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ABSTRACT 

Adopting a new classical approach, the additive noise power generated in optical amplifiers is calculated in terms of 
power spectral density. The classical formalism used combines a corpuscular approach to a phase-amplitude description 
of the optical field. The noise contributions of the input field fluctuations, including zero-point fluctuations, and of the 
electron momentum fluctuations at optical frequency linked to the amplifier itself, are clearly identified. The excess of 
noise associated to coupling or built-in losses is determinated. The well-known result of the ArnpliJied Spontaneous 
Emission (ASE.) is obtained for the laser amplifiers. 
This description is applied to linear phase-insensitive amplifiers and to inhomogeneous, nonlinear phase-insensitive 
Raman amplifier, pointing out the effects of gain compression and gain distribution. 
This new approach makes possible the treatment of the squeezed-state of light and the quadrature reduced noise 
amplifications. 

Keywords: Optical Amplifier, Optical Noise, Spontaneous Emission, Noise Figure, Raman Amplifier, Gain 
Saturation, Gain distribution, Non linear Gain. 

1. PHASE-AMPLITUDE OPTICAL NOISE REPRESENTATION 

Let us consider the simultaneous reception of a deterministic optical field with complex amplitude Aexpjq5 and of an 
additive optical band-limited stationary Gaussian noise N(t) with a flat spectrum in a pass-band bandwidth equal to Bo. 
It is assumed that both the deterministic field and the optical noise refer to the same polarization and then, can be 
represented with a scalar notation. 

N t 

Re 
Figure 1 : Phasor representation of a small random signal in addition to a deterministic field, 

A two-quadrature component description of noise is mandatory to understand the noise generation in optical amplifiers. 
As shown on Figure 1 standard decomposition of the amplitude noise N into an in-phase N,(t) and a quadrature Np(t) 
components is used [l-61. Assuming an appropriate normalization in which the optical power equals the squared field, 
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the total instantaneous power is the squared sum of the deterministic field and of the in-phase component of the noise. 
Under the small noise approximation, this total power can be written as: 

P = ( A  + N,)' = A' + 2.A.N, 

According to the well-known energy equal-repartition principle, the total noise power PN is assumed to be equally 
shared between the two noise components and the resulting optical power fluctuates around its average value A2 with 
the mean squared fluctuations: 

- 
(AP)* = 4.A' .n,' = 4P.c = 2P.PN 

in which F = A*,  8 = FN/2 and FN are the deterministic signal power, the average power of the in-phase noise 
component and the total noise power, respectively. Observing that only the optical noise spectral components within the 
spectral range Be on each side of the optical carrier frequency produce beating within the electrical bandwidth Be, the 
optical noise bandwidth contribution is determined by Bo = 2B, and the noise power can be expressed as: 

- 
PN = S, Bo = 2S, Be 

in which S, is the single-sided optical noise power spectral density. 

As also shown on the figure 1, while the in-phase component Nl(t) induces amplitude change and therefore power 
fluctuations, the quadrature component Ne($ induces phase fluctuations that can be approximated by Acp = N ,  I A .  
The mean squared phase fluctuations is thus expressed as: 

in which F, = FN/2 is the average power of the quadrature noise component. The r.m.s. power and phase fluctuation 
product, independent of the signal power, is obtained: 

2. THE FUNDAMENTAL NOISE SOURCES 

According to the quantum treatment of noise, the two fundamental noise sources are the input field fluctuations, 
including zero-point fluctuations, and the electron momentum fluctuations at optical frequency [7-101. The well-known 
Ampliped Spontaneous Emission (A.S.E.) is only a consequence of them. We propose in this section to combine a 
corpuscular approach with a phase-amplitude description of the optical field to derive them using classical formalism 
and electrical engineering notations. 

2.1 Zero-point fluctuations 

Let us consider now a corpuscular description of light, in which the optical signal, of frequency v, incoming on the 
photodetector device, is pictured as a constant rate flow of photons of individual energy hv.  As a result of the lack of 
correlation between the photons, the number n of photons received during an observation time z is fluctuating according 
to the well-known Poisson statistic law. The mean squared fluctuations of n = Z + An around its expected value, is 
simply equal to the expected value Fi  : 

- 
(An)' = n 

The corresponding shot noise or quantum noise is not a consequence of using the corpuscular description of light but a 
counterpart of fundamental optical field fluctuations itself. Using the proportional relationship between the number of 
photons and the received optical power n = Fz/hv  = F/(2Behv) ,  the Poisson fluctuation relation can be interpreted as 
power instantaneous fluctuations [4-61: 
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- 
(AP)’ = 2hvBeP 

Comparing with the power fluctuations obtained from the phase amplitude representation and given by Equation (1.2), 
the power fluctuations associated with the shot noise appear to be produced by the in-phase components NI of an 
additive noise N with a total power: 

- 
P, = hvB, (2.3) 

Observing again that optical noise spectral components within a spectral range Be below and above the optical carrier 
frequency produce beating within the observation bandwidth, the optical noise bandwidth is Bo = 2B, and the 
corresponding single-sided optical power spectral density of noise is: 

S, = h v l 2  (2.4) 

This additive amplitude optical noise which accompanies any optical field is usually referred in quantum 
electrodynamics as the zero-pointJeldfluctuations or the vacuum fluctuations. It is an elusive noise since the zero-point 
field fluctuations cannot be observed alone. The addition of the zero-point field fluctuations to a classical deterministic 
field defines a so-called coherent state ofthe light [S-lo]. This noise is only observable through its cross term product 
with another signal and is not directly observable. 

2.2 Noise linked to absorption, losses and beam splitting 

2.2.1 Partition noise 
The noise linked to localized attenuation, losses or beam splitting can be derived in a classical corpuscular approach by 
using the partition noise [ll]. Let us consider for instance the transmission-reflexion problem pictured on figure 2 
where an average photon number E is reaching a mirror with a reflectivity R, for a given time 2. For each photon, the 
probability to be transmitted is ( I - R )  and the probability to be reflected is R. In these conditions the 
transmission-reflexion process introduces a so-called partition noise and the corresponding transmitted and reflected 
photon number fluctuations obey the following relations: 

- for a single photon 

(2.5) 
-2 - -2 A n i = n i - n R  = ? l R  -nnR = R ( 1 - R )  

- -  

- for E independent photons 

-b n,=(l-R)E-An 
L__ - 

nT 

- n 

nR= RE +An -=-- 
nR Reflectivity R 

Figure 2:  Partition noise in the transmission-reflexion of an optical beam 

Using again the proportional relationship between the number of photons and the received optical power 
n = Fr /hv  = F/(2Behv) ,  the beam partition leads to the fluctuations power instantaneous fluctuations [5-61: 
- 

- 
(AP)’ = 2hvBeR(1 - R)P = 2hvBeR% (2.7) 

Where 
noise power is : 

= (1 - R)P is the mean transmitted power. Using the same derivation as equation (2.2) the corresponding 



Using the same derivation as Equation (2.3) the corresponding single-sided noise spectral density is 

S, = R h v I 2  (2.9) 

2.2.2 Noise contribution of distributed absorption 
For an elementary slice of width dz in a medium, with a lineic absorption coefficient a, the elementary noise 
contribution to the single sided power spectrum is obtained by substituting R to d z  in Equation (2.9): 

dS, = a(hv / 2)dz (2.10) 

2.3 Amplification noise 

To avoid a quantum description of noise, we will use a heuristic derivation in which the quantum nature of the light is 
simply introduced by a conjugation relation between the two noise components in the form of the well-known 
Heisenberg uncertainty product [ 121. 

2.3.1 Conjugation relation between the two noise components 
The minimum value of the r.m.s power and phase fluctuation product as given by Equation ( 1 . 5 )  is obtained in the 
particular case of zero-point field fluctuations. By using Equation (2.3) we obtain in this case: 

Sq.SP = hvBe (2.1 1 )  

Introducing the photon number n = P z / h v  received during any observation time z and the time-bandwidth relation 
Be = 1/22 this relation is the minimum value of the Heisenberg uncertainty product: 

(2.12) 1 6q.6n = - 
2 

The most popular energy-arrival time relation is obtained by using 6q = 2m6t and the energy defined as E = PZ this 
phase-number relation is converted into 

SEdt = h / 4 z  (2.13) 

2.3.2 Noise addition necessity 
An ideal noiseless phase insensitive linear amplifier only amplifies with a gain G, both the incoming signal and its 
fluctuations. The output number fluctuations are related to the input one by the relation Sn,,, = G6n,N, while the phase 
fluctuations are kept unchanged SqoliT = Sq,. Output phase and photon number measurements fulfilling Equation 
(2.12) would imply that, at the same time, the input signal measurements fulfill [6]: 

Equation (2.14) is in contradiction to the Heisenberg minimum uncertainty product. The noiseless amplifier therefore 
cannot exist. Any amplifier must add additional output uncertainties that are introduced by an extra noise with an origin 
intrinsic to the amplifier itself. 

2.3.3 Minimum added noise 
Assuming an uncorrelated noise variance addition for each of the two quadratures, the square minimum output 
uncertainty product fulfilling Heisenberg relation is: 

(2.15) 

In which Sq, and SPA are the amplifier contributions to uncertainty and Sq, and SP, the detector ones. 



Using the Equations (1.2) and (1.4,) and denoting E = eA + FQA and FN = e, + &, the corresponding noise powers 
shared between in phase and quadrature components for the amplifier noise and the detector noise respectively, we 
write Equation (2.15) in the form: 

(2.16) 2 -  - (p7, + P, )<P,, + %A ) = G 4DpQD 

T 

PI0 PIA 
Figure 3: Two quadratures noise addition for a=b= 112 

Introducing the constants a and b smaller than the unit, we express the in-phase/quadrature noise power sharing in the 
forms [6]: 

- - -  
4, =aPN ; P,, = ( l - a ) F N  and CA = b E  ; FQA = ( l - b ) E  (2.17) 

The figure 3 shows the two quadratures noise addition for a= b= 1/2. It is easy to show that the minimum value of the 
added power is obtained for a=b, reducing Equation (2.16) to: 

(2. IS) 

Using at last Equation (2.3) for the minimum value of the detector noise power and Equation (2.18), the minimum extra 
noise power required at the output to avoid the violation of Heisenberg minimum uncertainties is obtained [12]: 

- hv 
2 

P A  =(G-l)-Bo (2.19) 

This result is obtained for a phase insensitive linear amplifier with a gain G and an optical bandwidth Bo, equal to twice 
the observation bandwidth Be. By using Bo = 1 / ~  the product TT = (G - l )hv /2  can be interpreted as the minimum 
added noise energy at the output of an amplifier. For large values of gain G, it corresponds to additional noise energy of 
half a photon during each observation time at the input of an equivalent noiseless amplifier. This minimum value is 
independent of the nature of the optical amplifier used. 
Using the same derivation as Equation (2.3) the corresponding single-sided noise spectral density is: 

hv 
2 

SA =(G-1)- (2.20) 

2.3.4 Amplification local noise contribution 
For the light amplification through an elementary slice of width dz in a medium with the gain per unit of length p, the 
elementary noise contribution to the single sided power spectrum is obtained by substituting G to l+pdz in Equation 
(2.20): 

(2.21) 



3. EXCESS OF NOISE AND NOISE FIGURE 

3.1 Minimal total noise and minimal noise figure 

The extra noise generated in the amplifier has to be added to the amplification of the unavoidable input zero-point field 
fluctuations, The minimum overall output optical noise power spectral density is therefore: 

S,,, = (G-l)hv/2 + G hv/2 
7 - Noise generated Amplification of input 

in the amplifier zero point fluctuations 

For large values of the gain G the corresponding and equivalent total input noise at the input of an ideal noiseless 
amplifier is thus twice the minimum value associated to zero point fluctuations given by Equation (2.4): 

STOM = h v  (3.2) 

For this reason, the Noise Figure F of an optical amplifier, expressing the noise added to the amplified input noise by 
the mean of a multiplying factor, has a minimum value equal to 2, in the high gain limit [13-141. 
This noise corresponds to an overall noise energy of one photon during each observation time at the input of an 
equivalent noiseless amplifier. 

3.2 Amplifier noise excess 

The present optical amplifiers add a larger amount of noise and operate above the fundamental limit expressed by 
Equation (3.2). The main reasons are that the net gain G is usually the result of the subtraction of the local total gain and 
loss coefficients while their noise contributions add. This can be expressed by multiplying the added noise contribution 
by a factor K,  greater than 1, leading to the noise power density: 

h v  h v  
2 2 

s,,, =K(G-l)-++- (3.3) 

An alternative approach is to assume a noise free input signal and to make reference to the unavoidable output shot 
noise resulting from the output zero point fluctuations. Equation (3.3) is then rewritten in the form: 

h v  h v  
SToTAL=F(G-l)-+- with F = K + l  

2 2  

The first term in Equation (3.4) is the total output noise supplementing the minimum output zero point fluctuations. It is 
not the added noise supplementing the amplified zero point fluctuations that is partly included. F is the optical noise 
figure of the amplifier. It has to be pointed out that the minimum value of F obtained for an ideal amplifier is 2, while 
the minimum value of K is 1. It is a result of not considering the elusive zero-point fluctuations as an input noise 
producing a part of the output noise but as a property of the amplifier since they are present at the input even when no 
signal is detectable. This factor 2 limit is not directly related to polarization, bandwidth or double cross-term 
considerations, as sometimes believed, but results from Heisenberg conjugation between the two noise quadratures. 

3.3 Amplified Spontaneous Emission 

The output optical noise of laser amplifier is usually described in terms of Amplzyed Spontaneous Emission (ASE). The 
average amplified spontaneous emission power for a single polarization in a single sided optical bandwidth Bo is [15- 
181: 

- 
PASE = n p ( G  - l)hvB, (3.5) 



in which nsp is the population inversion factor. This mean power value is not the noise itself, as it has been sometimes 
considered to be the case, but the root mean square of the power fluctuations of a Gaussian process with the single sided 
optical spectral density: 

(3.6) 
h v  

SASE = 2nsp(G- 1)- 
2 

The noise figure is in this case F = 2nSp with a lower limit of 2 for the fully inverted situation. In this case, the 2 factor 
is explained by considering the input zero-point fluctuations as one of the sources of the spontaneous emission in the 
amplifier, while the other is produced by momentum fluctuations of the electrons at optical frequencies associated to the 
gain process itself. 
Since a part of it is produced by input noise amplification, the amplified spontaneous emission is not the noise added to 
the amplified input fluctuations but the noise added to the zero-point output fluctuations. A 2 factor must eventually 
multiply this value to take into account the two orthogonal polarization states. This additive optical signal on the 
receiver generates its own shot noise contribution, a noise beating with the useful signal and also a noise resulting from 
its own power fluctuations, interpreted as noise against noise beating. The Figure 4 shows the comparison of the 
classical additive noise and ASE noise descriptions. 

S,,,,,, = (2n,  - 1)(G - 1) hv /2  + G hv /2  SNNout = 2n,,(G - 1) hv /2  + h v / 2  - 
unavoidable zero point v Noise generated Amplification of input 

in the amplifier zero point fluctuations to minimun uncenainty fluctuations at the output 

Classical additive noise description ASE noise description 

Figure 4: Phasor comparison of the classical additive noise and ASE noise descriptions. 
The doted areas correspond to the noise added by the amplifier 

4. INFLUENCE OF SIGNAL INDUCED GAIN NONLINEARITIES 

In 1989 Yamamoto and Mukai pointed out theoretically the effects of gain sensitivity on noise generation in optical 
amplifiers [ 171. The Optical Phase-Sensitive linear Amplifier (OPSA.) was introduced as a “theoretical noiseless 
amplifier with a noise figure of 0 dB”. Several experimental works have then illustrated the effects of gain compression 
on noise generation in saturated Erbium Doped Fiber AmpliJier (EDFA) and Semiconductor Optical Amplifier (SOA) 

These works have been a first and promising step toward the improvement of noise performances in the amplification 
process. However few works then have tried to understand and describe theoretically the amplification processes 
involved in such sensitive optical amplifiers and to evaluate their role in noise generation mechanisms. By applying the 
classical formalism previously presented, the sections 4 and 5 are devoted to the understanding and modeling of the 
influence of gain nonlinearities and gain distribution, in optical amplifier noise generation. 
In this section, the effects of signal induced gain nonlinearities on noise generation are evaluated in a saturated optical 
amplifier, such as a SOA or an EDFA. The results are compared to those obtained in the linear amplification regime. 

[19-241. 



For input powers beyond the saturation power Ps the gain of SOA is signal power-dependent. This results from various 
processes such as carrier heating, spectral and spatial hole burning. The gain is decreasing with an increasing input 
signal power. In this situation, a noise reduction has been reported [25-341. The signal power dependence of the gain is 
expressed in our formalism by the gain multiplicative factor (1-&P(z)). The gain compression coefficient E is assumed to 
be homogeneous and frequency-independent over the signal linewidth. The net gain coefficient is expressed as 
g = [ (p  - a)  - @P(z)].  By using the various noise contributions given by Equations (2.10) and (2.21), the differential 
equation for the total noise power spectral density S~(w,z)  is: 

S,(w,z + dz) = [1+ ( p  - a).dz]S,(w,z) + [(a + P).dz].(hv/2) 
Linear gain “contribution 

-[Epp(z)dz]sN(w, z) - [&pP(z)dz]*(hv / 2) J 

Nonlinear gain contribution 

By integrating Equation (4.1) along the total amplification length L,  the total noise power spectral density, if we assume 
an incident power spectral density SAW, 0), is: 

while the total output power is given by : 

(4.3) 

In these equations, the factor A = g ,  /(gL + @(G, - l)P(O)), gL=p-a, K ,  = ( p  + a)/(P - a ) ,  P(0) and GL=exp(gl) 
are respectively the global net gain reduction factor, the linear net gain coefficient, the linear excess noise factor, the 
input signal power and the global gain in the amplification linear regime. In Equation (4.2) the contribution of the 
incident noise SN(w0) is reduced by the factor A as well as the intrinsic noise generated inside the amplifier. The last 
term in the bracket expresses an extra noise reduction as compared to the amplification linear regime. 
The noise produced in a gain compressed optical amplifier has been numerically estimated along the amplification 
length for various K,,, values (Le. for various values of the ratio a/P, and for different values of &P(O). For a given 
K,,, value, the gain compression leads to a noise reduction up to a critical amplifier length Lc that depends on the 
KspL value but not on the gain suppression factor. Beyond LC the noise quantity overcomes the noise value obtained in 
the linear regime and no reduction of noise can be obtained. Below LC the noise generated in a gain compressed optical 
amplifier is weaker as the ratio a/p is small and as &P(O) is large. The nonlinear gain suppression acts clearly as a 
reductor of intensity noise improving the signal to noise ratio in certain conditions. This effect can be understood as a 
self-rejection of local optical power fluctuations through gain compression. 

5. INFLUENCE OF THE GAIN DISTRIBUTION INDUCED BY PUMP ABSORPTION 

The work presented in this section, points out the effect of gain distribution on signal noise generation for the 
amplification Raman process by using the classical formalism. The involved processes are different since the output 
signal power and the output signal noise power at frequency vs depend on the noise component and power properties of 
the pump at frequency vp [35]. The noise and gain performances of Raman amplification in forward and backward 
configuration are compared. 
Since these two configurations are significantly different it is difficult to describe them by using the same modeling. In 
forward configuration the signal experiments an instantaneous value of the pump along the propagation inside the 
amplifier, inducing pump and signal noise correlation. In the backward configuration the signal experiments a time 
average of the pump fluctuations during propagation along the amplifier length making a noise power or spectral 



density description simpler. For these reasons the backward configuration is well known to be less sensitive to the pump 
noise. On the other hand the pump depletion by the signal is easier to take into account in forward configuration, thanks 
to the space and time jointed propagation of signal and the of pump. The pump depletion, acting as an additional pump 
loss mechanism is difficult to take into account in backward configuration without a space and time description. 
To clearly identify the effects of gain distribution and keep the modeling simple a time average space analysis is 
performed. The pump depletion induced by the signal is neglected in backward configuration since it is more related to 
work developed in section 4. Furthermore, shot noise limited pump conditions are assumed to minimize pump noise 
treatment discrepancy between the two configurations. 
Signal and signal noise powers, in an optical bandwidth BO, at the output of a Raman amplifier are numerically 
calculated. The considered Raman amplifiers are assumed to have homogeneous gain and loss coefficients all along the 
effective amplification length. Loss coefficients are frequency dependent and are identified as as and ap at signal and 
pump frequency. The loss contributions induced by Rayleigh backscattering, with loss coefficient am, am at signal and 
pump frequency respectively, are taken into account in the process of noise generation and signal propagation [37]. The 
pump is supposed attenuated by the different loss processes but the depletion resulting from the signal amplification is 
neglected in backward configuration. The incident signal and the input pump are assumed shot noise limited. The fiber 
is assumed to be single mode with a constant effective interaction area. 
For an amplifying slice with the Raman amplification coefficient. gR, the signal power PS and the associated noise 
power NS are given by: 

Ps(z+&) = P$(z)-(aR,  + a f ) P s ( z ) &  +gRPp(Z)Ps(Z)& (4.4) 

The last terms in equations (4.5) and (4.7) are the contributions of zero-point fluctuations. They are commonly included 
in the A.S.E contribution and are independent of the incident field. Using these equations the output signal power and 
the associated output intensity power noise are evaluated. The total gain and optical Signal-to-Noise Ratio (SNR) are 
then calculated for different amplification lengths in backward (Figure 5) and forward configuration (Figure 6). The 
noise figure F defined according to the IEEE standard [31] can be directly deduced from SNR since the initial incident 
signal and associated noise are constant at the input. 
From the two figures, we can see that, whichever the configuration is, the amplifier is saturating when signal is 
propagating along the amplification length because the pump is attenuated. Moreover in both configurations, the pump 
acts as a noise generator and degrades the SNR. 
Comparing the two configurations, it appears that the forward configuration is less efficient in terms of gain and of 
noise performances than the backward configuration. In forward configuration, the gain is localized at the input of the 
amplifier since the pump propagates conjointly with the signal. The latter therefore rapidly depletes it. The 
amplification length is so shorter and less efficient (smaller gain factor) than in backward configuration. The SNR in 
forward configuration rapidly degrades with the amplification length since, far from the effective propagation length of 
the pump, the signal is no more amplified. Then the signal is altered by loss processes and is very sensitive to pump 
fluctuations. 
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Figure 5 :  Gain and noise performances in Raman amplifiers in backward configuration for different fiber lengths. 
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Figure 6: Gain and noise performances in Raman amplifiers in forward configuration for different fibber lengths. 
(vP=206THz, vs=192THz, gR=8. l o "  W, A=70.10"* pm2, ap=as=0,4dB/krn, aw=aR~=0.7dB.pm4/km, Bo=5. 1O6GHz, Pp(0)=0.6mW, 

Ps(0)=0.06mW). Gain (dashed line), SNR (plain line) 

As previously mentioned the noise performances are better in backward configuration since the signal is less sensitive 
to pump fluctuations. The differences observed between the two configurations show the consequences of the 
distribution of the gain on noise generation. In backward configuration, pump and signal have an opposite direction of 
propagation implying a better distribution of the gain, than in forward configuration, and then a better SNR. 
This comparison between the two configurations shows how the distribution of the gain is also a parameter which 
determines the noise quantity produced in optical amplifiers. 
From these theoretical works on the evaluation of noise amount at the output of different optical amplifiers, it has been 
shown the influence of gain distribution and gain nonlinearities on noise generation. It has been in this way put to the 
fore the importance of controlling such parameters to achieve successfully an amplification process with reduced noise 
effects and so the generation of squeezed-states at the output of amplifiers. 
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