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Fabien Kéfélian and Philippe Gallion
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ABSTRACT

Theoretical results concerning injection locking in complex cavity semiconductor lasers are reported. A general
equation for the complex temporal envelope of the optical field is derived. The injection direction influence
is taken into account and the difference between front and rear phase noise is pointed out and demonstrated.
Numerical results are given concerning the feed-in rate of different DFB lasers.
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1. INTRODUCTION

Injection locking is a particularly interesting method to reduce laser linewidth,1 enhance the modulation band-
width,2 synchronize lasers for microwave generation3,4 or measure the linewidth enhancement factor.5 In-
jection locking theoretical properties of lasers,6 and especially semiconductor lasers,7 were originally derived
using analogies with the electrical and microwave oscillators8 and especially from Adler’s works on vacuum tube
oscillator circuits.9 Because microwave oscillators have only one input-output, the equation commonly used for
optical injection locking10 does not take into account the direction of the injection in comparison with the output
field.

Injection locking in Fabry-Perot cavity semiconductor lasers has been the subject of a large number of
papers,11 but, although distributed feedback (DFB) lasers are among the most important industrial lasers used
in optical telecommunications, the theoretical study of injection locking in DFB lasers or more complex structure
cavity lasers has been the subject only of a few papers. Experimental studies have demonstrated that DFB lasers
exhibit a symmetrical locking range12 and a model based on a transfer function theory has been developed to
determine the spectrum of an injected DFB laser.13 To establish theoretical equations concerning optical
injection into DFB semiconductor laser, we have adapted and developed previous works141516171819 concerning
optical feedback and noise properties of complex structure cavity lasers based on transmission line theory and
Green’s function treatment of spontaneous emission.

2. FORWARD AND BACKWARD INJECTION: FIELD EQUATIONS

2.1. Introduction

We consider a laser of length l along the z axis. The laser is assumed to be spatially and spectrally single mode.
It can be submitted to the optical injection of an other single mode laser through its right (z = 0) or left (z = l)
facet. Only the output field emerging from the right facet is here considered. Consequently, the right facet is
here referred as the front facet and the left facet as the rear facet.

Further authors informations: (Send correspondence to Fabien Kéfélian)
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Figure 1. Forward and backward injection in a laser

2.2. Boundary equations for electrical field

The goal of this part is to establish an expression of the spectral components of the output electrical field.

The boundary conditions for spectral components of the input electrical fields at z = 0 and z = l are the
following ones:

E+(0, ω) = r1E
−(0, ω) + t12E

+
inj(0, ω) (1)

E−(l, ω) = r2E
+(l, ω) + t32E

−
inj(l, ω) (2)

where r1 and r2 are amplitude reflexion complex coefficients of the facets 1 and 2, and t12 and t32 are amplitude
transmission complex coefficients, see Fig. 1.

In the transmission line theory,20 the two input and two output fields are linked with the four coefficients
of S matrix. We considered in this study only the output through the right facet (z = l), consequently, we use
only two coefficients14:

E+(l, ω) = rLE−(l, ω) + tLE+(0, ω) (3)

The effective transmission and reflexion coefficients tL and rL of the laser are functions of the laser structure
(for example Bragg grating), of the optical frequency ω, of the internal loss and of the gain, i.e. of the spatial
distribution of the densities of carriers N (z) and photons P(z), if the spatial and spectral hole burning is taken
into account for the gain expression. Since rL and tL depend on the functions N (z) and P(z), they must be
treated mathematically as functionals, i.e. functions of functions. Without spatial hole burning, they can be
explicitly found in solving the propagation equations of the field, which form a linear system of coupled equations.

To take into account the spontaneous emission due to the quantification of the field,21 a Langevin force FL

is included into the above expression22:

E+(l, ω) = rLE−(l, ω) + tLE+(0, ω) + FL(ω) (4)

where
〈FL(ω)F ∗

L(ω′)〉 = RLδ(ω − ω′) (5)

RL can be determined using the Green’s function method.23 The expression of the right output field is established
by the combination of the boundary equations (1), (2) and the transmission line equation (3):

E+(l, ω) =
tLt12E

+
inj(0, ω) + rLt32E

−
inj(l, ω) + RL

1 − r2rL

(6)



The expression (6) exhibits three contributions to the output field: two come from the injected fields, corre-
sponding to the amplification of an external signal, the last one comes from the spatially distributed sponta-
neous sources, corresponding to laser effect. Without injection, the lasing frequency corresponds to a value of
the denominator closed from zero, i.e. from the resonance of the cavity.

The power spectral density of the output field can be established from the field expression (6) and the formal
following relation relating the power spectral density of a random function X to its Fourier components X(ω):
SX(ω)δ(ω − ω′) = 〈X(ω)X∗(ω′)〉:

SE+(l, ω) =
|tLt12|2 SE

+

inj

(0, ω) + |rLt32|2 SE
−

inj

(l, ω) + RL

|1 − r2rL|2
(7)

2.3. Electrical field temporal envelope expression

To establish the expression of the complex temporal envelop of the right output electrical field, the functionals
rL and tL are first order expended around the stationary solution (ωs,Ns,Ps) of the solitary laser:
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fR is called the feed-in rate for backward injection, i.e. injection through the output facet, it is inversely
proportional to a generalized round trip time, CN is the local differential gain for a round trip, CP is a local
parameter taking into account gain compression, Ct

N , Ct
P are similar factors for a single trip, ∆N (z) and ∆P(z)

are the local deviations from the carrier and photon densities without injection. fT is the feed-in rate for forward
injection, i.e. injection through the rear facet, χt is a dimensionless factor taking into account experimented trip
difference between front emerging and injected waves in forward injection.

The temporal envelop of the electrical fields around the master angular frequency ωm are hereunder defined:

A+(t) =
1

2π

∫ ∞

0

E+(l, ω)ej(ω−ωm)dω (10)

A+
inj(t) =

1

2π

∫ ∞

0

E+
inj(0, ω)ej(ω−ωm)dω (11)

A−
inj(t) =

1

2π

∫ ∞

0

E−
inj(l, ω)ej(ω−ωm)dω (12)

A+(t) is the temporal envelope of the electrical field at the z = l− output of the laser, A−
m(t) and A+

m(t) are the
temporal envelopes of the electrical injected fields respectively through the front facet (z = l−) and rear facet
(z = 0+), see Fig. 1.

The differential evolution equation of the output field temporal envelop for forward and backward injections
are established using Fourier transform of the equation (6) with the first order expensions (8) and (9):

dA+

dt
(t) = j(ωm − ω0)A

+(t) +

∫ l

0

[CN (z)∆N (z, t) + CP(z)∆P(z, t)] dzA+(t) + fRt32A
−
m(t) + FA(t) (13)

dA+

dt
(t) = j(ωm − ω0)

[

A+(t) + χtt12A
+
m(t)

]

+

∫ l

0

[CN (z)∆N (z, t) + CP(z)∆P(z, t)] dzA+(t)

+fT t12A
+
m(t) +

∫ l

0

[

Ct
N (z)∆N (z, t) + Ct

P(z)∆P(z, t)
]

dzt12A
+
m(t) + χtt12

dA+
m

dt
+ FA(t) (14)



For backward injection (13), the variation of the temporal envelop is composed of five contributions. The first
is the rotation of the complex envelop due to the detuning of the field with respect to the laser cavity, the second
term takes into account the double effect of the carrier density deviation from its free-running value: firstly the
gain change, corresponding to the real part of CN and inducing a modification of the amplitude, and secondly the
change of the refractive index, corresponding to the imaginary part of CN , which induces an additional rotation
of the field envelop. The third term takes into account the non-linear gain effect on the photon density deviation
from its free-running value. The fourth term is the contribution of the injected field which is determined by the
feed-in rate fR, the fifth FA(t) is the Langevin force taking into account distributed spontaneous emission inside
the laser.23

The equation (14), corresponding to the forward injection, exhibits three additional contributions. These
ones are due to the field modification in a single path amplification into the cavity. χt is a key parameter for
these contributions.

Whereas backward injection equation (13) is a generalized form of the commonly used equation10 taken into
account spatial and spectral hole burning, forward injection equation (14) exhibits new additional contributions
among them one from the injected signal derivate, specific to the injection through the rear facet.

3. NUMERICAL RESULTS ON FEED-IN RATE OF DFB LASERS

3.1. Introduction

The feed-in rate is an essential parameter of the locking range expression. In lots of papers2410252627,28 this
parameter is empirically determined to be equal to the free spectral range. In fact, our analysis shows that the
feed-in rate is strongly dependent on the reflectivity of the facets. Indeed, the feed-in rates can be determined
using the Fabry-Perot expression of the effective reflectivity:

rL = r1exp

[

−j2

(

ω

c
n (ω,N ) +

j

2
g (ω,N )

)]

(15)

where n is the refractive index and g the net modal gain, and the partial first order developments (8) and (9)
versus the frequency, given:

fR =
1

r2

vg

2l
(16)

fT =
1√
r1r2

vg

2l
(17)

with vg the group velocity. For a cleaved facet Fabry-Perot laser, the feed-in factor for both directions is 1.8
time the free spectral range.

3.2. Influence of the grating coupling factor

We have represented on Fig. 2 the module of the feed-in rate of a DFB laser with an anti-reflection coated
output right facet, for different real values of the opposite facet reflectivity, in function of the normalized grating
coupling factor κ.l. The feed-in rates fR or fT are normalized by the free spectral range 1/τin of the Fabry-Perot
cavity with the same length, τin is the group round trip time. The backward case corresponds to an injection
through the anti-reflexion coated facet, whereas the forward case corresponds to the injection through the facet
with the reflectivity r1. Consequently, for the forward case, the feed-in rate as defined above takes into account
only the effect of the internal cavity and must be multiplied by the transmission factor to obtain the effective
coupling factor to the external field.

At first sight, for both cases, the feed-in rate decreases with an increase of the grating coupling rate. Indeed,
for a Fabry-Perot cavity, the reflections are localized at both facets whereas for a DFB cavity, additional reflections
are localized inside the cavity due to the Bragg grating. With a very high grating coupling factor, most of the
round trips are localized inside the grating and are not coupled to the external field. On the other hand, when
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Figure 2. Feed-in rate for backward and forward injection in function of the grating coupling factor for different reflectivity
values of the left facet



the coupling to the grating is weak, the feed-in rate becomes very high since the output facet is anti-reflection
coated.

In the backward case, the values for different reflectivities are localized on two curved bands. The switch
from one to the other with the grating coupling factor corresponds to a mode hopping with a change of the sign
of the detuning in comparison with the Bragg mode. Consequently, although the injection is performed through
the anti-reflexion coated facet, the influence of the opposite facet reflectivity is obvious. Moreover, the mode
hopping occurring with an increase of the grating coupling factor results in an increase of the feed-in rate, which
is a correction to the behavior previously explained.

In the forward case, the effect of the mode hopping is inverse. Indeed, the feed-in rate becomes lower when
a mode hopping occurs with an increase of the grating coupling factor, but the values are not arranged around
two curves, because the facet of injection is the facet whose reflectivity is modified.

The value of the feed-in rate for a Fabry-Perot cavity laser with cleaved facet being fR = 1.8/τin, consequently,
for the backward configuration, a DFB laser with a κ.l > 2.5 is less sensitive to the injection than a cleaved
cavity Fabry-Perot laser, whereas it is more sensitive for κ.l < 1.5.

3.3. Influence of the reflectivity phase
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Figure 3. Feed-in rate for backward injection in function of the rear facet phase for a AR/HR DFB laser

It is well known that DFB spectral properties are strongly dependent on the phase and the reflectivity of
their facets. We have numerically studied the case of a DFB laser with an anti-reflexion (AR) coated front facet
and a high reflexion (HR) coating on the rear facet, with an arbitrary phase. We have represented on Fig. 3
the computed values of the feed-in rate, for backward injection, in function of the argument of the complex
amplitude reflectivity of the rear facet. It appears that for a purely imaginary rear reflectivity, i.e. a phase
shift of λ/4, the feed-in rate is closed from zero and the variation of the feed-in rate for values of the argument
in the neighborhood of π/2 is strong. Consequently, the locking range for a purely imaginary facet with high
reflectivity is extremely small.

3.4. Influence of the reflectivity module

On Fig. 4 is represented the influence of the module of the reflectivity on the feed-in rate in backward injection,
for a π/2 argument, i.e. for a DFB laser with its laser mode in the gap band.29 The curves show a large range
of values, we can notice that for high rear reflectivities, the normalized feed-in rate is below unity, but for low
values of the rear reflectivity, the feed-in rate can reach very high values, corresponding to very wide locking
ranges.
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Figure 4. Feed-in rate for backward injection in function of the rear facet reflectivity for gap mode DFB laser

0.4 0.6 0.8 1
2

4

6

8

10

12

r
1
/j

|f T
.τ

in
|

κ.l=1
κ.l=0.7

Figure 5. Feed-in rate for forward injection in function of the rear facet reflectivity for gap mode DFB laser



The feed-in rate for forward injection is now considered. Computed values are presented on Fig. 5 in function
of the absolute value of the rear amplitude reflectivity. The curves show a behavior different from the backward
injection case. In particular, the range of values taken by the feed-in rate are limited, moreover, when the
transmission of the facet of injection, i.e. the rear facet, is taken into account, the effective feed-in rate values
are, for κ.l = 1, between 0 and 4.

4. PHASE NOISE OF INJECTION LOCKED LASER

4.1. Equations and analysis

Injection locking is a well-known technique to narrow the spectral lineshape of a powerful laser using a highly
stable low power master laser. This technique is based on the phase noise proprieties of the injection locked laser.
Phase equation is derived from equations (13) and (14) in separating real and imaginary parts. After calculations,
two differential equations are obtained for the phase of the slave laser, one for the backward injection (18) and
one for the forward injection (19):

dφ

dt
(t) = (ωs − ωi) + 〈CN i |∆N (t)〉 + 〈CPi |∆P(t)〉

+ |fR|T2

√

Iin(t)

I(t)
[sin(φin(t) − φ(t) + arg{t32fR})] + Fφ(t) (18)
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∣
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where we have used the notation:

〈f | g〉 =

∫ l

0

f(z)g(z)dz (20)

CN i and CPi are imaginary parts of respectively CN and CP . T1 and T2 are the intensity transmission coefficients
of the facet respectively 1 and 2. I(t) is the optical power emerging out of the laser through the right facet,
Iin(t) is the optical power enlightening the right facet (backward case) or the left facet (forward case). They
are proportional respectively to |A+(t)|2, |A+

inj(t)|2 or |A−
inj(t)|2. The imaginary part of CP corresponds to a

modification of the refraction index induced by a modification of the photon density, and can be neglected most
of the time.

As above-mentioned, the backward case corresponds to a generalization of the case commonly studied with
Fabry-Perot cavity. The variation of the phase is the sum of four contributions: the detuning in comparison
with the unlocked cavity resonance frequency, the refractive index modification of the cavity induced by carrier
density modification, the injected field contribution depending on the difference between the master phase and



the slave phase, and a Langevin force representing the direct contribution of the spontaneous emission to the
phase evolution.

The equation corresponding to the forward injection exhibits four additional contributions to the phase
evolution. The first one involves the carrier and photon densities deviation from the free-running values, the
second one involves the detuning, the third one involves the master power variation and the fourth one involves
the master phase variation. The two last mentioned contributions have no influence on the locking range but
have one on the stability of the locking. Moreover, they have important impact on the phase noise spectral
proprieties of the locked laser.

4.2. Transfer of noise

The usual noise equations of injection locked lasers27 correspond to the backward injection. In this case, the phase
noise transfer from the master laser to the slave laser acts as a second order low pass filter with a cut frequency
proportional to the feed-in rate fR. That means that the very fast fluctuations of the master phase cannot be
transmitted to the slave laser and consequently there is a large amount of remaining free phase noise in the
high frequencies part of the phase noise spectrum. However, for the forward injection, the phase noise equation
involves not only the master phase noise but also its first derivate. Consequently, in forward configuration, the
phase noise spectral components of the master laser field can be transferred even for large noise frequencies,
thanks to the resonance of the cavity. This effect depends on the above-mentioned χt factor and appears to be
stronger in cleaved facet Fabry-Perot laser (χ = 0.9) than in anti-reflexion coated single facet DFB laser, see
Fig. 6, where it can be canceled with a specific reflectivity value depending on the grating coupling coefficient,
moreover, it is stronger in long cavity i.e. short free spectral range.
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Figure 6. Module of χt parameter for forward injection in function of the rear facet reflectivity for gap mode DFB laser

4.3. Noise asymmetry

Until now we have considered the output field through the right facet, and injection through right and left facets.
Now if we consider injection through the right facet and output through the right and left facets, we obtain that
the phase equation is different for each output field. Consequently, a perfectly symmetric laser submitted to
external light injection exhibits a different noise spectrum at each output.



5. CONCLUSIONS

Using a transmission line and Green’s function approach with electromagnetic boundary conditions, taking into
account field injection through each side, we have derived, for the first time to our knowledge, theoretical general
equations for the laser field of a complex cavity laser, such as DFB or DBR lasers, submitted to coherent optical
injection by output side facet (backward) or opposite side facet (forward). These equations take into account
spatial hole burning and gain compression, but fundamental results also appears in low power Fabry-Perot laser.
We have given numerical results for different parameters of a DFB laser. The differential equation of the phase
has been determined for both directions of injection and particular effects concerning phase noise transfer have
been outlined.
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