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Département Communications, Unité de Recherche Associée au Centre National de la Recherche Scientifique,
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A discrete orthogonal Gauss–Hermite transform (DOGHT) is introduced for the analysis of optical pulse prop-
erties in the time and frequency domains. Gaussian quadrature nodes and weights are used to calculate the
expansion coefficients. The discrete orthogonal properties of the DOGHT are similar to the ones satisfied by
the discrete Fourier transform so the two transforms have many common characteristics. However, it is dem-
onstrated that the DOGHT produces a more compact representation of pulses in the time and frequency do-
mains and needs less expansion coefficients for a given accuracy. It is shown that it can be used advanta-
geously for propagation analysis of optical signals in the linear and nonlinear regimes. © 2003 Optical
Society of America
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1. INTRODUCTION
Numerical optical pulse propagation analysis is impor-
tant for the design of future light-wave communication
systems. In particular, the systems that present nonlin-
earities need efficient numerical solution methods for the
modeling equations to perform a significant number of
numerical simulations that are necessary for good design.
Discrete Fourier transform (DFT) methods with a fast
Fourier transform (FFT) algorithm have been used exten-
sively for the study of linear propagation1 in optical fibers
as well as nonlinear propagation and especially soliton
propagation. In the latter case, the split-step Fourier
(SSF) method is the most widely used because it is stable
and efficient.2–5 By using the DFT for analysis of a
propagating pulse, one is essentially expanding the pulse
on the basis of orthogonal complex exponential functions.
However, many researchers have recognized that it could
be advantageous to expand a pulse on an alternative ba-
sis of orthogonal functions, most notably the Gauss–
Hermite functions.6–9 Moreover, advantages of the use of
a Gauss–Hermite orthogonal basis in place of the complex
exponential Fourier basis appeared not only in optics but
in other disciplines as well, most importantly in antenna
theory,10,11 electromagnetics,12 signal theory,13 image rep-
resentation and compression,14,15 and electrocardiogram
analysis and compression.16,17 These previous studies
addressed interesting issues such as the convergence
properties and the optimum scaling of Gauss–Hermite ex-
pansions. It is important to note, however, that the com-
mon feature of previous studies is that the Gauss–
Hermite basis used satisfies a continuous orthogonal
property (with respect to integration) but not a discrete
orthogonal property (with respect to summation) as the
one satisfied by the DFT.18 This creates a number of
problems and inconveniencies for numerical implementa-
tion of the Gauss–Hermite expansions: the expansion
coefficients are given by an integral defined over an infi-
nite domain that has to be approximated in some way, the
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optimum scaling factors depend on this approximation
and cannot be uniquely defined, and, most importantly,
there is no exact inverse transform if a finite number of
basis functions is used. The discrete orthogonal Gauss–
Hermite transform (DOGHT) presented in this paper
overcomes the above-mentioned problems that are typical
of classical Gauss–Hermite orthogonal expansions and
has many of the useful properties of a DFT.

2. DISCRETE ORTHOGONAL
GAUSS–HERMITE TRANSFORM
The DOGHT is defined by
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where T is a time-scaling factor and
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Moreover
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is the continuous orthogonal property of the orthonormal
Gauss–Hermite functions of order n, and hn and Hn are
the classical Hermite polynomials of order n. The sam-
pling points t0 , t1 , t2 , ... tN21 are the zeros of the
Nth-order Hermite polynomial that are commonly used in
the context of Gauss–Hermite quadrature theory, and
weights wi are given by the relation
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Use of the orthonormal Gauss–Hermite functions is con-
venient for numerical computations. A three-term recur-
rence relation is used for the calculation:
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We used a Newton–Raphson root-finding algorithm for
the computation of sampling points ti by finding the zeros
of the hn functions. Initial approximations for the zeros
are provided by the fact that the N zeros of hn interleave
the N21 zeros of hn21 and there is exactly one zero of the
former between each two adjacent zeros of the latter.
This is a well-known property of all classical orthogonal
polynomials. The arithmetic mean (midinterval) of the
two adjacent zeros is taken as the initial approximation
that is refined to the desired accuracy by the Newton–
Raphson algorithm. The derivative necessary for this
purpose is calculated by

hn 5 A2nhn21 , (7)

and this in turn is used for the calculation of weights wi
by Eq. (5). Using the above-described, reliable proce-
dure, we easily calculated sampling points at least up to
N 5 512 and with 13–14 digit accuracy in double preci-
sion.

The important discrete orthogonal relations satisfied
by the Gauss–Hermite functions are
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Because of Eq. (8) the transform coefficients cn are calcu-
lated by Eq. (1). Furthermore, Eq. (9) leads to the fact
that

f̃ S ti

T D 5 f S ti

T D , (10)

the collocation property of the DOGHT, and this is dem-
onstrated in detail in the Appendix. These properties are
equivalent and are similar to the properties of the DFT
and result in an exact inverse DOGHT. The Parseval re-
lation for the DOGHT is
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where Ẽ is the approximate pulse energy. The exact
pulse energy is

E 5 E
2`

1`

u f~t !u2dt. (12)
The Parseval relation in Eq. (11) is instructive about the
number of sampling points needed for a good approxima-
tion of the pulse energy, the correct choice of the time-
scaling factor T, as well as the rate of convergence of the
transform in general. First, Eq. (11) shows that the
pulse energy is approximated by a Gauss–Hermite
quadrature rule as opposed to the rectangle rule of the
Parseval relation for the DFT. As is well known, a Gauss
quadrature rule converges much faster than the simple
rectangle rule in a vast majority of cases.

The approximate Fourier transform can be also calcu-
lated analytically as
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and is in the form of another orthogonal function expan-
sion that is due to the fact that the Gauss–Hermite func-
tions are their own Fourier transforms multiplied by the
A2p(2j)n-proportionality factor. Contrary to the Fou-
rier transform of the DFT, which provides only discrete
frequency values and no continuous approximation for-
mula, the Fourier transform of the DOGHT in Eq. (13)
provides a continuous frequency approximation and thus
frequency resolution is less of a problem with the DOGHT
than with the DFT.

With regard to the choice of the time-scaling factor T of
the DOGHT we first propose, in analogy with the DFT, to
choose a computational window @2tmax , tmax#, taking into
account the temporal extent of the pulses under analysis.
Then the time-scaling factor is taken from the relation

T 5
tN21

tmax
, (14)

where tN21 is the largest Gaussian quadrature node. In
the rest of the paper we will use this time-scaling factor.

As an example the DOGHT transform of the f(t)
5 sec h(t) function in the interval t P @25, 15# with
N 5 8 is calculated and the results are shown in Table 1.
The time domain inverse DOGHT transformed function is
given by

Table 1. DOGHT of sech(t) for NÄ8

i ti /T f(ti /T) ci f̃ (ti /T)

0 5.00 0.01 1.06 0.01
1 3.38 0.07 0.00 0.07
2 1.97 0.27 20.18 0.27
3 0.65 0.82 0.00 0.82
4 20.65 0.82 0.10 0.82
5 21.97 0.27 0.00 0.27
6 23.38 0.07 20.03 0.07
7 25.00 0.01 0.00 0.01
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The time-scaling factor is T 5 0.586 in this case and the
approximate pulse energy as calculated by the DOGHT
coefficients cn [Eq. (11)] is Ẽ51.97069 whereas the exact
pulse energy is E 5 2. Furthermore, it is obvious that
the collocation property (exact inverse transform) of Eq.
(10) holds and that the odd coefficients of the DOGHT are
zero because of the symmetry of the hyperbolic secant
pulse around the origin.

3. PROPAGATION OF OPTICAL PULSES IN
THE LINEAR REGIME
The normalized linear propagation equation in optical fi-
bers, including up to second-order dispersion,5 is

j
]w~z, t !
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5
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2
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]t2 , (16)

where w(z, t) is the normalized electrical field envelope.
Taking the Fourier transform of Eq. (16) and solving the
resultant ordinary differential equation yield

F~z, v! 5 F~0, v!expS j
vz2

2 D . (17)

For F(0, v) we then chose9 the set of orthogonal functions:

Fn~0, v! 5 A2p~2j !nhn~v!. (18)

The coefficients in Eq. (18) were chosen to yield normal-
ized functions in the time domain. The inverse Fourier
transform of Eq. (18) is
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The finite series expansion of an arbitrary solution of Eq.
(16) is written as

u~z, t ! 5 (
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where
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However, from a computational point of view it is more
practical to be able to define the computational window
that was used to solve Eq. (16) independent of the number
of expansion functions N used. We achieved this by
using, as previously with the DOGHT, a time-scaling
factor T. Moreover, taking advantage of the scaling
properties of Eq. (16), we used the initial condition of
u(0, t/T) 5 f(t/T) with 2tmax < t/T < tmax , and the solu-
tion algorithm for Eq. (16) was as follows:

(1) Define a computational window @2tmax , 1tmax#.
(2) Choose the number N of expansion functions or

sampling points.
(3) Calculate the time-scaling factor T 5 (tN21 /tmax).
(4) Calculate N expansion coefficients
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wiuS 0,
ti

T Dhn~ti!.

(5) Calculate the solution to Eq. (1) as

u~z, t ! 5 (
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It can easily be seen that for z 5 0 the above procedure
reduces to the DOGHT because wn(z 5 0, t) 5 hn(t).

By way of example, the linear propagation of a chirped
hyperbolic secant pulse is calculated9:

u~0, t ! 5 sec hSAp

2
t D expS 2j

at2

2 D . (22)

In Eq. (22) a 5 210, resulting in an initial pulse com-
pression. The complete results are shown in Table 2.
The superiority of the DOGHT method, especially at
larger distances, is evident. It should also be noted that
a smaller computational window is sufficient for the
DOGHT, t P @210, 110#, in comparison with the compu-
tational window needed for the DFT–FFT,
t P @240, 140#. This is a general characteristic of the
DOGHT and is not specific to this example.

4. SPLIT-STEP GAUSS–HERMITE
The split-step Gauss–Hermite algorithm is discussed in
Ref. 19. Numerical solution of the nonlinear Schrödinger
equation for the simulation of soliton propagation is of
great importance to the design of soliton optical commu-
nication systems. The finite-difference methods initially
used for this purpose20,21 were rapidly replaced by the
SSF method.2–4 The latter was found to be an order of
magnitude faster than the finite-difference methods for
the same required precision.4 The SSF algorithm is an
operator splitting method that is used to enable the sepa-
rate solution of linear and nonlinear parts of an equation.
It is a simple, efficient, and stable algorithm that has

Table 2. Comparison of DOGHT and FFT for the
Linear Propagation of a Chirped Hyperbolic

Secant Pulse

z

FFT
2048 Points

t P @240, 140#

DOGHT
512 Points

t P @210, 110# Exacta

0.1 3.16 3.16 3.16
1.0 0.329 0.329 0.329
10.0 0.0112 0.0994 0.0994

100.0 0.0682 0.0313 0.0313

a From Ref. 9.
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been used extensively in the study of optical fiber commu-
nication systems.5 A brief description of this algorithm is
given in its simplest and most widely used form applied to
the nonlinear Schrödinger equation. The nonlinear
Schrödinger equation is written in normalized form as

]u

]z
5 2

i

2

]2u

]t2 1 juuu2u. (23)

The SSF algorithm proceeds as follows: First, the non-
linear part of Eq. (23) is solved:

]u

]z
5 juuu2u, (24)

and the solution is propagated by Dz with the formula

uNL~z0 1 Dz, t ! 5 exp@ jDzuu~z0 , t !u2#u~z0, t !.
(25)

Equation (25) is the exact solution of Eq. (24). Then the
linear part of Eq. (23) is solved:

]u
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5 2

j

2
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]t2 (26)

by use of Fourier transforms as

u~z0 1 Dz, t ! 5 F21bexpS j
Dz

2
v DF@uNL~z0 1 Dz, t !# c.

(27)

This is also an exact solution. Consequently, Eq. (27) is
the approximate solution of Eq. (23), where the linear
part and the nonlinear part of Eq. (23) have been solved
sequentially. Such a decomposition is, of course, only ap-
proximately correct to first order in Dz, its error being of
the second order in Dz, according to the operator splitting
analysis in Eq. (27). The Fourier transforms in Eq. (27)
are approximated by the DFT calculated with the FFT al-
gorithm. This procedure introduces a second approxima-
tion error that originates in the discretization of the con-
tinuous Fourier transforms by the DFT.

By using the DOGHT instead of the DFT for solution of
the linear part of the nonlinear Schrödinger equation we
obtained an efficient solution algorithm for solitonlike
pulses. More precisely, the FFT linear step of the SSF al-
gorithm [Eq. (27)] is replaced in the split-step Gauss–
Hermite (SSGH) method by

cn 5 (
i50

N21

wiuNLS z0 1 Dz,
ti

T Dhn~ti!, (28)

u~z0 1 Dz, t ! 5 (
n50
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Equation (28) was used to calculate the Gauss–Hermite
expansion coefficients and Eq. (29) was used to propagate
the solution linearly by Dz. Compared with the results
in Ref. 9, it is obvious that the orthogonal expansion used
here is a simplified version of the more complicated
chirped expansion used in Ref. 9. Another important as-
pect of our method is use of the Gauss–Hermite quadra-
ture nodes and weights. As a consequence, the sampling
points in the time axis are the zeros of the Hermite poly-
nomial of order N, and they are no longer equispaced as in
the FFT method but are nonuniformly spaced in an opti-
mum way. The result is that fewer points are required to
represent a propagating pulse accurately.

Moreover, with regard to the actual computations, the
matrices

wihn~ti!, (30)

wn@~Dz !T2, tiT# (31)

were calculated only once at the beginning of the algo-
rithm and are then stored for further use. This greatly
reduces the computational complexity of the SSGH algo-
rithm. Furthermore, using the fact that the zeros and
weights of the Gauss–Hermite quadrature are symmetri-
cally arranged about the origin, we halved the number of
complex multiplications required for each linear step. In
comparison, the FFT method requires less complex mul-
tiplications for a given N but a much higher number of
terms N for the same accuracy. A detailed comparison of
the SSF and SSGH methods is listed in Tables 3–6. The
problems of first- and second-order soliton propagation
are used for comparison of the two methods. These cases
are convenient for numerical comparison purposes be-
cause well-known exact solutions are available.

The initial pulse is

u~z 5 0, t ! 5 A sec h~t !, (32)

where A is the initial amplitude. If A 5 1, the exact so-
lution of Eq. (23) in this case would be a first-order soli-
ton:

uex~z, t ! 5 expS 2j
z

2 D sec ht (33)

with constant amplitude and only a varying phase factor.
If A 5 2 the exact solution of Eq. (23) would be a second-
order soliton:

Table 3. SSF First-Order Soliton Propagation
Simulationa

NFFT
t P @220, 120# uu 2 uexumax Energy CPU (s)

64 0.006 2.0000 0.33
128 0.0015 2.0000 0.66
256 0.0015 2.0000 1.37
512 0.0015 2.0000 2.91

a A 5 1, z 5 10, Dz 5 0.01.

Table 4. SSGH First-Order Soliton Propagation
Simulationa

NGH
t P @210, 110# uu 2 uexumax Energy CPU (s)

8 0.0079 1.9971 0.07
16 0.0026 1.9999 0.11
32 0.0011 2.0000 0.21
64 0.0018 2.0000 0.94

a A 5 1, z 5 10, Dz 5 0.01.
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uex~z, t ! 5 4 expS 2j
z

2 D @cosh 3t 1 3 exp~24jz !cosh t#

cosh 4t 1 4 cosh 2t 1 3 cos 4z
,

(34)

with a varying amplitude and phase factor. In Tables 3
and 4 the calculations are shown for A 5 1 and a spatial
discretization step of Dz 5 0.01. The maximum absolute
error calculated on the sampling points at a normalized
distance z 5 10 is our comparison criterion for first-order
soliton propagation:

maxuu~z 5 10, ti! 2 uex~z 5 10, ti!u. (35)

A computational window of 220 < t < 120 5 tmax is
used for the SSF method whereas a computational win-
dow of 210 < t < 110 5 tmax is used for the SSGH
method. All the computations were performed on an In-
tel mobile Celeron processor-based laptop computer run-
ning at 650 MHz.

Table 3 shows that a 128-point FFT is enough, because
an additional increase in the number of points does not
increase accuracy, the residual error being due to the op-
erator splitting approximation. In comparison, in this
case, results of the same accuracy are obtained with the
SSGH algorithm with only 32 points and approximately
three times faster (see Table 4). Going now to the next
example, the maximum absolute error calculated on the
sampling points at a normalized distance z 5 1 is our
comparison criterion for second-order soliton propagation:

maxuu~z 5 1, ti! 2 uex~z 5 1, ti!u. (36)

A computational window of 220 < t < 120 5 tmax is
used for the SSF method whereas a much narrower com-
putational window of 26 < t < 1 6 5 tmax is used for
the SSGH method.

Tables 5 and 6 show that the SSGH is superior to the
SSF also for second-order soliton propagation although
the speed advantage has been lost because of the larger
number of sampling points required in this case. Fur-
thermore, column 3 in Tables 3–6 show that both methods
present good conservation of energy properties. It should

Table 5. SSF Second-Order Soliton Propagation
Simulationa

NFFT
t P @220, 120# uu 2 uexumax Energy CPU (s)

256 0.0087 8.0000 1.37
512 0.0080 8.0000 2.91
1024 0.0080 8.0000 6.05

a A 5 2, z 5 1, Dz 5 0.001.

Table 6. SSGH Second-Order Soliton Propagation
Simulationa

NGH
t P @26, 16# uu 2 uexumax Energy CPU (s)

72 0.0084 7.9999 1.37
80 0.0071 8.0000 1.76
100 0.0069 8.0000 2.86

a A 5 2, z 5 1, Dz 5 0.001.
also be noted that the SSGH method, unlike the SSF
method, does not require N to be a power of 2.

5. CONCLUSIONS
A discrete orthogonal Gauss–Hermite transform and its
applications to the analysis of optical pulses have been
presented. The DOGHT can be used as an alternative to
the DFT for the analysis of optical signals and presents
several advantages: more compact representation of sig-
nals in the time and frequency domains (less expansion
functions and sampling points N required), continuous
function and continuous frequency approximation for the
Fourier spectrum (as opposed to discrete frequency values
for the DFT), and energy approximation of the optical sig-
nal by Gaussian quadrature rather than by the less accu-
rate rectangle rule for the DFT. The application of the
DOGHT to linear pulse propagation further demon-
strated its better accuracy, especially at larger propaga-
tion distances, in the example of linear chirped pulse com-
pression. Finally, the split-step Gauss–Hermite
algorithm has been presented by use of the DOGHT for a
linear step solution of the nonlinear Schrödinger equa-
tion. Comparison with the standard split-step Fourier
algorithm for first-order and second-order soliton propa-
gation shows the advantages of the DOGHT. Through-
out, guidelines for the correct scaling of the DOGHT as
well as the choice of adequate computational windows
have been given.

APPENDIX
To prove the collocation property of the DOGHT, we sub-
stituted the coefficients cn from Eq. (1) into Eq. (2):

f̃ S ti

T D 5 (
n50

N21

Cnhn~ti! 5 (
n50

N21

(
j50

N21

wjfS tj

T Dhn~tj!hn~ti!.

(A1)

Changing the order of summation and rearranging yield

f̃ S ti

T D 5 (
j50

N21

fS tj

T D (
n50

N21

wjhn~ti!hn~tj!. (A2)

The second summation is seen to be equal to d ij by virtue
of the orthogonal property in Eq. (9), so that Eq. (A2) be-
comes

f̃ S ti

T D 5 (
j50

N21

fS tj

T D d ij 5 fS ti

T D . (A3)

Thus the proof is complete.
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