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ABSTRACT

This paper shows the use of the Rice representation to obtain the correlation functions of the phase and power
fluctuations of the optical noise of a laser oscillator when the Henry's factor is taken into account.
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1. INTRODUCTION

Currently the description of the optical noise in lasers and optical amplifiers is an active field of research. Several
different approaches to analyze such noise have been developed [1,2,3]. Some of these frameworks take into account the
wave-like aspect of light while others deal with its particle-like nature. We have been working on developing another
more engineer-oriented description based on the Rice representation [4] (also known as the in-phase quadrature
representation) of the optical noise [5, 6]. The Rice representation is a well-known tool used to describe bandpass signals
in radio-frequency and signal processing applications. This representation appears as a simple model for semiconductor
lasers, optical amplifiers and for the analysis of their intensity and phase noises[5].
In this work we show the usefulness of the Rice representation for obtaining the different relations among the quadrature
components of the optical noise through their respective auto and cross-correlation functions and their power spectral
densities when the Henry’s factor is taken into account [6,9].

2. DERIVATION OF THE CORRELATION FUNCTIONS OF THE PHASE AND POWER
FLUCTUATIONS OF THE OPTICAL NOISE.

In this section we derive the correlation functions of the phase and power fluctuations of the optical noise of a laser
oscillator signal. To derive such correlations, first we represent the oscillator signal (coherent state) by means of a
deterministic phasor with a normalized amplitude PA =  ( P  is the average power of the optical signal) and an added
noise vector ( )tN  with the Rice representation:

( ) ( ) ( ) ( ) ( )t02πsintQNt02πcostINtN νν −=            (1)

0ν  is the optical frequency.
( )tNI , ( )tNQ  the in-phase and quadrature components of ( )tN  are defined as [7]:
( ) ( ) ( ) ( )tht2costN2tN LPF0I ∗= πν  (2)
( ) ( ) ( ) ( )tht2sintN2tN LPF0Q ∗−= πν  (3)

where ∗  represents the convolution operation, and ( )thLPF , ( )νLPFH  are the impulse response and transfer function,
respectively, of an ideal low-pass filter with bandwidth 0ν∆ :
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On a coherent state, the noise vector corresponds to the zero-point fluctuations [8], therefore its average power ( Np ) is:
ν∆π NN S2p =                    (6)

where

2
hSN
ν=                             (7)

is the single-sided spectral density, h is the Planck's constant,ν is the optical frequency, and ,ν∆  is the optical bandwidth
of the noise signal respectively.
The instantaneous phase fluctuation ( )tδϕ  of the laser oscillator signal due to the noise vector ( )tN  is (under a small
noise consideration, ( )tNA Q>> ):

( ) ( )
A

tN
t Q≈δϕ   (8)

with a mean-squared value:
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P
p
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where P  is in this case the average stimulated power dissipated in the mode of the laser oscillator, and QI p,p  of the in-
phase and quadrature components respectively.
If we considered an equal repartition energy for the quadrature components of the optical noise we obtain:

( )
P2

Pt N2 =δϕ  (10)

The optical power fluctuations ( ( )tp∆ ) around its mean value A  can be expressed as a function of its in-phase
component as[5]:

( ) ( )tNA2tp I=∆  (11)

The cross-correlation function of the phase and power fluctuations of the optical noise can be expressed as:
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(in this case we take into account the phase-amplitude coupling factor Hα ).
Using equations (2) and (3) in (12) we have:
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if we considered ( )tN  as a wide sense stationary process, then we will have:
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where ( )kRNN  is the autocorrelation function of the optical noise process during a period of time k.
In order to solve the equation (14) we make several change of variables and knowing that the impulse response ( )thLPF

is an even function of t we have, after several manipulations:
( ) ( ) ( ) ( )τπντντ∆ατϕ∆∆ 0NNHP 2cosR2csinR ∗=  (15)

Its corresponding spectral density is:
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The autocorrelation function of the phase fluctuation due to the quadrature component of optical noise can be expressed
as:
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and after several manipulations
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Its corresponding spectral density is:
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The autocorrelation function of the power noise component due to the in-phase component of the optical noise vector
can be expressed as:

( ) ( )ττ∆∆ ININPP RP4R =  (21)

using equation (2) in equation (22) we have:

( ) ( ) ( ) ( )( )[ ]τπντττ∆∆ 0NNLPFPP 2cosRhP2R ∗=  (23)

Its corresponding spectral density is:
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III. CONCLUSION

The Rice representation of the optical field has been used to obtain the auto and crosscorrelation functions and the
corresponding spectral densities of its quadrature noise components when the Henry’s phase-amplitude coupling factor
is taken into account. The Rice representation appears as being a simple model for semiconductor lasers and for the
analysis of their respective intensity and phase noises.
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