for both methods, after segment detection, the
maximally meaningful segments were retained, following
the same procedure as in Desolneux et al. (2000). The same
value ε = 1.0 was used for all experiments. Unless other-
wise specified (that is, in experiment 1), pixels where the
gradient magnitude was very small (smaller than 2) were not
considered as supporting the segments (i.e., Xi = 0). Neither
were they taken into account for calculating the statistics for
the dependent method.

Experiment 1: Line Segment Detection in a Colored Noise
Image In this experiment random colored noise images are
generated by convolving white noise images with a Gaus-
sian kernel with standard deviation σ . In Fig. 5 a detection
experiment with σ = 5 is shown. The original method de-
tects many line segments (about 3000) while the proposed
dependency based method detects only 3 for this noise re-
alization. In this case, detecting no or very little segments
seems reasonable, although we are not aware of any psycho-
logical study about the visual perception of such structures

in colored noise. In Table 2, we display the number of seg-
ments that are detected in realizations of colored noise for
Gaussian kernels having standard deviation ranging from 1
to 50, both for the original and the dependent methods. Re-
sults are averaged over 20 runs. The original method falsely
detects many segments as soon as σ = 3, whereas false de-
tections using the Markov assumption only become numer-
ous at σ = 20. In order not to depend on the dynamic of the
colored noises, all detection experiments were performed
without any threshold on the gradient magnitude.

Experiment 2: Line Segment Detection in Real Texture Im-
ages Interestingly, colored noise is a realistic model for a
certain class of textures, the so-called micro-textures or ran-
dom phase textures: see Galerne et al. (2010). Such textures
are completely characterized by the modulus of their Fourier
transform. An example of a wallpaper image falling into
this category is shown in Fig. 6. In this case, the proposed
method detects far fewer segments, which seems justified.
We repeated the line detection experiment with more struc-
tured texture images, taken from the UIUC texture database.
We found that the dependency based method functions bet-
ter than the original in the sense that it detects fewer line
segments; see an example in Fig. 6. While the absence of lin-
ear structure is perhaps questionable in this case, it is clear
that many of the lines detected by the original method are
unjustified.
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Fig. 6 Line segment detection
in textures with the two
algorithms described above,
using ε = 1.0 in all experiments.
The first row is a texture from
the UIUC database. The second
row is a random-phase texture

Experiment 3: Line Segment Detection in Natural Images
We also demonstrate the difference between the detection
patterns in a natural image. It is sometimes difficult to tell
a false detection from a true one. See, for example, Fig. 7.
Both methods yield different results on this image, the de-
pendent one being more conservative in the detection. Some
spurious segments, as in the clouds, are no longer detected
when modeling dependencies, but some segments related to
rectilinear structures, as on the ground, disappear. Using the
learned conditional probability, one may also compute the
minimal length a segment should have to be detected, as
explained in Sect. 3. For this image, one obtains minimal
lengths equal (after rounding) to 10 and 15 pixels when us-
ing the independent and dependent methods, respectively.
Here too, the dependent approach is more conservative than
the independent one.

Experiment 4: Line Segment Detection Without Subsampling
We also tested the behavior of the proposed method in a case
where the orientations to be grouped are structurally not in-
dependent. To do so, we run segment detection by using all
pixels on each line and not only pixels that are 2 pixels apart.
In this case, orientations of neighbor pixels are dependent
also because gradients are computed using a 2×2 mask. The
first order Markovian assumption provides an approxima-
tion for this dependency. In order to run the detection using
the dependent method, we estimated the second order statis-
tics without subsampling as well. For the image of Fig. 7, the

estimate of P(1|1) is equal to 0.2830 when considering all
pixels and to 0.1819 when considering pixels at a distance of
2 apart. We can see in Fig. 8 that the independence assump-
tion yields an over-detection, while the dependency-based
method suffers less from the structural dependency. In fact,
the proposed dependent method seems to offset the depen-
dency similarly as the original method when using subsam-
pling, as may be observed in the clouds for instance. Exper-
imenting with other images of natural scenes and textures,
we found that the improvement is not systematic, but is sig-
nificant in most cases. Observe that a similar experiment is
performed in Grompone von Gioi et al. (2008), where it is
shown that considering all points with the original method
yields more details than using sub-sampling. However, it is
also shown on the examples considered in this paper that the
over-detection rate does not increase by much.

Experiment 5: Line Segment Detection and Blur Structural
dependency also occurs in the presence of blur. Here we test
how the method behaves when applied to an image contain-
ing an out-of-focus background. In Fig. 9, we see that the
dependent method resists this type of degradation better than
the original one, and accepts fewer spurious segments. This
is expected because, visually, the out-of-focus background
could be described as colored noise.

To summarize, in Sect. 5.1.2 we compared two ap-
proaches to line detection: the original independence based
approach and the proposed approach, which uses 2nd order
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Fig. 7 Line segment detection
in an image of the Old Town
Square in Prague (top) and in a
natural outdoor image (bottom),
with the two algorithms
described above, using ε = 1.0

Fig. 8 Line segment detection
without subsampling with the
two algorithms described above,
using ε = 1.0 in both
experiments

Fig. 9 Line segment detection
in blurred images. On this image
with an out-of-focus
background, the dependent
method detects fewer spurious
segments than the original one



Int J Comput Vis

statistical modeling. We demonstrated that the proposed line
detection algorithm detects fewer spurious lines in colored
noise, real textures and blurred image regions. A natural
question is whether using a higher order model is more ade-
quate. We consider this question in the next subsection.

5.1.3 Testing the Markov Assumption

Here we describe two experiments that further investigate
the dependency between orientation consistency at nearby
pixels. We shall be interested in the orientation consistency
in sets of pixels sampled along the line. In the first exper-
iment we shall use it to test whether the observed discrete
line is possibly a discretization of a continuous Markov pro-
cess. In the second experiment we come back to the discrete
domain and test whether the observed process is indeed a
first order Markov process or possibly a Markov process of
higher order.

We shall use the following notation. Let i1, . . . , in be a
sequence of indexes, corresponding to pixels on a line sam-
pled at the default interval (i.e., 2). We shall be interested
in some low dimensional particular cases of the joint prob-
abilities Pr(Xi1 = ε1, . . . ,Xin = εn) associated with these
sampled pixels and with values εi ∈ {0,1}. For these cases
we estimates the probabilities as empirical frequencies over
all sequences along some line and average the results over
all lines (in all directions), in the same way as it is done for
estimating first order conditional probability of orientation
consistency.

Continuous Markov Chains We would like to test here
whether the observed discrete orientation consistency pro-
cess is a discretization of a continuous Markov process. Our
motivation is to get a more complete understanding of the
statistical properties of the observed process, and in particu-
lar to test how these properties depend on the sampling step.

A (stationary) continuous stochastic process X(t) is a
continuous Markov chain if the following condition is sat-
isfied:

Pr
(
X(tn) = εn|X(tn−1) = εn−1, . . . ,X(t1) = ε1

)

= Pr
(
X(tn) = εn|X(tn−1) = εn−1

)
,

whenever t1 < · · · < tn. When the state space is binary, that
is when εi ∈ {0,1}, this hypothesis implies that

Pr
(
X(t) = 0|X(0) = 0

) = 1

a + b

(
af (t) + b

)
,

and

Pr
(
X(t) = 1|X(0) = 1

) = 1

a + b

(
a + bf (t)

)
,

where f (t) = exp(−(a + b)t), and a and b are infinitesimal
transition probabilities; see Grimmett and Stirzaker (2001,
p. 260).

Neglecting the necessary low-pass filtering in the sam-
pling operation, such a continuous underlying model for the
consistency implies that

Pr(Xn = 0|X0 = 0) + Pr(Xn = 1|X0 = 1) − 1

= exp
(−c(a + b) · n)

, (15)

where c is a constant related to the sampling step. In or-
der to check this hypothesis, we plot, in Fig. 10, log-linear
plots of this sum of conditional probability as a function
of n for a natural image (the land image was chosen be-
cause it does not contain prominent alignments) and for
a colored noise image (again with std = 5). These plots
shows that while the assumption that the process may be
regarded as a discretization of a continuous Markov pro-
cess is reasonably satisfied for the colored noise image
(despite some erratic oscillations), it is not a very accu-
rate model for the natural image. It seems that the statis-
tics of the natural image, however, exhibit linear behav-
ior in log-log plots (Fig. 10), which implies a power law
distribution for the combination of consistency given by
Formula (15). Such statistics, observed also for other nat-
ural images, are possibly explained by the scaling invari-
ance of images, which is at the origin of many power
law behaviors in the statistics of natural images (Ruderman
1994).

First Order Discrete Markov Model Additional investiga-
tion of the Markov property may be carried out simply by
estimating the probabilities

Pr(X2 = ε2|X1 = ε1,X0 = ε0).

The estimates, given in Table 3, demonstrate that the prob-
ability of getting a certain value does not depend only on
the previous sample but also on the one before it. Again
these estimates imply that modeling the data using a first
order Markov model is not precise. This observation was
confirmed on other images. We do not display the third or-

Table 3 Second order
conditional probability
estimated from two images.
P (0|0,0) stands for P (Xi =
0|Xi−1 = 0 and Xi−2 = 0), etc.

P (0|0,0) P (0|1,0) P (0|0,1) P (0|1,1)

Land 0.940560 0.912470 0.929588 0.885698

Colored noise 0.958440 0.701535 0.937086 0.526415
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Fig. 10 Conditional probability as a function of the distance for the
land image (top) and a colored noise with standard deviation 10 (bot-
tom). On the left: log-linear plot of the sum of conditional probability

given by Formula (15), on the right: log-log plots of the same quantity.
See the text for an interpretation

der conditional probability here, but it turned out that the
consistencies are also not fully captured by a second or-
der Markov model. Therefore, and even though the first or-
der model is beneficial as a background model, it would be
useful to investigate segment detection using higher order
Markov models.

In conclusion, the first order modeling of dependency
between consistencies is a reasonable working hypothe-

sis, leading to a background model that enables robust
segment detection. Although the background model is
not supposed to fully model the image, the first order
Markov model may nonetheless be a bit too crude. Finer,
higher order Markov models or scale invariant geomet-
ric image models such as Gousseau and Roueff (2007),
could also be considered for a contrario structure detec-
tion.
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5.2 Predicting False Detection Rate in Object Detection
Using the A Contrario Method

In this section we test the false detection rate obtained by
a part-based detection method that relies on the a contrario
approach. This example is important in the context of the
generalization of a contrario methods proposed in this pa-
per: it demonstrates that applying a contrario decisions in
the classic, independence based way leads to an excessive
number of false detections. Working with the generalized al-
gorithm provides results in agreement with the predictions.

The detection algorithm itself, described in Sect. 4, is rel-
atively simple and is not competitive with state-of-the-art
methods. It is, however, characteristic of many computer vi-
sion algorithms that use overlapping, and therefore depen-
dent, image data. Because this is, to the best of our knowl-
edge, the first use of a contrario background models for ob-
ject detection, we added, in Sect. 5.3, an empirical study
demonstrating that decisions relying on a background model
and NFA thresholding are more stable and adaptive that the
usual decisions based on similarities.

We performed a number of experiments to test how well
the a contrario based detection algorithms approximate the
empirical false detection rate. All the experiments below use
a face category model from the Caltech4 dataset1 and were
conducted on 400 different images of non-face categories
(e.g., motorbikes) from this dataset.

FA Prediction Based on the Independence Assumption
First we tested the standard a contrario model, which is
based on the assumption that model part detections are inde-
pendent (Sect. 4.4). The test was carried out for various part
numbers and various ε values. A false detection is an event
where a candidate is falsely detected as a model instance.
The empirical number of false alarms is the total number of
false detections in all test images, divided by the number of
images, and is denoted eNFAT (e-empirical, T-total).

Ideally, we expect that the empirical number of false de-
tections, eNFAT , will be close to or lower than the specified
rate ε. We found, however, that eNFAT was much higher
than ε. See Fig. 11. This indicates that the independence
assumption is not valid, and the independence based back-
ground model does not adequately account for real image
dependencies. This is indeed expected, due to the proximity
of the parts. Note also that the prediction accuracy decreases
with the number of parts. This implies that working with a
more complex model (more parts), in an effort to gain better
discriminative power, reduces predictability.

The experiments were carried out on a set of 400 images.
This makes the empirical validation of the predictions for

1http://www.robots.ox.ac.uk/~vgg/data/data-cats.html.

small ε (smaller than 0.005) values highly inaccurate, which
is apparent from the plots.

Usually several nearby candidates are detected together
and, as they correspond to the presence of a single visual
event (either an object instance or not), their number is of-
ten not of practical interest. Therefore, we also refer here to
distinct false detection, where one detection corresponds to
one or more adjacent candidates that are falsely detected. By
adjacent we refer to candidates corresponding to neighbors
on the location grid. The empirical distinct false detection
rate is the number of such events in a set of images, divided
by the number of images, and is denoted eNFAD (D for dis-
tinct).

For practical reasons, we may want to change the de-
cision so that it controls the number of distinct detections
(and not number of simple detections). To that end, we ob-
served that the number of detections in a detection group is
roughly constant and depends on the candidate density (i.e.,
on N ) but is largely insensitive to other parameters such as
the image type, or the number of parts Kmin. In the exper-
iments described here, where the candidate locations differ
by 4 pixels, the empirical average number of detections in a
detection group was GS = 2.7. Therefore, to get ε distinct
detections, we should aim for about GSε simple detections.
Consequently, we divide the NFA by GS before we test it
against the threshold ε, which now becomes an estimate of
the number of distinct detections. Figure 12 compares the
empirical distinct false detection rate eNFAD with the spec-
ified number ε. Clearly, the prediction is very inaccurate in
this case as well, showing that the independence assumption
is indeed not satisfied.

FA Prediction Based on the Tree Model The next experi-
ment considers the same detection task, but this time with
the modified/generalized a contrario method, whose back-
ground model is specified by a tree-based graphical model.
(See Sect. 4.5 for a detailed description of the model.) The
results are described in Fig. 11 (simple detections) and in
Fig. 12 (distinct detections). Clearly, the results are better
in two respects: First, the empirical false detection rates are
much closer to the specified rates (which are always ε). We
believe the false alarm detections to be very accurate, es-
pecially if we recall that they were made with no training
at all. A second observation is that the predictability does
not change much with the model size (the number of parts)
and within a large range of the specified number of false
detections (ε). This provides evidence that the number of
parts and the specified NFA are both taken “correctly” into
account by the background model and the implied NFA cal-
culation.

This section provides additional experimental evidence
that using a dependence based background model may lead
to more predictable a contrario decisions. In contrast to the

http://www.robots.ox.ac.uk/~vgg/data/data-cats.html
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Fig. 11 Prediction of the
average number of false face
detections using the
independence assumption and
the second order model: the
average number of false face
detections in the non-target
(motorbike) images vs. the
predicted number. The x-axis
shows the threshold on the
number of false alarms per
image (ε). The y-axis shows the
ratio between the empirical
NFA, eNFAT , and the predicted
NFA, which is ε. As can be
seen, the empirical results are
close to the predicted ones in the
tree-based model and above two
orders of magnitude for the
independence assumption

visual evidence provided in the line detection experiments,
we here draw quantitative conclusions. We also found that
when using the other (non-face) categories for models, us-
ing 2nd order statistics in the a contrario decision always
improved false detection predictability.

5.3 Thresholding NFA is More Predictable than
Thresholding Appearance Distance

The a contrario based detection algorithm works by calcu-
lating the expected number of false detections and thresh-
olding it. This contrasts with more traditional approaches
that work by thresholding, say, model-to-image distances.

In this section we show that using the NFA as a de-
cision function is advantageous not only in the a con-
trario detection context but also in training based detec-
tion.

To make the comparison, we consider two alternative de-
cision functions that are related to the proposed algorithm
but that also use a training phase. Like the proposed al-
gorithm (Sect. 4), they both use the appearance similar-
ity between the HOGs of the model parts and the HOGs
of the candidate. The first is an NFA based algorithm. It
uses the appearance similarity to independently calculate
the NFA for every image in the training set and then de-
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Fig. 12 Prediction of the
average number of distinct false
detections using the
independence assumption and
the second order model: the
average number of false face
detections in the non-target
(motorbike) images vs. the
predicted number. The x-axis
shows the threshold on the
number of false alarms per
image (ε). The y-axis shows the
ratio between the empirical
number of distinct detections (in
non-target, motorbike images),
eNFAD , and the predicted NFA,
which is ε

termines the optimal threshold that, when applied on the
NFA values yields the best performance on the training set.
The second algorithm does not calculate the NFA at all but
rather determines the optimal threshold that, when applied
directly on the appearance similarities, yields the best per-
formance.

When trained on a data set similar to the test set, both
thresholding methods are comparable and provide similar
tradeoffs between misses and false detections; they give a
similar equal error rate (EER). However, when the train-
ing set is not similar to the test set, decisions based on
thresholding the NFA are more consistent and less sensi-

tive to the difference between the training and test condi-
tions.

To show this lower sensitivity, we applied the two de-
tection algorithms to highly variable texture images. The
texture collection from the UIUC dataset,2 which contains
25 texture classes with 40 images in each class, was used.
See Fig. 14 for one example from every class. One texture
class was selected as a training set, and a distance from each
image to the face model was calculated, A threshold lead-
ing to a 10 % false detection rate was specified. With this

2http://www-cvr.ai.uiuc.edu/ponce_grp/data/.

http://www-cvr.ai.uiuc.edu/ponce_grp/data/
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Fig. 13 Error bar graphs of
ratio averages. Each bar
represents the mean and the
standard deviation of false
detection ratios corresponding
to the 24 test texture classes.
The closer the bar is to 1, the
more consistent with training
data the decision criterion is.
The red bar shows the ratio for
the similarity-based decision
(L1 distance) and the yellow bar
shows ratios for the NFA-based
distance (Color figure online)

threshold, a face would be erroneously found in 4 out of
the 40 images in this class. Then, using the same thresh-
old, the false detection rate was measured for the remaining
(24) classes. Ideally, the false detection rate should be 10 %
in the other classes as well, and the ratio between the false
alarm rate of some test class and the false alarm rate of the
training class should be 1. To check the actual values, we
measured the ratio statistics for the L1 appearance distance
based decision and for the NFA (MST version) based deci-
sion. This procedure was repeated for all classes as training
sets.

Figure 13a shows the arithmetic mean of the calculated
ratios. Note that for many textures serving as training data,
the decisions based on appearance similarity (L1 distances)
provide high ratios—corresponding to high sensitivity to the
choice of training data.

These raw ratios are not the best consistency indicators
because ratios below and above 1 (ideal ratio) are averaged.
Therefore we also provide a normalized view where, before
averaging, each ratio r is modified to max(r,1/r). This way
ratios above and below 1 are treated identically. Figure 13b
shows the arithmetic mean of the modified ratios for the two
choices of decision function. It is clear, both from the means
but also from the associated standard deviations, that the

NFA based decisions are much more predictable and con-
sistent.

This last experiment demonstrates the adaptivity of the
NFA measure, which results from using the normalized dis-
tance (as described in Sect. 4.4.2). In many algorithms the
decision is made by thresholding some distance and the
threshold is determined by a training phase. The disadvan-
tage of this approach is that when testing on non-target im-
ages that are significantly different from those in the train-
ing set, this threshold may not be optimal. An adaptive
threshold, which changes depending on the image at hand,
may provide better performance and predictability. Here we
demonstrated that such an adaptive threshold, based on nor-
malization, is feasible.

6 Conclusions

In this paper we proposed a generalization to the a contrario
decision method. The generalization replaces the indepen-
dence based background model with a more general model
that is based on second order graphical models and is more
suitable for correlated events, common in natural images.
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Fig. 14 Texture image example from the UIUC database

A computationally efficient decision procedure is proposed
as well. We show the advantage of the modified model in
the context of two applications: line segment detection and
part-based object detection.

We believe that the proposed generalization may be ap-
plied to many other decision tasks. In this paper we used
a relatively simple part based model and a simple category
database. We believe that using of 2nd order (and higher or-
der) statistics would also improve predictability in other de-
tection algorithms and in more complex databases. Another
possible application is SIFT matching (Rabin et al. 2009),
where the matching of nearby sub-patches are likely to be
dependent events, which could explain the observed gap be-
tween ε and the empirical false detection rate. In many ap-
plications of a contrario, a trade-off between independence
and completeness of the description has to be found; see,
e.g., the task of matching geometric structures (Muse et al.
2006). We expect that applying the proposed modeling to
such matching tasks will alleviate this trade-off and possi-
bly increase the discriminative power of the descriptor.

One question that remains open is the choice of proba-
bilistic background model. Here we used a simple model,
based only on second order properties, and which achieved
better results than the independence based approach for two
precise tasks. Other, more complex models of statistical de-
pendence could be used. A model that perfectly character-
izes the image data, is, however, undesirable as it would
yield no detections in the modeled images. Characterizing
the degree of best dependency is probably a difficult task.

A related question is whether and to what extent the pro-
posed generalization is consistent with human judgement.
For instance, do we see structure in colored noise? It seems
that we do see it when the noise bandwidth is low, but not
when the noise is close to white; see, e.g., Rajashekar et al.
(2006). Finding the conditions for seeing structure may help

to specify the best background model but may also help
probe human perceptual organization.

References

Chow, C. K., & Liu, C. N. (1968). Approximating discrete probability
distributions with dependence trees. IEEE Transactions on Infor-
mation Theory, 14, 462–467.

Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (1990). Introduction
to algorithms. Cambridge: MIT Press.

Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for
human detection. In Proc. IEEE conf. comp. vision patt. recog.
(pp. 886–893).

Desolneux, A., Moisan, L., & Morel, J. M. (2000). Meaningful align-
ments. International Journal of Computer Vision, 40(1), 7–23.

Desolneux, A., Moisan, L., & Morel, J. M. (2001). Edge detection by
Helmholtz principle. Journal of Mathematical Imaging and Vi-
sion, 14(3), 271–284.

Desolneux, A., Moisan, L., & Morel, J. M. (2008). From gestalt theory
to image analysis. Berlin: Springer.

Fergus, R., Perona, P., & Zisserman, A. (2007). Weakly supervised
scale-invariant learning of models for visual recognition. Inter-
national Journal of Computer Vision, 71(3), 273–303.

Flenner, A., & Hewer, G. A. (2011). Helmholtz principle approach to
parameter free change detection and coherent motion using ex-
changeable random variables. SIAM Journal on Imaging Sciences,
4(1), 243–276.

Galerne, B., Gousseau, Y., & Morel, J.-M. (2010). Random phase tex-
tures: theory and synthesis. IEEE Transactions on Image Process-
ing, 20(1), 257–267.

Gousseau, Y., & Roueff, F. (2007). Modeling occlusion and scaling in
natural images. Multiscale Modeling & Simulation. SIAM Inter-
disciplinary Journal, 6(1), 105–134.

Grimmett, G., & Stirzaker, D. (2001). Probability and random pro-
cesses (3rd ed.). Cambridge: Oxford University Press.

Grompone von Gioi, R., Jakubowicz, J., Morel, J.-M., & Randall, G.
(2008). On straight line segment detection. Journal of Mathemat-
ical Imaging and Vision, 32, 313–347.

Grompone von Gioi, R., Jakubowicz, J., Morel, J.-M., & Randall, G.
(2010). Lsd: A fast line segment detector with a false detection
control. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 32, 722–732.

Grosjean, B., & Moisan, L. (2009). A-contrario detectability of spots
in textured backgrounds. Journal of Mathematical Imaging and
Vision, 33(3), 313–337.

Konishi, S., Yuille, A. L., Coughlan, J. M., & Zhu, S. C. (2003).
Statistical edge detection: learning and evaluating edge cues.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
25(1), 57–74.

Lowe, D. G. (2004). Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision, 60(2), 91–
110.

Moisan, L., & Stival, B. (2004). A probabilistic criterion to detect rigid
point matches between two images and estimate the fundamen-
tal matrix. International Journal of Computer Vision, 57(3), 201–
218.

Muse, P., Sur, F., Cao, F., Gousseau, Y., & Morel, J. M. (2006). An a
contrario decision method for shape element recognition. Interna-
tional Journal of Computer Vision, 69(3), 295–315.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: net-
works of plausible inference. San Mateo: Morgan Kaufman.

Rabin, J., Delon, J., & Gousseau, Y. (2009). A statistical approach to
the matching of local features. SIAM Journal on Imaging Sci-
ences, 2(3), 931–958.



Int J Comput Vis

Rajashekar, U., Bovik, A. C., & Cormack, L. K. (2006). Visual search
in noise: revealing the influence of structural cues by gaze-
contingent classification image analysis. Journal of Vision, 6(4),
379–386.

Ruderman, D. L. (1994). The statistics of natural images. Network:
Computation in Neural Systems, 5, 517–548.

Sabater, N., Morel, J. M., & Almansa, A. (2012). Reliable matches in
stereovision. doi:10.1109/TPAMI.2011.207

Sivic, J., Russell, B. C., Efros, A. A., Zisserman, A., & Freeman, W. T.
(2005). Discovering objects and their location in images. In Proc.
int. conf. comp. vision.

Van Trees, H. L. (1965). Detection, estimation, and modulation theory,
part I. New York: Wiley.

Vidal-Naquet, M., & Ullman, S. (2003). Object recognition with in-
formative features and linear classification. In ICCV03 (pp. 281–
288).

Weber, M., Welling, M., & Perona, P. (2000). Unsupervised learning
of models for recognition. In ECCV00 (pp. 18–32).

Zhang, J., Marszalek, M., Lazebnik, S., & Schmid, C. (2007). Local
features and kernels for classification of texture and object cate-
gories: a comprehensive study. International Journal of Computer
Vision, 73(2), 213–238.

http://dx.doi.org/10.1109/TPAMI.2011.207

	Beyond Independence: An Extension of the A Contrario Decision Procedure
	Abstract
	Introduction
	Independence in A Contrario Decisions
	The Classic A Contrario Approach
	The Price Paid for Assuming Independence
	A Contrario Without Independence

	Line Segment Detection Using Second Order Statistics
	Original Segment Detection
	Detection with Second Order Modeling
	Practical Computation of the NFA

	A Contrario Based Object Detection
	The Detection Task
	A Part-Based Model
	The Detection Process
	Predicting the NFA with Independent Parts
	The Background Image Model
	Normalizing d(Cn,Mk)
	Calculating the Probability of a False Alarm for a Specific Subimage Candidate
	NFA Calculation

	Predicting the NFA with Dependent Parts
	A Background Model from a Tree-Based Distribution
	Estimating the Empirical Distributions P(Xk|Xparent(k))
	PFA Calculation with Dependent Parts
	Fast PFA(Cn,Kmin,M) Calculation


	Experiments
	Line Segment Detection Using Second Order Statistics
	Orientation Dependency
	Detection Experiments
	Experiment 1: Line Segment Detection in a Colored Noise Image
	Experiment 2: Line Segment Detection in Real Texture Images
	Experiment 3: Line Segment Detection in Natural Images
	Experiment 4: Line Segment Detection Without Subsampling
	Experiment 5: Line Segment Detection and Blur

	Testing the Markov Assumption
	Continuous Markov Chains
	First Order Discrete Markov Model


	Predicting False Detection Rate in Object Detection Using the A Contrario Method
	FA Prediction Based on the Independence Assumption
	FA Prediction Based on the Tree Model

	Thresholding NFA is More Predictable than Thresholding Appearance Distance

	Conclusions
	References


