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Abstract. This paper deals with the automatic evaluation of the illu-
minant from a color photography. While many methods have been devel-
oped over the last years, this problem is still open since no method builds
on hypotheses that are universal enough to deal with all possible situa-
tions. The proposed approach relies on a physical assumption about the
possible set of illuminants and on the selection of grey pixels. Namely,
a subset of pixels is automatically selected, which is then projected on
the Planckian locus. Then, a simple voting procedure yields a robust
estimation of the illuminant. As shown by experiments on two classi-
cal databases, the method offers state of the art performances among
learning-free methods, at a reasonable computational cost.

1 Introduction

Human vision has the ability to perceive colors in a stable way under light
sources having very different spectral contents. In contrast, cameras capture col-
ors differently depending on the illuminant. Automatically canceling out this
dependence is a difficult problem that is not yet fully solved. Specifically, the
problem of estimating the illuminant of a scene has been the subject of a large
body of works, as detailed for instance in the recent paper [1]. A classical appli-
cation of such an estimation is the automatic correction of scenes acquired under
non-standard illuminants. In a different context, color is an important feature
for many computer vision tasks such as image comparison, object detection or
motion estimation, tasks for which robustness to a change in illuminant may be
achieved by a preliminary estimation.

The illumination estimation problem, where one tries to separate the intrin-
sic color of objects and the content of the illuminant, is basically an undercon-
strained problem. Indeed, a change in measured colors can be caused by a change
in object colors or by a change of illuminant. As a consequence, automatically
achieving color constancy necessitates some supplementary assumptions.

The first type of assumptions is based on scene composition. The most obvious
one is to assume the presence of a white object in the scene [2], the so-called
White-Patch assumption. This assumption is generally weakened to the presence
of a perfectly reflective surface, yielding the Max-RGB algorithm. Another well
known hypothesis is that the average world is grey, resulting in the Grey-World
algorithm [3].
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An alternative approach is to use physical models to constrain the problem.
Forsyth [4] first proposed to use the fact that under a given illuminant, the range
of observable colors is limited. This approach was followed by many improve-
ments over the last years [5,6].

While most algorithms described above rely on a Lambertian assumption,
other algorithms involve a dichromatic model assuming that measured light is
composed of both a Lambertian and a specular components [7,8]. These methods
are often complemented by the assumption that feasible illuminant colors are
limited [5,7].

Despite offering correct estimations in a large number of situations, none
of the previously mentioned hypotheses is universal and satisfied for all scene-
illuminant combinations. Moreover, failure situations vary from one hypothesis
to the other. For this reason, interesting results have been obtained by combining
the joint use of several basic methods and of learning procedures [9].

In this paper, we present a new learning-free method for the automatic esti-
mation of the illuminant. The method relies on a physical a priori, building on
the Planckian locus, on the possible set of illuminants. It also involves a simple
voting procedure from a selected subset of pixels. Experiments on two widely
used databases and comparisons with results provided by Gijsenij and al. [1]
show that this approach outperforms standards methods without requiring any
learning step.

2 Background

In this section, we give some background on the formation of color images, on
the distribution of illuminants under a black body assumption and on the use
of chromaticity diagrams. We also summarize previous works on the problem of
illuminant estimation.

Illuminant estimation is the first and the toughest nut to crack for color
constancy. The second aspect of color constancy is image correction, for which
various methods can be used [1]. This paper only deals with the first step of the
process.

2.1 Color Image Acquisition

Most approaches used to solve the illuminant estimation problem rely on a
dichromatic model [10] for image formation, simplified with a Lambertian as-
sumption. In these conditions, for a pixel x, values p(x) = (pR(x), pG(x), pB(x))
depend on the spectral distribution of the light source L(λ), the spectral dis-
tribution of surface reflectance S(λ,x), and the camera sensitivities functions
ρ(λ) = (ρR(λ), ρG(λ), ρB(λ)):

pc(x) =

∫
ω

L(λ)S(λ,x)ρc(λ)dλ, (1)

where c = {R,G,B}, and ω is the visible spectrum.
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Assuming that camera sensitivity functions are Dirac delta functions associ-
ated to the wavelengths λR, λG and λB , Equation (1) can be rewritten as follows,

pc(x) = L(λc)S(λc,x). (2)

The illuminant estimation problem amounts to retrieve L = (LR, LG, LB) :=
(L(λR), L(λG), L(λB)). This would for instance allows to render the scene under
a given canonical illuminant Lu. Once the illuminant has been computed, the
correction can be made using Von Kries model or more complex models. The
main difficulty arises from the fact that measured pixel values L(λ) depend on
both the surface reflectance function and the spectrum of the light source.

2.2 Distribution of Feasible Illuminants

Grey-World and White-Patch hypotheses [2] (that will be recalled in the next
paragraph) are certainly the most used assumptions to achieve illuminant es-
timation. There are, however, many situations in which these hypotheses are
false and yield incorrect estimation. One of their limitation is that no a priori
information on the chromaticity of the feasible illuminants is used. For instance,
an image filled with a saturated green will lead to estimate a saturated green
illuminant even though this is very unlikely.

Therefore, additional constraints are often added to limit the set of feasible
illuminants. The blackbody radiator hypothesis is one of the most commonly
used assumption. This hypothesis is based on the Planck model, which states
that the spectrum of light emitted by an idealized physical body heated at a
given temperature is given by

L(T, λ) = c1λ
−5

[
exp

( c2
λT

)
− 1

]−1

, (3)

where T is the temperature in kelvins, λ is the wavelength and c1 = 3.74183×
1016 Wm2 and c2 = 1.4388× 10−2 mK are two constants.

Planck’s formula is an accurate estimation of the spectrum of most illumi-
nants including daylight [11]. It results that under the blackbody hypothesis,
the possible colors of a grey pixel are limited. This can be conveniently vi-
sualized in a chromaticity diagram, the definition of which we now recall. A
chromaticity diagram is a 2D projection of 3D color information discarding the
intensity component. The CIE 1931 xy chromaticity diagram is the best known
of such diagrams. It is derived from an RGB colorspace through an XYZ col-
orspace. This first step can be done by applying a device dependent matrix to
RGB triplets. The xy chromaticities are then obtained by normalizing the vector
XYZ such that x + y + z = 1. The relation between the Planckian locus and
common illuminants (obtained from the database described in [12]) is illustrated
on Figure 1.

2.3 Previous Work

In the context of illuminant estimation and color constancy, the most simple and
widely used approaches are based on the White-Patch and on the Grey-World
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assumptions. The White-Patch assumption assumes that a surface with a perfect
reflectance is present in the scene. This hypothesis yields the well known Max-
RGB algorithm which presumes that the brighter point corresponds to a perfect
reflective surface. The Grey-World hypothesis is that the average reflectance of
the scene is achromatic. Both assumptions have been combined by Finlayson [13],
proposing the framework described by the following equation:

Lc =

(∫
pc(x)

ndx∫
dx

)1/n

. (4)

When n = ∞, this equation yields the Max-RGB algorithm and when n = 1,
it yields the Grey-World algorithm. A classical variant of this method, called
general Grey World [14], consists in performing a preliminary convolution of the
image with a Gaussian kernel.

This framework was extended by van de Weijer [15]. This extension includes
the Grey-Edge hypothesis that the average of reflectance differences is achro-
matic, leading to the equation:

Lc =

(∫ ∣∣∣∣∂
kpc(x)

n

∂xk

∣∣∣∣ dx
)1/n

. (5)

All algorithms given by Equation (5) use all pixels to identify the white point. As
noticed in [16], a more intuitive approach is to first detect potentially grey sur-
faces and then to estimate the illuminant from the corresponding pixels. Several
algorithms using this procedure have recently been proposed.

Li and al. [16] propose an algorithm which iteratively estimates a white point
maximizing the number of grey pixels. This algorithm takes as a starting point
the estimation given by Equation 5 and therefore aims at refining this estimation.
However, this estimation can be inaccurate and as noticed by the authors this
step is especially touchy.

Another way to detect potentially grey pixels is to select points that are close
to the Planckian locus in a chromaticity space and then to average them [17].
While inconsistent estimations (such as a purple illuminant) can be avoided this
way, the approach may fail in the case where there is two potentially grey surfaces
in the scene. Indeed, in this case, the resulting estimation will be made of the
midway point between these surfaces. In the spirit of this approach, we define a
simple pixel based voting procedure to estimate the illuminant chromaticity.

Many voting procedures permitting to choose between concurrent solutions
to the color constancy problem were proposed in the literature. Since the same
pixels values can be obtained by different combinations of illuminant and re-
flectance, Sapiro proposes a voting procedure [18] where each pixel votes for a
set of parameters defining the reflectance of the illuminant functions. A Hough
transform is then used to select the best parameters set. Riess et al. [19] pro-
pose another voting procedure. Roughly, many patches are selected and for each
of them an illuminant is estimated by using an inverse chromaticity space. All
patches for which the estimation succeeds vote and the illuminant is selected
from these votes.
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Very recently Vasquez-Corral et al. [20] propose to refine such voting ap-
proaches by incorporating perceptual constraints. In their approach, illuminants
are weighted by “their ability to map the corrected image onto specific colors”.
These colors being chosen as universal color categories, this technique does not
require any learning step.

3 Illuminant Selection via Grey Pixel Identification

Our illuminant selection algorithm draws on the assumption that most light
sources are close to the Planckian locus. This hypothesis is well founded, as
shown for instance by the experiment illustrated on Figure 1. Relying on this
observation, our algorithm starts by finding pixels close to the Planckian locus in
a well chosen color space. These pixels can be considered as the “most probably
grey” in p. We then find the color temperature of all these pixels by projecting
them on the Planckian locus. We build the histogram of this set of temperatures
and apply a voting procedure in order to determine the most probable temper-
ature T 0 for our illuminant. Finally, the complete illuminant is estimated by
computing the barycenter of all pixels p that voted for the temperature T 0 in
the histogram (see Algorithm 1 for a complete description of the procedure).

The color space used in the whole algorithm is the CIE 1960 uv diagram, as
recommended by the CIE. Indeed, in this space, isotherms are defined as the
lines perpendicular to the Planckian locus [21]: the correlated color tempera-
ture (CCT) of a pixel is thus the one of its closest black body radiator. Also, the
temperature scale used in the voting procedure must be chosen carefully. Indeed,
the Kelvin temperature scale does not yield a regular sampling of the Planckian
locus [22]. The correlated color temperature T (p) of a each pixel p is thus con-
verted into the MIRED (Micro Reciprocal Degree) scale TMired(p) = 106/T (p)
before computing the histogram. This conversion was found by Priest [22] as a
better way to sample color temperature according to human perception. This
MIRED scale is illustrated by Figure 1, right. Finally, in order to give a greater
importance to brighter pixels in the voting procedure, the contribution of each
pixel in the histogram is weighted by a power of its luminance in p. This weight-
ing limits the influence of dark pixels and can be seen as a trade off between the
Grey-World and the White-Patch hypotheses [13]. An example of application of
the method may be seen on Figure 1.

4 Algorithm Evaluation

In this section, we compare our algorithm to classical and recent state of the
art approaches on two different databases, drawing from the results and codes
from the recent evaluation paper [1]. These databases contain both indoor and
outdoor scenes, taken under a large variety of illuminants.

The first database is the SFU grey-ball database [23], composed of 11,346
images and reprocessed in order to work on linear images, as explained in [1].



Illuminant Estimation from Projections on the Planckian Locus 375

u

v

Iso CCT
Iso distances
Planckian locus
sRGB gamut
Groundtruth

x

y
Spectrum locus
Planckian locus
sRGB Gamut
Groundtruth

Fig. 1. Left: CIE 1931 chromaticity diagram. Right: CIE 1960 uv chromaticity diagram.
On both diagrams, the green line represents the Planckian locus, and blue points
correspond to the groundtruth illuminants of the Gehler database [12]. On the right,
some isotemperatures curves are plotted in the CIE 1960 uv chromaticity diagram,
with a maximum distance to the Planckian locus equal to 0.02.

input : Image p in the space sRGB, threshold δ, bin number N , standard
deviation σ, power n, canonical illuminant (uref , vref).

output: Illuminant (u0, v0) in the CIE uv diagram.
Initialize histogram H = 0 on N bins;
for each pixel p do

puv = ConvertsRGB→uv(p);
[pPlanck, T (p)] = ProjPlanck(puv);
// pPlanck is the projection of puv on the Planckian locus in the

CIE 1960 uv diagram and T (p) is the temperature (in Kelvins)

of the projection;

d = distance(puv, pPlanck);
if d < δ and 2000K ≤ T (p) ≤ 20000K then

TMIRED(p) = 106/T (p);
weight(p) = luminance(p)n;
Add weight(p) to bin TMIRED(p) in H ;

end

end
if H == ∅ then

return (u0, v0) = (uref , vref);
end
Filter histogram H with a normalized Gaussian of standard deviation σ;
Find T 0 = argmax(H);
Find the barycenter of H [T 0 − σ, T 0 + σ];
L = list of pixels p such that TMIRED(p) is in [T 0 − σ, T 0 + σ];
return (u0, v0) = Barycenter(L,weight(L));

Algorithm 1. Illuminant selection algorithm. In practice, the parameters used
in the experimental section are δ = 0.01, N = 1000, σ = 2 and n = 3.
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(a) Initial error 34.3� (b) Estimation error 0.6�

(c) Points satisfying δ < 0.01
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(d) Histogram of weighted projections.

Fig. 2. Illustration of method results (for (a) and (b) errors are computed in the sRGB
colorspace). (c) shows points close to the Planckian locus and (d) shows the his-
togram built from their projection on the Planckian locus, weighted by the luminance.
On (c) and (d), red points correspond to a CCT < 4000 and blue points to a CCT
∈ [4000, 6000].

The second is the Gehler database, composed of 568 images. Gehler et al. [24]
provide both RAW and TIFF versions of each image. TIFF images are generated
automatically by the camera and hence contain many non-linear corrections
(demosaicing, clipping, gamma correction). In order to avoid the influence of
these corrections, we choose, as in [24] to rely only on RAW versions. In our
experiments, we provide two different evaluations, each one relying on a different
reprocessing of RAW images. In the first one, images are reprocessed in the color
space of the camera, as in [1]. In the second one, images are reprocessed in the
sRGB colorspace, which is a less arbitrary choice, as explained below. This linear
transformation is enabled by the fact that we know the cameras used to create
the database 1.

For each database, the experimental protocol is then exactly as described
in [1] and consists in computing for each image of the database some similarity
measure between the estimated illuminant Ie and the groundtruth illuminant Ig.
Both illuminants define a “grey” axis in the color space of the image. The quality
of the estimation is then measured by using the angle between these axes, i.e.

1 The conversion from the camera colorspace to sRGB is specific to the camera and
involves the use of the intermediary space XYZ.
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Ea(I
e, Ig) = cos−1

(
Ie · Ig

||Ie|| · ||Ig||
)
. (6)

For the images of the SFU grey-ball database, this error is computed directly in
the sRGB colorspace. For the Gehler database, this error can also be computed in
the camera RGB colorspace, as chosen in [1]. This choice presents two problems.
First, the three color components of a camera have very different dynamic ranges,
which makes the error computation somehow biased. Most importantly, two
different cameras are used to create the database, and averaging errors obtained
in two different colorspaces seems inconsistent. This further motivates the use
of the sRGB space, both for the developing and for the error computation.

Table 1. Performances on the colorchecker dataset in sRGB space. Results against
learning-free methods ([2,3,14,15]) and methods involving a training phase ([4,6,8]).

Method Mean Median Trimean Best-25%(μ) Worst-25%(μ)

White-Patch [2] 9.6� 7.7� 8.6� 2.2� 20.3�
Grey-World [3] 9.1� 8.6� 8.8� 2.9� 16.2�
general Grey-World [14] 6.7� 4.9� 5.4� 1.4� 14.9�
1st – order Grey-Edge [15] 7.0� 6.3� 6.4� 2.8� 12.5�

Pixel-based Gamut Mapping [4] 5.8� 3.4� 4.1� 0.7� 14.4�
Edge-based Gamut Mapping [6] 10.1� 7.4� 8.2� 2.8� 21.7�
ML (category-wise prior) [8] 4.3� 3.6� 3.7� 1.4� 8.4�

Our method 4.1� 2.9� 3.4� 0.7� 12.8�

Table 2. Performances on the colorchecker dataset in camera RGB space

Method Mean Median Trimean Best-25%(μ) Worst-25%(μ)

White-Patch [2] 7.5� 5.7� 6.4� 1.5� 16.2�
Grey-World [3] 6.4� 6.3� 6.3� 2.3� 10.6�
general Grey-World [14] 4.7� 3.5� 3.8� 1.0� 10.2�
1st – order Grey-Edge [15] 5.4� 4.5� 4.8� 1.9� 10.0�

Pixel-based Gamut Mapping [4] 4.2� 2.3� 2.9� 0.5� 10.8�
Edge-based Gamut Mapping [6] 6.7� 5.0� 5.5� 2.0� 14.0�
ML (category-wise prior) [8] 3.1� 2.3� 2.5� 0.9� 6.5�

Our method 4.1� 3.1� 3.3� 0.9� 9.0�

We compare our algorithm against standards learning-free illuminant estima-
tion schemes and against some of the best methods requiring a training phase.
Results are summarized in Table 1,2 and 3 . The first Table shows the results
obtained in the sRGB colorspace 2 for the Gehler database. The same compar-
isons performed in the camera RGB space are given in Table 2, enabling a direct
comparison with the results from [1]. Table 3 provides the results on the SFU

2 In order to compute errors in sRGB for other approaches, we project the illuminant
estimations provided by [1] in sRGB. This may differ from a direct estimation of the
illuminant in sRGB.
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Table 3. Performances on the linear SFU grey-ball database in sRGB space

Method Mean Median Trimean Best-25%(μ) Worst-25%(μ)

White-Patch [2] 12.7� 10.5� 11.3� 2.5� 26.2�
Grey-World [3] 13.0� 11.0� 11.5� 3.1� 26.0�
general Grey-World [14] 12.6� 11.1� 11.6� 3.8� 23.9�
1st – order Grey-Edge [15] 11.1� 9.5� 9.8� 3.2� 21.7�

Pixel-based Gamut Mapping [4] 11.8� 8.9� 10.0� 2.8� 24.9�
Edge-based Gamut Mapping [6] 13.7� 11.9� 12.3� 3.7� 26.9�
ML [8] 10.3� 8.9� 9.2� 2.8� 20.3�

Our method 10.9� 8.5� 9.1� 2.2� 23.5�

grey-ball database. Our approach shows better results than standard, learning-
free methods, both in sRGB and in the camera colorspace, and both in term
of mean and median of errors. The method is quite stable, providing good re-
sults on two databases with the same set of parameters. Our results are also not
far from those obtained with more complex learning-based methods, at a very
reasonable computational cost. Observe that errors in the sRGB colorspace are
higher than those obtained in the camera colorspace. This can be explained by
the reduced dynamic range of the camera color component.

5 Conclusion

In this paper, we have presented an automatic method for the estimation of the
illuminant from a digital image. The method relies on projections on the Planck
locus and on a voting scheme. Its efficiency has been demonstrated through var-
ious comparisons on two classical databases. One of the main interests of the
method is a detailed analysis of the informative points in the image, obtained
through a histogram of weighted projections on the Planckian locus. An inter-
esting perspective of the work is a finer analysis of this histogram, an application
of which could be the estimation of multiple illuminants of a scene.
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