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Abstract : An extensive comparison of the recently developed discrete orthogonal Gauss-Hermite transform
(DOGHT) to the discrete cosine transform (DCT) used in many multimedia compression standards is
presented in view of applications in the biomedical signal compression domain. The DOGHT is using a
basis of orthonormal Gauss-Hermite functions in place of the cosine functions basis used by the DCT and it
is shown to perform considerably better than the DCT in several cases, presenting similar reconstruction
error for the double compression ratio. This study is limited in the comparison of very simple signals for the
sake of clarity. The DOGHT combines some of the advantages of wavelet expansions with the simple
analytic form and desirable mathematical properties of the DCT.
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1. Introduction digital photographic cameras) and the
There is today a big demand for the transmission of still pictures through the

compression of digital sound, image, video, Internet, GPRS, etc. .
biomedical image, etc. signals in order to The basic ingredient and “heart” of all the

facilitate their storage e.g. in CD-ROMs or
hard disks of reasonable capacity but more
importantly in order to facilitate their
(wireless) transmission through limited
bandwidth channels.

During the last 12 years many signal
compression algorithms were proposed. The
most widespread and normalised algorithms
that constitute international standards are:
JPEG (Joint Photographic Expert Group) for
the compression of still picture since 1991 and
MPEG (Moving Picture Expert Group) for the
compression of moving pictures (video) and
sound since 1992. More precisely, the simplest
compression algorithm standard was presented
in 1992 while the more complicated and
enhanced subsequent versions are MPEG-2
(presented in 1994) and MPEG-4 (presented in
1996). For the sound compression the
algorithm that is used is MPEG Layer 3 or
MP3 that is included in the general MPEG
video standard. Moreover, the JPEG algorithm
is also widely used for the storage (e.g. in

above mentioned compression methods is the
Discrete Cosine Transform — DCT, cf. [1], for
which there exist since many years dedicated
integrated circuits for its computation, cf. for
example [2].

The MP3 and JPEG algorithms use
respectively the DCT transform with N = 18
points and the 2-dimensional DCT with 8x8 =
64 points. These algorithms lead to a
compression of about 10 times without any
noticeable quality degradation.

Observations and experiments that were made
during the last decade with the sound and
picture compression standards MP3 and JPEG
have shown that the distortion-free limit of *10
times compression’ is mainly due to the DCT
transform that is common in the two methods.
Hence, in the quest for even higher
compression ratios than the 1:10 and
particularly wanting to achieve a less abrupt
increase of picture distortion for the high
compression ratios (e.g. 1:100) it was proposed
to replace the DCT by the DWT (Discrete
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Wavelet Transform). The latter is using
wavelet basis functions in place of the cosine
basis functions, cf. [3]. In this way, appeared
the most recent standard for compression of
still pictures known as JPEG2000 (.jp2) since
2000, cf. [4]. This compression algorithm
achieves on average 30 % better compression
than the JPEG algorithm, and this becomes
visible especially at the higher compression
ratios.

However, the need for even higher
compression ratios in all the above mentioned
applications remains and especially there is a
need for relatively simple algorithms of
reasonable computational complexity.

The DOGHT algorithm proposed by this paper
can replace the above mentioned DCT and
DWT transforms, shows better performance
than both of them in most practical
applications, while it is given in a simple
analytical form similar to that of the DCT.
Furthermore, for the DOGHT algorithm there
exist mathematical properties (orthogonality,
Parseval relation, exact inverse, etc.) very
similar to those of the DCT and this facilitates
considerably its implementation.

2. Description

The Discrete Orthogonal Gauss-Hermite
Transform — DOGHT, [5-7], is defined by the
relations:

Cn =gmf(—%—)}b(ti) ¢))

,7(-’1;)=szc hltr) @)

where T is a time scaling factor and

hn(t)=mex;{——g—JHn(t) &

are the normalised Gauss-Hermite functions.

Furthermore,
Tr)le)e =6 @

is the continuous time orthogonality relation of
the normalised Gauss-Hermite functions of

order n: /n and Hn are the classical Hermite
polynomials of order n. The sampling points:
to<ti<r<K tn-1 are the zeroes of the Hermite
polynomial of order N, well known from the
Gauss (quadrature approximate integration
theory. The weights wi are given by the
relation:

w=—2 ®)
0]

The normalised Gauss-Hermite functions

satisfy the following very important discrete

orthogonality  relations  (discrete  time

orthogonality, [8])

S (Y =6 ©
N-1
Zthn(ti)hn(tj) =0ij @)
n=0

Because of equation (6) the transform
coefficients c» are calculated by equation (1).
Moreover, equation (7) leads to the relation:

7te)- 1) ®

which is a basic and very important property of
the DOGHT transform (collocation property).
The above properties are very similar to the
properties of the Discrete Cosine Transform —
DCT and the result of these properties is the
existence of an exact inverse DOGHT
transform at the points # of the Hermite
sampling distribution.

In order to facilitate comparison it is
mentioned that the Discrete Cosine Transform
—DCT is defined by the relations:

Cn = 22 f S (tk)COSl:m];;-—l/z):l ©

?(tk)=NZ_1a CnCOSI:n”(kA;-l/Z ] (10)

a =1/\/§,n=0
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a=1,n>0

The sampling point distribution is uniform and
is given in the symmetrical interval

[— fmax +tmax] from the relation:

2 tmax

t =—tmx +kAL, At=57

The existence of an exact inverse is also a
property of the DCT transform: f’ (tk) =f (tk)
at the points # of the uniform sampling.

The Parseval relation for the DOGHT

transform is :
E_IN_I 2_ INZ—:I (ti)z 11
‘—T; _—f,»=om‘fT ! (11)

Cn

where E is the approximate signal energy.
The exact signal energy is :

E=+]'°| S ar (12)

The Parseval relation (11) is particularly
useful: for the determination of the number of
sampling points required for an accurate
approximation of the signal energy, for the
correct choice of the time scaling factor T, and
in general for the estimation of the
convergence rate of the transform.

The Parseval relation (11) reveals that in the
case of the DOGHT transform the signal
energy is approximated by a numerical integral
(quadrature) of the Gauss-Hermite type while
in the case of the DCT transform, as is well
known from the DCT Parseval relation (13) the
signal energy is approximated by a rectangle
rule numerical integral :

E:N—zAEZ ool = Atz |f(lfk)|2 (13)

n=0 0

N=1
k=

It is also well known that the numerical
integral of the Gauss-Hermite type converges
much more rapidly than the simple rectangle
rule in the vast majority of cases.

Concerning the choice of the time scaling
factor T of the DOGHT transform, and in
analogy with the DCT transform, we first
choose a computational time window

[—tmax, tmax] according to the time duration of

the processed signal. For the time scaling
factor the following relation is proposed :

T (14)

tmax

where tn-1 is the biggest zero of the Hermite
polynomial according to the Gauss-Hermite
quadrature theory. Thus, with this choice, the

first sampling point : —t]%=—tmax and the last
sampling point : LNZ".;-‘L=+tmax coincide with the

borders of the computational time window
[—tmax, +tmax].

Example 1

As an example we will calculate the DOGHT
transform of the function f(t)=seck(t) in the
time window te[-5,+5] using N = 8 points.
The results are presented in Table 1. The

inversely transformed function in the time
domain is given by:

f(i)=z enha(t:T) (15)

The time scaling factor in this case is T =
0.586 and the approximate signal energy, as
calculated by the coefficients of the DOGHT

transform c» and the Parseval relation (11), is :
E=1.97069 while the exact signal energy as
calculated by relation (12) is : E=2.

From Table 1 it is evident that the inverse
DOGHT transform is exact and that in this
case its odd coefficients are zero because of the
even symmetry of the hyperbolic secant
function. In Table 2 the respective results for
the DCT transform are shown. It is seen that
the DCT transform approximates less
accurately the signal energy.

However, the most important fact is that the
DOGHT achieves much better concentration of
signal energy in the lower order coefficients
(lower “frequencies”) and thus it can lead to
better compression. For example, in the case of

the zero order coefficient, we have co =0.39
for the DCT (DC coefficient) and co =1.06
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for the DOGHT (coefficient of resemblance
with the Gaussian function).

Table 1. DOGHT — secht. £=1.97069

e [ |

T T fT
-5.00 {0.01 1.06 |0.01
-3.38 10.07 0.00 |0.07
-1.97 ]0.27 -0.18 |0.27
-0.65 |0.82 0.00 |0.82
0.65 |0.82 0.10 |0.82
1.97 [0.27 0.00 [0.27
3.38 {0.07 -0.03 {0.07
5.00 [0.01 0.00 {0.01

N AN N R IWIN=O

Table 2. DCT —secht. £=1.94486
e A |
T T f T
500 |00l 039 |00l
357 006 |000 |0.06
214 023 [-039 |023
071|079 000 |0.79
071|079 |018 079
214 023|000 023
357 |006 |-007 |006
500 |00l 000 |00l

N AN BRI W —=O

An important disadvantage of the DOGHT
transform is that the sampling points required
for its computation are not uniformly
distributed, while in all practical applications
the sampled signals are acquired through
uniform sampling. In order to overcome this
obstacle, it is proposed here, to use
interpolation and more specifically linear or
quadratic interpolation. In such a way, starting
from the signal values at the uniformly
sampled points we obtain through interpolation
the signal values at the non-uniformly sampled
points that are required for the computation of
the DOGHT transform coefficients. This
interpolation  procedure  introduces  an
additional error that is however negligible in
most practical cases and is compensated
rapidly by the faster convergence of the
DOGHT.

The interpolation used is in the general case a
Lagrange type interpolation, and more
specifically for n=2 points (linear
interpolation):

SO=LO)f o)+ L) /),

L=, L= (16)

and for n = 3 points (quadratic interpolation) :

SO=Loe)f(0o)+ Lie) o)+ Lo)f (),
t—n\t—t2 t—to )\t —12

Lo(t)= (to—n ;%to -1)’ Ll(t)= igl—to ;%tl—tZ ) >

La(e)= Lz an

t2—to \t2—1

Thus, the detailed steps followed by the
compression method of this paper are :
(a) Input N signal level data from uniform

sampling  f’ (tk) in the time interval
[t ]
(b) Computation of the time scaling factor:
T =IN-1

tmax

(c) Computation of the signal level j(tT’) at

I
T
N-th order Hermite polynomial) through linear
(16) or quadratic interpolation (17)

(d) Computation of the N coefficients c» of
the DOGHT transform by using relation (1)

(e) Retention of the N1<N coefficients c»
in order to achieve N/N1 times compression.

the N points: 2 (where # are the zeroes of the

Example 2

As an example we will compare the
compression of the signal f(¢)=exp (—| t |) in

the time window te[—5,+5] with N = 16
points from the DCT and the DOGHT with
quadratic interpolation. In order to compare the
two methods we will use the normalised rms

error calculated at the points of the uniform
sampling (PRD — Percent RMS Difference) :

)76 |

PRD =100%| =2

S

where # are the points of the uniform
sampling, and the maximum absolute error (PE
— Peak amplitude Error):
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PE =max {error} ,

error=‘ S (tk)— f (tk)‘

Table 3 represents the results of the
compression of the two methods for
compression ratios ranging from 1 :1to 4 :1. It
is easily seen that the DOGHT transform
achieves 4 :1 compression with less rms error
(approximately 13 %) than the DCT transform
rms error for only 2:1 compression
(approximately 14 %).

Table 3. Percent RMS error (PRD)

Table 5. 16-point DOGHT method with 4:1 compression
(Tmax =5,N1=4, T =0.938)

N1 DCT DOGHT
16 00% 122%
12 440% 147%
8 1429 % 380%
4 4337% 1291%
Tables 4 and 5 present an extensive

comparison of the two transforms. FF(tk) is the
inverse transform calculated from the limited

coefficients c¢n,n=0K,N1-1, ie. the
reconstruction of the signal F(t) after
decompression.

It is also seen here that the maximum absolute
error PE is somewhat lower for the DOGHT,
although at a double compression ratio than the
DCT, PE = 0.07, while the maximum absolute
error for the DCT is: PE = 0.08. Also PRD =
12.91% for the DOGHT and PRD = 14.29%
for the DCT, showing the superiority of the
DOGHT at higher compression ratios.

Table 4. 16-point DCT method with 2:1 compression
(Tmax =5, N1=8)

k tk f(k) cn  fi(k) error
1 -5000 0007 0918 0.000 0.01
2 -4333 0013 0.000 0.000 0.01
3 3667 0026 -0.033 0.001 0.02
4 3000 0050 0000 0.008 0.04
5 2333 0097 0112 0049 0.05
6 -1667 0189 0000 0.183 0.01
7 -1000 0368 -0019 0436 0.07
8 -0333 0717 0000 0670 0.05
9 0333 0717 0036 0670 0.05
10 1.000 0368 0.000 0436 0.07
111667 0189 -0009 0.183 0.01
12 2333 0097 0000 0.049 0.05
13 3.000 0050 0013 0008 0.04
14 3667 0026 0000 0.001 0.02
15 4333 0013 -0.002 0.000 0.01
16 5000 0007 0.000 0.000 0.01

K tk f(tk) cn ff(tk) error
1 -5.000 0.007 0259 -0.016 0.02
2 -4333 0.013 0000 0030 0.02
3 -3.667 0.026 -0.273 0.057 0.03
4 -3,000 0050 0.000 0.039 001
5 -2333 0.097 0.149 0.052 0.04
6 -1.667 0.189 0.000 0.196 0.01
7 -1.000 0.368 -0.084 0.451 0.08
8 -0333 0.717 0.000 0.658 0.06
9 0.333 0717 0.049 0658 0.06
10 1.000 0.368 0.000 0.451 0.08
11 1.667 0.189 -0.029 0.196 0.01
12 2333 0.097 0.000 0.052 0.04
13 3.000 0.050 0.017 0.039 0.01
14 3.667 0.026 0.000 0.057 0.03
15 4333 0013 -0.008 0.030 0.02
16 5.000 0.007 0.000 -0.016 0.02

Example 3

As another example we will compare the
compression of the pseudo-random signal
ft)=exp (—| t |)+ 0.1%(random—0.5) in the
time window te[——5,+5] with N = 16 points
from the DCT and the DOGHT with quadratic
interpolation, where random are pseudo-
random numbers in the interval te[O,l]. Table
6 represents the results of the compression of
the two methods for compression ratios
ranging from 1:1 to 4:1. It is easily seen, also
in this case, that the DOGHT transform
achieves 4:1 compression with less rms error
(approximately 17%) than the DCT transform
rms error for only 2:1 compression
(approximately 18 %). Tables 7 and 8 present
an extensive comparison of the two transforms.
It is seen again in this case that the maximum
absolute error PE is lower for the DOGHT, PE
= 0.09, while PE = 0.10 for the DCT.

Table 6. Percent RMS error (PRD)

N1 DCT DOGHT
16 0.0 % 3.57%
12 7.73 % 7.54 %
8 17.72 % 10.54 %
4 44.51 % 16.75%
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Table 7. 16-point DCT method with 2:1 compression
(Tmax = 5, N1=8)
k tk f(tk) cn ff(tk)  error
1 -5000 0.038 0.260 -0.006 0.04
2 -4333 -0.021 -0.005 0.030 0.05
3 -3667 0016 -0259 0.047 0.03
4 -3000 0.080 -0.011 0.030 0.05
5 -2333 0.057 0.150 0.056 0.00
6
7
8
9

-1.667 0232 0.007 0210 0.02
-1.000 0.358 -0.073 0.460 0.10
-0.333 0.719 -0.004 0.646 0.07
0333 0.685 0.052 0.630 0.06
10 1.000 0.340 0.014 0425 0.09
11 1.667 0.168 -0.029 0.18  0.02
12 2333 0.128 0.023 0.053 0.07
13 3.000 0.027 0.022 0.040 0.01
14 3.667 0.023 0.001 0.061 0.04
1S 4333 0.061 -0.015 0.049 0.01
16 5000 0.027 -0017 0.020 0.01

Table 8. 16-point DOGHT method with 4:1 compression
(Tmax =5,N1=4, T = 0.938)
tk f(tk) cn ff(tk)  error

-5.000 0.038 0.897 0.000 0.04

-4333 -0.021 0.025 0.000 0.02

-3.667 0.016 -0.025 0.000 0.02

-3.000 0.080 -0.013 0.007  0.07

-1.667 0.232 -0.001 0.191  0.04

-1.000 0.358 -0.026 0.448  0.09

-0.333  0.719  0.003 0.664  0.05

k
1
2
3
4
5 -2333 0.057 0.112 0.049 0.01
6
7
8
9

0333 0.685 0.049 0.639  0.05

10 1.000 0.340 -0.045 0407  0.07

11 1.667 0.168 0.000 0.176  0.01

12 2333 0.128 -0.016 0.053  0.07

13 3.000 0.027 0.046 0.011  0.02

14 3.667 0.023 0.043 0.002  0.02

15 4333 0.061 0011 0.000 0.06

16 5000 0.027 -0.007 0.000 0.03

3. Conclusion

Consequently, the conclusion drawn from the
above simple examples is that the compression
properties of the DOGHT transform are
superior from these of the DCT transform and
this for a variety of signals. Thus, it can be
predicted that the use of the DOGHT transform
will lead to an important increase of the
compression ratios of biomedical images and
this at a computational complexity that is
similar to the computational complexity of the

DCT transform. Future scope of this work is to
investigate in detail, the performance of the
proposed compression method for dermatology
images.
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