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Semiclassical Model of Semiconductor Laser
Noise and Amplitude Noise Squeezing—Part |I:
Description and Application to Fabry—Perot Laser

Jean-Luc Vey and Philippe Gallioisenior Member, IEEE

Abstract—A semiclassical model of semiconductor laser noise, (SHB) and gain suppression, modify their performance and
based on the Green'’s function method, is used to derive analytical characteristics. The Green’s function method, first used for
formulas for the amplitude and frequency noise spectra taking - gemiconductor lasers by Henry [9], is the base of models
into account incoming vacuum fluctuations and noise due to . .
internal loss. This formalism also takes into account phenom- which have been developed to take into account all of the§e
ena such as gain suppression as well as spatial hole burningPhenomena [10], [11]. Based on such works, accurate studies
(SHB). The amplitude noise squeezing is studied for Fabry—Perot of the static and dynamic characteristics of inhomogeneous

structures pointing out the influence of the laser structural |aser structures like single or multisection DFB and DBR lasers
parameters. A complete agreement with already existing quantum [12], [13] have been performed

mechanical models is found. However, extension of the model to Thi . lizati f h del 1141 includi
SHB induces limitations in the squeezing performances, which are is paper is a generalization of such a model [14] including

very important for more complex structures as will be pointed DOth the Langevin noise forces related to the carriers and
out in detail in Part Il. photons as well as the vacuum fluctuation forces present at
the laser facets and the noise originating in the loss inside
the cavity. In Section Il, the model is introduced and both
internal and external amplitude and phase noise spectra are
. INTRODUCTION analytically derived.

HOTON statistics and squeezed states of light have at-In Section Ill, owing to the quasi-longitudinal homogene-

tracted the interest of the scientific community for severdy and subsequent simplifications, simple formulas are then
years. First, experimental and theoretical works have shodlculated for a Fabry—Perot semiconductor laser with a linear
the feasibility of squeezed light from gas lasers and op@ain assumption [13]. A comparison is made with quantum
cal fiber media [1], [2]. Then, Yamamotet al. [3] proved Mechanical results [4], [16], [17] and semiclassical ones [7]
theoretically and experimentally the possibility of generatingith complete agreement.
amplitude squeezed light with pump-noise suppressed semiln Section 1V, the effect of SHB even in a Fabry—Perot
conductor lasers. Their quantum mechanical-based model IRser is pointed out showing an increase of the laser noise and
a high-reflection-coated Fabry—Perot semiconductor laser [4F@nsequently a limitation of the achievable amount of squeez-
in good agreement with experimental results. Other reseaffl compared to a simple laser model. Finally, a conclusion
groups have subsequent]y deve|oped guantum mechanic!ﬁ”ﬂlrawn consistent with the perspective to the study of more
based models to study amplitude squeezing not only with suedmplex laser structures such as DFB and DBR lasers, which
a simple structure but also with more complex ones like digre considered in the second part of this paper.
tributed feedback (DFB) or distributed Bragg reflector (DBR)
lasers, for example [5], [6]. Some semiclassical descriptions of 1. DESCRIPTION OF THETHEORY

this problem have been independently developed at the Sam?)sing the Green's function method, first proposed for

tlmSe_ [7]Ij[ [8]. | lot of h has b ied out Tiemiconductor lasers by Henry [9], Duam al. [14] solved
imuftaneously, a lot of research has been carfied ou onE & scalar Helmholtz wave equation for the internal electric

structural dependencies of semiconductor laser performanﬁ R taking into account nonlinear gain and SHB. New noise
and characteristics. Compared to a simple laser model, sof) :

dditional phvsical bhenomen h tial hole burni ftes for the incoming vacuum fluctuations and for the noise
additional physical pnehomena, such as spatial hole bUMigqiated with loss inside the laser cavity are for the first

_ _ . time introduced in this paper.
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R, R, where g4 is the differential gain andvy the linear material
linewidth enhancement factor.

To take into account the noise due to internal loss, an
additive Langevin noise forces has to be introduced [4], [13]

<floss (t) floss (t/)*> =

ot =) (5)

27_Plossv

I I with
1 1 1

Fig. 1. Scheme of the considered laser structure with noise forces. = + = UgQint + Vg Omirror
9 P T Ploss TPmirror

where a;y is the internal 10SSqv ;o the distributed mirror
and left facet of the laser structure, respectively, as shownlgss, andr, the photon lifetime inside the cavity.
Fig. 1. For a time scale larger than the round-trip time inside The resolution of (4) leads to two differential equations
the cavityr, these forces can be approximated [17] for the photon density” and field phase® defined via
- Po(t) = /P(t)exp (§o(t)):
t):\/l_Rl \/;fvac(t) dP

—2 / L (W) AN(2) dz P(1)

and dt
T + Re (GNL)(Na S)P(t) +Fp/(t)
— V1= R/ = 2
1 RQ vaac(t) ( ) d¢ L
pria e w— / Re(Wn)AN(z)dz
With (frac(£) fuac(t’)*) = 18(t — ) [4], [17] where V is the t X 0
volume of the active section anll; and R, are the left and + 5 m (GNL)(N, S) + Py (t) (6)

right power facet reflectivity, respectively. whereRe stands for the real part of the complex force dnd
The field inside the cavity is normalized so thefE*) o 0ds for the imaginary one.

represents the photon density inside the cavity and the em|tteq; represents an effective nonlinear gain defined as [12]
photon flux outside the cavity. The coupling of the vacuum

L
fluctuations to the laser cavity is considered through the / 72 N. SVd
coefficient \/7/V . G (N, §) =, 20 0(2)9nL (N, 5)
The solution of the scalar Helmholtz equation of the field NLUY, =) =Yg L )
leads to the following equation for the slowly varying ampli- /0 Z5(2) dz
tude .of the internal field3, and'using the same method and With ¢ = gr. + gnr.. @)
notations from [14] by expanding the Wronskian around the
linear operation point The modified Langevin noise forces are equal to
dp, L . L , _ = 1 Zo(())
T =@ =)= [ Wy AN() Fr(t) =Fr(t) + 2V P Re {’“” Vv aw s 1o
Bo(t) dz + Fai(t) (3) 9 . Zo(L)
with e " V oW B 0
20) D) +2V'P Re[fioss(#)] (82)
Far(t) = kon —te fo(t) + kon ——=m f1.(t) B 1 T Zo(0)
AW [ow W [Ow Fy(t) =Fu(t) + i Im | kon V oW /0w fo(t)
where 1 T Zo(L)
—Im | & = t
oW oW + = m[om/vaw/awh()}
NTON/ dw 1 8h
+ \/f m [floss(t)]' ( )

with wg the laser frequency at the linear gain operation point, . .
w the actual lasing frequency modified by gain suppressiohje Langevin forcesi> and Fyp are calculated using the
and F (t) the Langevin force associated with the compleRhasor description, as introduced by Henry [9], [14].

amplitude of the field in the time domain. After linearization around the operation point and a Fourier
The derivatives of the Wronskian with respect to the frdfansform analysis, the spectra of the photon number and phase
quency and the carrier density are given by [14] fluctuations are found to be
FP’
@ _ 2konng /L Z2(7) s AP(Q) = — L
dw ¢ o oV i - GNLprP—i-/ Us(2)A(2)|Z0(2)|? dz
0

and

L
Z—I;IV/ = konga(—am + 5) 23 (2) 4) + /0 Hy(z, Q)[AJ (2) + F]dz (9a)
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and where Ry, is the rate of spontaneous emission coupled into
L the lasing mode

/ Ul(Z)A(Z)|Z0(Z)|2 dz + % GNLP:

0

L L
Aw((d) = — L Fp 42 / Z*ngnspZdz/ Z*nngZ dz
jQ— GNLprP+/ UQ(Z)A(Z)|Z0(Z)|2dZ R :ﬂ 0 0
. 0 P 3 8_W 2
+ Fy +2m / Hy(z, D[AJ(2) + Fx]dz. (9b) I
0 = Knspugg. (12¢)
The following abbreviations are used thereafter: Please note that the spontaneous emission rate is enhanced
by a factor K, as defined in [9] and [18], in contrast to
O () — 1 10 an homogeneous laser. This factlr takes into account the
1) = . _ -L (10a) longitudinal inhomogeneities of the cavity, the laser output
JQ - GNLPrP+/ Ua(2)A(2)|Zo(2)|? d= power coupling and the filtering of spontaneous emission of
L 0 spontaneous emission by the cavity [18]. This factor is also
/ UL(2)A(2)| Zo(2)|? dz + lGNLPz called the longitudinal Petermann factor which is different
Co(R) = 0 - (10b) than the one introduced by Petermann [19], which takes into
o - 9 account lateral effects, even if they are defined with the same
< GNLPTPJF/ Ua(2)A(#)] Z0(2)|* dz formula. According to this formalism, the square modulus of
Z(0) Zo(L) the two coefficientsZ;(0) and Z;(L) can be considered as
1(0) = kon aW Zi(L) = kon aw - (10¢)  some sort of local Petermann factors which are applied in this
=N O case to the incoming vacuum fluctuations.

The other correlation factors of the Langevin noise forces
A straightforward calculation leads to the internal amplitud®r the photons and the carriers are given by [12]
and frequency noise double-sided spectra which are given by

2{vgg( )nspg(;«) + M}
Saim (@) = &7 (Q) APE)") 2D (7, Q) = V .
/ DN o 2D p(z, Q) = w 13)

D These formulas were obtained by considering explicitely a
- |Hp(z, Q)|2dz+ ZL2Cy ()] z dependence in the usually used formulas [9]. Simulations
4P show, for a homogeneous one-section laser, a very small
dependence of these coefficients oand consequently these
last coefficients can be considered constant all along the cavity
(11a) and their value is set equal to their average value. However,
" in the case of multisection lasers or inhomogeneous pumping,
Soine () = (Aw($2) Aw(©)7) this dependence must be considered.
We shall now concentrate on the external fidgld,, at the
right facet of the laser, as depicted in Fig. 1:

L DPN(Zv Q)

+2Re | | o OO Hy(z, Q)" de

=2Re

/ Do (z, Q)Ca(Q)H (2, Q)* dz

+ L / DNN |Hf( )|2 dz ext =V 1-— RQ \/7/30 \/R_vaac(t) (14a)

+ Dpp|Ca(Q)]? + Dye (11b) with
where * denotes the complex conjugate. Bo = Aint exp (j¢p)  Eext = Aexcexp(jy)  (14b)
The modified correlation factors of the new Langevin forc@hereE.,; is associated with the emitted photon flux aids
Fp: and Fy are given by associated with the photon density inside the cavity as in [14].

Using these notations and the boundary conditions at the
laser facet, the amplitude and phase variations of the external

P
2rp =27 { Bt | 71 - RO

TPlos field are equal to
+ 71— RQ)IZl(L)IQH (12a)  §A. = d-R)V §Aimt(t) = VRa Re[fuac(t)] (15a)

T

1 1 VEz
2Dy = —— < Rapy + +7(1 — R)|Z1(0)]? =8p — = vac()].
o0 = 5y { Bt | 7o (1= RIA(0) b0 =8p = L i (o) (150)
+ 7(1- R2)|Z1(L)|2} } (12b) The internal and external phasgsndy are assumed to have
a zero mean.
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TABLE | where P represents the steady-state photon density in the
LASER PARAMETERS USED IN THE SIMULATIONS cavity, L the length of the cavity, and. the spontaneous
electron lifetime.

Parameters Symbols Values . i . .
All the Langevin force diffusion coefficients are alse

Cavity length _ L 300 m independent. The value of the carrier noise Langevin fétge
w:ftinefstshc’f th? acl“"e layer d %105/““ depends on the pump noise of the current source used for the

dth ot the active fayer w oum laser. With a Poissonian pump noise, the diffusion coefficient
Effective refractive index n 3.50 .
Group index ngy 3.56 Dy is expressed as [14]
Linear linewidth enhancement factor gy 4.00 o
Bragg wavelength ABo 1.50um — N
Fabry—Perot laser wavelength AFP 1.55um 2nspvggl +2 E
Spontaneous carrier lifetime Te 2 ns 2Dny = # (18)
Differential gain gd 1.5- 10716 cn??
Transparency carrier density No 10-10%cem™®  \where N represents the steady state carrier density in the
Inversion population factor Nep 2

cavity.
For complete pump noise suppression it results in [5]

The external amplitude and phase noise spectra are obtained

as 2<nsp - %)Uggﬁ + E
T
1-R)V R vR(1—R 2DnN = . 19
Saext () = % S 4int (§2) + 72 - % NN v (19)
Re[Z1(L)] Re [C2(2)] (16a) For the calculation of the diffusion coefficients»» and.D g,
and the Wronskian and its derivative with respect to the frequency
Ry  RyvV1- Ry have to be determined.
Sloest (£2) = Soime () + AT + 2 The internal field in a Fabry—Perot structure is given by [9]
ext
 Sm[Zy(L)] {1 — Im[Co(V)]}. (16b) Zo(z) = V Ry exp(—jyz) +exp (j7z) (20)

Aext

The minus sign in (16a) shows that noise compensation f&ith
the amplitude noise between internal fluctuations and reflected —ar
vacuum fluctuations is possible and consequently explainingy = kon +57 5 and /R Ry exp(=2jyL) = 1.
why amplitude noise squeezing occurs.
Before applying this model to complex structures (see [20Q)sing the following formula for the Wronskian of a such a
we shall now demonstrate its validity by thoroughly studyingtructure:
the more simple case of a Fabry—Perot laser structure assuming
a linear gain approximation for the sake of comparison and = 2jvV/Ri [V RiRy exp(=2jyL) = 1] (21)
simplicity.

the two parameterg;(0) and Z, (L) are then given by

1+ +vRi kon

For such a structure with symmetric facet reflectivitiesel d 2VR; T
the modulus square of the internal field is approximate 1+ /T kon
as a constant. Consequently, many laser parameters (shown Z(L)y=—F— —
in Table 1) exhibit no longitudinal dependencies and many 2vVRy 7
simplifications occur in the modulation responses and noise|, the following expressions, the imaginary part ofis
spectra. neglected compared to its real part since the gain is very

Under this assumption, the overall amplitude and phagfse to the loss inside the cavity. This results in a @dD)
modulation transfer functions are and Z; (L) which leads to simplifications of the noise forces.

Hp(Q) = Puyga According to their definitions, these two factors are operat-
<Q2 e ﬁ) ing as local longitudinal Petermann factor for the incoming

IIl. ANALYTICAL STUDY OF THE
FABRY—PEROT LASER STRUCTURE Z1(0) =

(22)

vacuum fluctuations. The longitudinal Petermann factor [9],
Jvggac [18] enhances spontaneous emission inside the cavity and has
Hp(2) = 0 to be considered in the Langevin diffusion coefficient. For a
<92 Q2 ) Fabry—Perot laser, it is given by [9]

Tr

Tr
with | - 2
P 1 1 - RSP = Knspvgg with K = (Rl + RQi( RIRQ)
92 :PrUggdg and _— = — + UggdP (17) 2R1R2 0 (RlRQ)
Tr Te (23)
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Finally, the Langevin diffusion coefficients are equal to

— 2
2P 1 1-R (14++R - 10000
2DPP:— Rsp+ + 1< 1) E
V TPloss T 2 V Rl 15 g 1000+
20
2, o &
+ 1 + vV RQ 1 R2 (24a) E 5 1004
wh ) LI
2Dpp g =t
fertel 4P2 ( ) é % 14
In the case of high reflection coefficients at the two facets of E ° 0.1
the lasers, these two diffusion coefficients are given by 7
0.01
2P 1
2Dpp = v <Rsp + —> 0.001 : , : :
r 001 01 1 lo 100 1000
1 1
2D¢¢ - 2PV <RSP + ;) ) (25) Frequency (GHz)

Only the additive term (8) linked to transmitted vacuunfig. 2. Quietly pumped high-reflection-coated Fabry—Perot laser internal

fluctuations leads to the correct result. With the new value plitude noise spectra normalized by the shot noise level for different values

. . . . ~ of the pumping levelR defined ad/I;, — 1 equal to 0.1, 1, 10, and 40.
Dpp, consistent noise and amplitude squeezing are obtained,

which is not possible with the values normally used [9], [14]. . , )
The z-independent coefficients; and C; are for this case Which gives for the photon numbeP}” when the laser is
normally pumpedA(PV)?) = (PV).

0+ 1 When the laser is pumped with a Poissonian pump, the
() = Tr 5 internal field fluctuations are at the shot noise level and the
(Q2—Q2) + Joe variance of photon number statistics is equal to the average
Tr photon number inside the cavity [4], [7].

Co(@) = — vggdgoeH (26) Prgviously_used values fdPpp Would_ resu_lt in an internal
) o, IR amplitude noise equal to zero for a Poissonian pump and even
(2 — %) + T in a negative amplitude noise if the laser is quietly pumped.
This shows that the vacuum fluctuation forces are necessary to
A. Laser Internal Noise give an appropriate description of semiconductor laser noise

For the sake of comparison, we now consider the case oPRECtra- _ _ _
Fabry—Perot semiconductor laser with high facet reflectivities 19 2 Shows internal amplitude noise spectra for a
in order to compare the results to already published ones [R{MP-noise-suppressed Fabry—Perot laser structure with high-

[7], [13], [16], [17]. reflection-coated facets and no internal loss. These results are
The double-sided amplitude noise of the internal field {§ cOmplete agreement with the formerly published ones [4],
described by the following equation: [7], [16], [17], with a maximum achievable reduction of 50%

of the internal amplitude noise at low frequency. This level
Aint PQ? + Bine p

Sa. (Q) = 27) of maximum squeezing is independent of the laser internal
int 02 _ 2)2 9% loss. However, for a given current or emitted power, a laser
(S -2+ — with a nonnegligible internal loss would have more internal
ith amplitude noise as compared to the shot-noise level.
wi Using the same approach, the internal frequency noise is
Aingp =2Dpp written as
2D — — v . 24 B
Bincp = Tgp + 2Dnn(Pugga)® + 4PDyp igd- A oSV + m;; + Cint ¢ (30)
r T (Q% _ 92)2 + —
At high pumping levelR = I/1, — 1, the internal amplitude Tr
noise spectrum at low frequency is equal to with
T PDnnvygaa
S 4int (0) = é (2Dpp +2Dyn +4DNp).  (28) Aint g = —M+M
2.2 2 2
For a high-reflection-coated Fabry-Perot laser and an arbitrary g, . — _ Puggaminan[|Z1(0)7 + 21 (L)[°]
value of the laser internal losses, (29) results in 2
Tp Cint¢ = D¢¢
— Poissonian pump . . .
2 Fig. 3 shows internal frequency noise for the same
S 4int(0) = (29)

i Quiet pump Fabry—Perot structure and for different pump levels. A
4 good agreement with already published results [4] is also
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Internal frequency noise spectrum
* Pumping leve R

Shot-noise normalized external
amplitude noise spectrum

T T T T
0.01 0.1 i 10 100 1000

Frequency (GHz)

T
Fig. 3. Quietly pumped high-reflection-coated Fabry—Perot laser internal 0.01 0.1 ! 10 100 1000
frequency noise spectra multiplied B for R = 0.1, 1, 10, and 100.

Frequency (GHz)

found. The variance of the phase fluctuations is greater thieey 4. Quietly pumped high-reflection-coated Fabry—Perot laser external
. . . . . aEn litude noise spectra normalized by the shot noise leveRfor= 0.1,

its corresponding shot-noise level, which means that this sta %o and 40.

of light produced is not a minimum uncertainty state.

100 8
B. Laser External Noise
—_ 7
Using (16a) and (24), the amplitude noise of the extefnal 1o
field is given by 54 ]
] 8 I N 51
Ry (1-Ry)(1+VERy) 03 2z
Sao () =— - 7y E2 Carroll
4 47'7'7, Q S o arroll et
Q-2+ 520
+ (1 - RQ)V AintP 92 + Bin(tzg' (31) és § 0.014
T 2 _2y2 4 20
(QO Q ) + 7_1? 0.001

0 (').2 (;.4 (;,6 0‘.8 1
With the same method, the external frequency noise is obtained

Reflection coefficient R, Reflection coefficient R2
Aini 6% 4 Bing 2 @) (b)
Swext(Q) = o 1119425 + Cintqb + —o - (32) . . . .
(Q% _ 92)2 +2 24 . Fig. 5. External noise af? = 0 normalized by the shot noise for a

Fabry—Perot laser without internal loss emitting a high power as (a) a function
of the power reflection coefficienR2 with R, close to 1 and for (b) a
Using these equations and the definition of all the parametefgnmetric laser withR, =R, with a quiet pumping source.

the external field amplitude noise value at low frequency and
high pump rate is equal to

r

case of a Poissonian pump, the external amplitude noise at

S eme(0) = <1 - R2>5Aim(0) + % low frgquencies tends to t_he shot-noise level and with a quiet
pumping, the sub-shot-noise level can be reached. For a laser
(14+Ry) 1= Ry without internal loss, complete compression is possible, as

4 T seen in (34) or in Fig. 4.

For a Fabry—Perot laser with high reflection coefficients, the Let us now consider more in detail the influence of the laser
external amplitude noise spectra for high pump rates are tHaget reflectivities for a laser without internal loss. As shown
given by in Fig. 5(a), whereR, is taken close to 1, the closé is to 1,
the more squeezing is possible. Fig. 5(b) presents our results
) for the case of a symmetric Fabry—Perot laser as compared to
for a poissonian pump  the ones published by Carradt al. [6]. As can be expected,
Vg Coxt ) only 50% of squeezing is reachable even if (33) and the one
<1 - m) for a quiet pump. for [6] differ in their form. A very good agreement is found
(34) but a discrepancy appears for low reflection coefficients.
Fig. 6 presents external frequency noise spectra of a high-
This formula is exactly the same as already obtained withflection-coated Fabry—Perot laser. Internal and external fre-
guantum mechanically based models [4], [16], [17]. In theuency noise spectra are close at low frequency but differ

SA ext

~—~

I
M| = e
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10> 10000
T 10004
S5
: i
g g% 1005
= 54
£g g & with Spatial Hole Burning
2o c o
2 e _
o ; E W /
-39 £
g2 ol
hag® 2 14
7 : -
2 without Spatial Hole Burning
@

0.1 T T
0.1 1 10 100

T T Total emitted power (mW)
0.01 0.1 1 10 100 1000

Fig. 7. Shot-noise normalized external amplitude noise2at = 0 as
a function of the pump leve? with and without SHB for a symmetric
Frequency (GHz) Fabry—Perot laser with 30% power reflectivity.

Fig. 6. Quietly pumped high-reflection-coated Fabry—Perot laser external

frequency noise multiplied by? for = 0.1, 1, 10, and 100. [24], gain suppression plays a similar role and introduces
further limitations in the amplitude squeezing performances
of a Fabry—Perot laser.

strongly at high frequency, where the major contribution The results of Fig. 5(b) should be modified by adding an

comes from the incoming vacuum fluctuations. It has also yditive noise term which increases as the reflection coefficient

be noticed that the linewidth of the internal and external fiel}, gets close to zero. In this case where the laser has no

is the same, i.e., the frequency noise at zero frequency. Thgfgrmal loss, the conclusions from Fig. 5(b) are the same with

results agree with external phase spectra already calculatedQg without SHB. It is no more the case when internal loss is

a quiet pumped Fabry—Perot laser [4]. considered. Previous calculations [4] as well as ours show
in a simple description that when SHB is not considered,

IV. FABRY—PEROT LASER NOISE AND SHB a low facet reflection coefficient gives the best squeezing
erformances. But, if SHB is considered, a low reflection

SHB or the inhomogeneous distribution of the field insid IgIJef“I‘icient will introduce a very inhomogeneous distribution of

the cavity plays a key role for complex laser structures su o : . :
as DFB and DBR and influences their static and dynan%c}e field inside the cavity and consequently the noise emitted

performances [21], [22] % thg laser ir)c.reaseg,. There is consequently an optimum
It is usually conéideréd that SHB does not play a key rorgﬂgctlon coefﬂuent with the gre_atest e_lmount .O].( squeezing
) N achievable, which should be considered in optimizing the laser
for Fabry—Perot laser structures. But in fact, this is only trusefructure
if the facet reflectivities are equal and not too small. For an '
asymmetric or low-reflection-coated laser, this is no longer
true. V. CONCLUSION
In our model, SHB influences in our model three noise A semiclassical model of quietly pumped semiconductor
parameters: 1) the spontaneous emission via the longitudileeder, based on a Green’s function method, has been presented.
Petermann factor [9], [18]; 2) the incoming vacuum fluctugAnalytical formulas for internal and external amplitude and
tions by the local Petermann factor as introduced previousfyequency noise spectra are given, taking into account various
and 3) by modifying the correlation between the transmittezffects such as SHB, gain suppression, and facet reflectivities.
internal field fluctuations and the reflected vacuum fluctuatiodscomplete agreement is found with results already published
at the laser facet. for Fabry—Perot structures, which exhibit a high potential for
According to our simulations, as well as for DFB lasersqueezed light generation.
[23], SHB limits the squeezing performances of such a simpleStructural parameters such as the facet reflectivities and
structure which a Fabry—Perot laser is. Fig. 7 shows for HB will be considered to calculate precisely the squeezing
Fabry—Perot laser with 30% power reflectivities on each faga¢rformances of such structures. The maximum amount of
the shot-noise normalized external amplitude noise at lsgueezing achievable with a particular realistic Fabry—Perot
frequency as a function of the pump levelwith and without laser is not only given by its efficiency but is modified by
SHB. A limitation on the squeezing performances at higihe laser structure through, for example, SHB as well as the
pump level can be directly seen. These results also point dager properties such as gain suppression. In consequence, the
that the maximum achievable squeezing high above threshsetdictures as well as the properties of the laser considered
is no more given only by the efficiency of the laser [24inust be taken into account to precisely estimate its squeezing
but is modified by effects such as SHB. As already showperformances.
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In the second part of this paper [20], based on these fifst] O. Nilsson, A. Karlsson, and E. Berglin@oherence, Amplification and
results and this first conclusion, more complex laser structures Quantum Effects in Semiconductor LaseNew York: Wiley, 1991, pp.

76-95.
such as DFB an_d DBR lasers will be studied where SHB jgg) G.-H. Duan, P. Gallion, and G. Debarge, * Analysis of the phase-
even more dominant.

amplitude coupling factor and spectral linewidth of distributed feedback

and composite-cavity semiconductor laser§EE J. Quantum Elec-

tron., vol. 26, pp. 32—44, 1990.

K. Petermann, “Calculated spontaneous emission factor for double

heterostucture injection lasers with gain-induced waveguidifigE

J. Quantum Electronyol. QE-15, pp. 566-570, 1979.

] J.-L. Vey and P. Gallion, “Semiclassical model of semiconductor laser
noise and amplitude noise squeezing—Part II: Application ot complex
laser structures,” this issue, pp. 2105-2110.

[21] W. S. Rabinovich and B. J. Fledman, “Spatial hole burning effects in

distributed feedback laserslEEE J. Quantum Electronyol. 25, pp.
20-30, 1989.
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