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ABSTRACT 

The effect of weak optical injection on the threshold gain and resonant frequency of index-coupled DFB semiconductor 
lasers is theoretically analyzed. The locking bandwidth modification due to injection is discussed for structures having 
different grating characteristics. Simple formulas are derived which allow comparison of the sensitivity to optical 
injection for DFB lasers and Fabry-Perot lasers. A symmetrical locking bandwidth is verified and a stability analysis for 
weak injection is also carried out,  imposing a maximum limit of injection rate. 
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1. INTRODUCTION 
Optical injection in semiconductor lasers is a popular technique allowing applications such as chirp reduction [1], laser 
array synchronization [2], optical generation of microwaves [3]-[5], amplitude-phase modulation conversion [6], etc. 
Optical injection studies [7]-[9] are usually limited to the case where the intensity distribution along the laser cavity is 
supposed uniform and are based on a homogenous rate-equation analysis. As a consequence, inaccurate results regarding 
the stable locking bandwidths are obtained when describing optical injection in distributed feedback lasers (DFB), 
especially those where a phase shift has been inserted to improve the side-mode suppression ratio (SMSR) and where the 
spatial hole-burning effect becomes important. Mode hopping in Fabry-Perot semiconductor lasers asymmetrically 
reduces the single mode locking range.  In DFB lasers, strong mode selection due to the grating structure overcomes this 
problem.  In fact, the stable locking bandwidth is practically symmetrical in DFB lasers. Furthermore, optical 
synchronization can be maintained even on the case of a non-cooperative injection where the phase relation between the 
injected and cavity field leads to a mode threshold gain that is higher than that of the free-running laser [9]. The analysis 
is based on the coupled-mode equations describing a solitary DFB laser. The static solution is found and external optical 
injection is supposed weak and taken into account by linearizing around the static solution. The modification of the facet 
reflectivity due to optical injection allows one to find the associated static locking range.  

2. COUPLED-WAVE SOLUTIONS FOR WEAK INJECTION 
For the sake of simplicity, only a 

� 

! /4  phase-shifted DFB laser having a real coupling coefficient 

� 

!  as shown 
schematically on Fig. 1 is analyzed. The choice of this laser structure is justified by the fact that phase-shifted DFB 
lasers have been commercially available since the eighties and, additionally, the analysis for this structure can be 
straightforwardly extended to more general structures. Furthermore, only the first Bragg order will be taken into account.  

2.1 Coupled-wave static solution in the free-running regime 

The index modulation inside the laser cavity is described by dividing the laser structure into two uniform gratings, each 
with a spatial grating period 
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where j = 1, 2 corresponds to the region of negative and positive z, respectively, and with a phase shift given by 
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= !. The amplitude modulation of the real index is specified by 
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!n . Such a laser is well described by the 
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traveling coupled-mode wave equations [10], which are derived from the Helmholtz wave equation when the electric 
field 
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E(z,t)  is sought in the form 
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i" 0z  and when second derivatives are neglected: 
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where 

� 

!
0

= " /#  is the Bragg propagation constant, I  is the injection current, !  the net gain, !  the phase detuning, 

� 

gm  
the material optical-field gain per unit distance, which is taken nonlinear, !

r
 is the spontaneous recombination time 

constant including the Schockley-Read-Hall, the bimolecular and Auger recombination mechanisms, and the terms isp  
represent the spontaneous excitation, evaluated from the bipolar radiative recombination, taken as locally proportional to 

� 

N
2  and include the spontaneous confinement factor which is similar to the gain confinement factor ! .  The latter gives 

an effective gain below the material gain and reduces the effective phase shift associated with the complex gain. The 
normalized detuning of the oscillating mode from the Bragg wave vector 

� 

!
0
 is written as 

� 

! = n" /c #$ /% . 
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R(z)e
i!t  and 
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S(z)e
i!t  are the counter-propagating waves expressed as: 
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The static solution is found by the typical method of substituting the proposed solution (3) in the coupled-wave 
equations (2) and then applying boundary conditions at 

� 

z = ±L /2, 0. This procedure yields the dispersion relation, 

� 

! 2 = (" # j$)2 + % 2 , and the following eigenvalue equation: 
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where 

� 

!  is the complex propagation constant, !  the threshold gain, parameter 

� 

p  is defined by p = (!" +# ! i$ ) / i% , 
and !

r
 and !

l
 are related to the amplitude reflectivities, ˆ ! 

r
 and  ˆ ! 

l
, of the right and left facets, respectively, by: 
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!r = ˆ ! re
" j(2# 0L"$)  and 
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!l = ˆ ! le
" j(2# 0L"$) (5) 

The multiple solutions of (4) represent the different cavity modes associated with the laser structure but only the mode 
with the lowest threshold gain will oscillate. If the phase shift is exactly ! = " / 2 , the modes with lowest threshold gain 
for any real coupling strength !  lie at the Bragg frequency (! = 0 ), meaning that the imaginary part of the propagation 
constant is null. Fig. 2a illustrates this threshold gain as a function of coupling strength. At first sight, it may seem that 
the coupling strength-length product should be specified as high as possible in order to obtain the lowest threshold 
current. Nevertheless, the gain margin between the lowest gain mode and its neighbor is maximal at around !L = 2.1 .
  

 
Fig. 1. Phase-shifted index-coupled DFB laser heterostructure. 



 
 

 
 

2.2 Gain and frequency variations due to external optical injection 

The method presented by Favre [11] for describing external optical feedback in DFB lasers is adapted here for 
describing optical injection. In his analysis, the external mirror reflectivity is taken into account for calculating the 
equivalent facet reflectivity. In our case, the equivalent reflectivity is approximated to include optical injection. 
Assuming that injection occurs at the left facet, 
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where 
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P
i
/P  is the local power density ratio between the injected and cavity fields distributed throughout the cavity and 
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! = "
i
#"  is the phase difference between these fields.  The change in the reflectivity due to injection resulting from (5) 

and (6) is:  
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On the one hand, assuming a weak injection rate (
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P
i
/P <<1), the eigenvalue equation (4) can be linearized about 
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!
0
, 

solution of (4) without injection. This leads to a relation between the variation of the complex propagation constant 
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!" = " # "
0
 and the reflectivity variation 
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!"
l
.  On the other hand, differentiation of the dispersion relation allows us to 

express the gain 
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0
 and phase change 
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0
 as: 
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The only variable in the right-hand side of equation (8) that depends on the injection conditions is 

� 

!" . So we can assume 
a proportionality relation [11] and write (8) as: 
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where 

� 

C
l
 is a complex coefficient that depends only on solitary DFB laser modal characteristics, e.g. the grating position 

with respect to the facet, the reflectivity, the threshold gain or the phase deviation, and can be calculated using the facet 
reflectivity change (7) and the logarithmic differentiation of the eigenvalue equation (4). The coefficient specifically 
gives information on how sensitive the laser structure is to an external optical injection as will be later discussed. For the 
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! /4  phase-shifted laser, the coefficient is, after some manipulation, determined as: 
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In order to determine the static-locking bandwidth, the gain and frequency deviations from the free-running regime must 
be analyzed. To do so, we proceed by obtaining the phase deviation 

� 

!"  from the Bragg detuning definition. Let 

� 

!N  and 

� 

!"  denote the carrier density and resonant frequency changes, respectively. The phase deviation is: 
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where 

� 

ng  is the group refractive index.  Relating the carrier density variations 

� 

!N  to the gain variation per unit of time 
with 
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!N"G /"N = 2!#c /ng  the frequency variation is obtained from (11) as 
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The linewidth enhancement factor 

� 

!
H

 expresses the coupling between the real and imaginary parts of the permittivity in 
a semiconductor laser and is defined as: 
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Finally, considering (12), the resonant frequency and gain variations are obtained by separating (9) into its real and 
imaginary parts: 
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where ! = c /(2ngL)Cl P / Pi  is the normalized injection rate. The locking bandwidth is determined from (14a) as 

!" # $(1+%
H

2
)
1/2 . The gain deviation due to optical injection can reduce or increase the threshold gain depending on 

the phase difference between the injected and cavity field. Equation (14b) is maximal for non-cooperative injection, 
when the threshold gain is increased, and (14b) is minimal when the injected field cooperates with the cavity mode 
reducing the threshold gain. Fig. 2a depicts the threshold gain increase as the injection rate increases when the gain 
deviation is maximal. In homogeneous Fabry-Perot lasers, the phase difference between the injected and cavity field 
could be such that gain margin between the main and side mode is inversed, thus resulting in an asymmetrical locking 
bandwidth. This is contrary to what is usually observed in DFB lasers because they have a strong side-mode suppression 
ratio and wide stop-band. Consequently, the increase in threshold gain due to injection does not affect the gain margin 
between the cavity and side mode. The resulting symmetrical locking bandwidth versus injection rate diagram (Fig. 2c) 
shows a strong dependence on coefficient C

l
 via the index-coupling strength. In Fabry-Perot lasers, the complex 

coefficient C
l
, is simply a constant that depends on the amplitude reflectivity, whereas in DFB lasers, the coefficient 

strongly depends on its grating structure and consequently so does the normalized injection rate ! .  

Fig. 2. (a) Threshold gain in the free running regime (lower curve) and its modification due to injection. (b) Coefficient C 
dependence on the coupling strength for various phase shifts. (c) Static locking range and (d) static/dynamic limit. 



 
 

 
 

 

The coefficient is graphed on Fig. 2b. The equivalent for a Fabry-Perot laser is shown for comparison. It can be noted 
the laser structure becomes less sensitive to external injection as the coupling strength is increased. Furthermore, a 

� 

! /4  
shift produces the structure that is the least sensitive to external injection given that the corresponding C-curve drops the 
fastest for a coupling strength !L > 2 .   

Table 1. Parameters used on all calculations 

 symbol value 
free space  wavelength !  1.55 µm 
Group refractive index ng  3.7 
nominal length of laser L  400µm 

average value kappa L product; !L  2 
confinement factor for electrons !  0.35 

confinement factor for spontaneous 
emission 

!spont  0.35 

guide loss parameter aL  1.6 
linear nonradiative A  0 

spontaneous recombination coeff B  10
!10

   cm
2  

Auger recombination coeff C  3 !10
"29

   cm
5  

electron density at tranparency N
0  1.5 !10

18

   m-3  
differential gain length product at 

transparency gm
'

 20 

Henry's linewidth factor !
H  3 

gain saturation factor !  0.05 
Complex Coeficient  C

l  0.874e! j" / 2  
 

2.3 Static/dynamic limit of the stable-locking bandwidth 

A static solution to the coupled-wave equations (14) describing an injected DFB laser requires the necessary condition 
that the frequency detuning between the master and slave laser remain bounded, i.e. | !" |# $ 1+%

H

2 , which follows from 
(13). In F-P lasers [7]-[8], the competition between amplified spontaneous emission and forced oscillations at the master 
laser frequency is accompanied with a net gain whose sign depends on the phase detuning.  For a positive net gain 
resulting from injection, the locking bandwidth is reduced because the amplified spontaneous emission of a cavity free 
mode is divergent while the injected mode is constantly attenuated by a coherent injection in phase opposition.  
Consequently, mode hopping is observed. In contrast, DFB lasers, having a high side-mode suppression ratio, preserve 
dynamic stability all throughout the static locking range [9]. Nevertheless, increasing the injection rate beyond a certain 
limit will cause laser operation in an unstable regime resulting in chaotic behavior. Classical systems involving 
differential equations impose a stability analysis based on the Routh-Hurwitz criterion as in [8] to establish the limit of 
the linear approximation we made valid for weak injection. This leads in establishing the static/dynamic limit of the 
locking bandwidth defined in terms of the modified damping time associated to relaxation oscillations: 
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is the damping constant of the free-running laser. Coefficients A , B , and C  are, respectively, the linear nonradiative, 
the bipolar radiative, and the Auger recombination coefficients. G '

m
 is the differential power gain, !  the gain-saturation 



 
 

 
 

parameter, and ! '
p

 the effective photon lifetime including the distribution losses. The last term in (16) represents the 
nonlinear gain saturation, which damps the relaxation oscillation and tends to stabilize the single-mode laser operation 
[7]. An infinite damping time in (15) defines the hyperbola depicted in Fig. 2d.  Its position depends on the coupling 
strength !L , the phase-amplitude coupling factor !

H
, and the phase shift !  via the complex constant C

l
. For a desired 

point of operation within the locking bandwidth, instantaneous power fluctuations of the master laser will not cause 
unlocking of the slave laser for an increased coupling strength; thus, providing a more stable measurement workbench. It 
should be kept in mind, however, that a high coupling strength reduces the locking bandwidth (Fig. 2c). On the contrary, 
if the injection locking application forsaken requires fast switching between stable-synchronized operation and optically 
induced modulation, lasers with low coupling factors are better for this task.  

 

3. DISCUSSION AND CONCLUSIONS 
In section 2.2, the static locking bandwidth was determined and it was found that  it strongly depends on the grating 
structure. This fact is of great consequence for a stable locking range: lasers having a weak coupling (!L " 1) exhibit an 
enhanced locking bandwidth and will work well with applications like amplifiers and optical-phase modulators where 
given frequency detunings caused by either direct modulation of the laser diode current or modulation of the injected 
field, must not cause unlocking of the slave laser. For strong coupling (!L " 4 ), the bandwidth is largely reduced making 
this lasers attractive for applications requiring narrow-band filters like dense multi-channel systems. For as to 
intermediate values of the coupling factor (1 <!L < 4 ), a wide range of applications may be adequate including chirp 
reduction, phase correlation, laser array synchronization, etc.; where a symmetrical locking bandwidth is important and 
modulation bandwidth will ot exceed the locking bandwidth. 

The effect of weak external optical injection on threshold gain and resonant frequency has been investigated. The 
structures considered in this study correspond to index-coupled phase-shifted DFB lasers. Nevertheless, the method 
applied here can be readily extended to more complex laser structures, including DBR and vertical-cavity surface 
emitting lasers. A matrix development method is underway and should permit the easy calculation of the C

l
 coefficient 

in order to account perhaps for laser structures having multiple sections. 
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