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Quantum Phase  Noise  and  Field  Correlation in Single 
Frequency  Semiconductor  Laser  Systems 

PHILIPPE B. GALLION, MEMBER, IEEE, AND GUY DEBARGE 

Abstract-The influence  of quantum phase fluctuations which affect 
single frequency  semiconductor lasers in various coherent  detection 
systems is discussed in terms of photocurrent  autocorrelation  and spec- 
tral density functions. The general treatment given in this  paper can be 
applied in diverse practical cases and  points  out  the  problems of phase 
correlation  and phase matching between the  two  mixed  optical beams. 
In the  more general case the  Photocurrent spectrum is found  to be com- 
posed of discrete and quasi-Lorentzian parts whose energies and spectral 
spreads  are discussed as  a function of the laser line  width,  the phase 
matching and  the phase correlation between the  two  coherently  com- 
bined fields. 

T 
INTRODUCTION 

HE temporal  coherence  properties  of  multimode  semicon- 
ductor lasers have  been  discussed  by a  number of authors 

[ 1 ] -[SI . Experimental  investigations  of  these  properties  were 
commonly  achieved  by using interferometric or beating  tech- 
niques  [9] - [ 1 1 ] . The  higher  temporal  coherence of single lon- 
gitudinal  mode  semiconductor lasers has  also  been  discussed 
[ 3 ]  , [ 121 - [ 141 and  experimentally  investigated by the above 
mentioned  methods [ I  51 -[26]. For  a  single-frequency  con- 
stant-amplitude laser source  operating  for  above  threshold,  the 
random  quantum  phase  fluctuations  are  usually  considered  to 
be the  major  source of optical  spectral  spread  [3], [ 121 , [ 171 - 
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[19].  The phase  noise of a single frequency  semiconductor 
laser is a  parameter of  major  importance  in  applications  in 
which the  temporal  coherence  properties  of  optical signals are 
involved. Such  applications  are  transmissions  systems  and 
sensors  in  which  phase  or  frequency  modulated signals  are 
detected  by  heterodyne or homodyne  techniques  [27]-[31] 
or discriminated  by  direct  interferometric  detection [32] , [ 3 3 ] .  
The laser  phase is also a  determining  parameter  for  incoherent 
systems in which a spurious  coherent  mixing  produces  a  phase 
to  intensity noise  conversion:  this is for  example  a case for  the 
square law detection of a  beam  which is first  split  by  a  polar- 
ization dispersive medium,  and  the  one  part  is,  later  mixed 
through  polarization sensitive elements,  with  the  another  under- 
going a  time  delay  [21] . 

The  repercussion of spectral  spread  on  such  systems  can be 
completely discussed  in terms  of  the  autocorrelation  function 
and  spectral  density  of  the  photocurrent;  the  purpose of  this 
paper is to  give a  simple  unified  treatment  which  can  be  applied 
in the various  above  mentioned  particular cases. The results  are 
discussed  as a  function  of  the laser linewidth,  phase  matching, 
the balance  and  the  phase  correlation  between  the  two  mixed 
beams.  In  addition  the  phase  noise  sensitivity of various  detec- 
tion  schemes is compared. 

QUANTUM PHASE NOISE MODEL FOR  SINGLE 
LONGITUDINAL MODE SEMICONDUCTQR LASERS 

The  optical  field  emitted  far  above  threshold  by  a  biased single 
frequency laser is commonly  modeled as a  quasimonochromatic 
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amplitude-stabilized field undergoing  a phase fluctuation [ 121 

a t )  = E ,  exp i[w,t + @(Ol (1 1 
where w, is the average optical  frequency  and @(t) is a  stochastic 
process representing  the  random phase fluctuation leading to  
the  broadening of the  spectral line. 

The  time  dependence of E,  on  time t is an amplitude  noise. 
Its  contribution  to  the field spectrum can be neglected in  spite 
of its large spectrum  width  because  its  integration  power is 
much smaller than  the phase  noise one  [12] . 

It is useful to  introduce  the  optical field autocorrelation 
function  defined as 

G$)(T) = (E*( t )E( t  + T ) )  

= (exp [iA@(t, T)] ) exp ( j w , ~ )  (2) 

where A@(t, T )  is the phase jitter,  i.e.,  the  random phase  change 
between  times t and t + T 

A@(t, T )  = @(t + T )  - @(t).  (3) 

Under  the above mentioned  assumptions,  the phase jitter 
A@(t, T )  is usually  assumed to be a  zero-mean  stationary  ran- 
dom Gaussian  process with  the associated probability  density 
function being [ 151 -[34] 

(4) 

(A@*(T)) is the  mean-square phase jitter which is related  to 
the  instanteous angular frequency-fluctuation  spectrum S$ (a) 
by [341 

wr 
sin - 

(*@2(T))= ?' 27 1; [TI S@(W)dU. (5) 
- 

Using the well known  relation 1341 

(exp [+jA@(t, T ) ]  ) = exp [ -+  (AQ2(7))] (6 1 
therefore  the laser field correlation  function is expressed as 

G$)(T) = exp [-+ (A@*(T))]  exp ( j w , ~ ) .  (7)  

The case considered  here  concerns  quantum  phase-fluctuation 
affecting  a  far above threshold biased semiconductor  laser: 
then  the  instantaneous angular frequency-fluctuation  spectrum 
S,(w) can be assumed to be flat [12]  -[16] leading to  the 
mean-square  phase-jitter (AG2 (7)) increasing  linearly with  the 
time  delay 

= 2y 1 7 - 1  (8 1 
where  2y is the angular full  linewidth  at half maximum (FWHM) 
of the  Lorentzian laser field spectrum SE(w)  obtained  by  the 
Fourier  transform of (7) 

s, (w) = E; 717 
y2 + (w - w,)2 . 

2y is given by  the  Schawlow-Townes  formula  including  the 
line  broadening excess factor  introduced  by  Henry  [14]  to 

explain  the  experimental values reported  by  Fleming  and Moora- 
dian [13] : 

where ug is the  group velocity  of the light in  the active medium, 
hu the lasing photon  energy, nSp the  spontaneous emission  fac- 
tor  [3],  am the loss of the  mirror, Po the  output  power per 
facet  and a the  linewidth  enhancement  factor  introduced  by 
Henry [ 141 . 

For  channeled-substrate-planar  (CSP)-structure Ga A1 As 
devices Fleming  and  Mooradian [ 131 have reported  experi- 
mental values for  the  product 2 y  Po of 2 7  X 110 X IO6 rad . 
s-l . mW. 

Recently  authors  [35]-[38] have  discussed a  modified 
model  taking  into  account  the  relaxation  resonance  effect.  A 
Lorentzian  lineshape  with  a  second  order  correction is then 
carried  out. This correction is not  taken  into  account  in  this 
study  which refers only  to  the first order  model (assuming a 
flat frequency-fluctuation  spectrum leading to  a rigorously 
Lorentzian line shape). 

TOTAL DETECTED FIELD MODELIZATION 
The  purpose of this paper  is to express the  spectral  density 

of  the  photocurrent  produced  by  homodyne  and  heterodyne 
detection of two fields as  a  function  of  their  linewidth,  their 
relative  weight and  their remaining  phase correlation.  For  this 
purpose we assume that  the  detected  total field E T ( t )  is a 
superposition  of  a laser  field E( t )  as expressed by  equation  (1) 
with  a  time-delayed  and  frequency-shifted image of itself: 

ET(t )  = E(t)  + aE(t  + 7 , )  exp j n t  (1 1) 

where a is a real factor which accounts  for  the  amplitude  ratio 
between  two  mixed fields. For  coherent  optical  communica- 
tion  systems  in which a  weak signal is detected  with  a  powerful 
local  oscillator we have a << 1. For  a  phase-modulated  opti- 
cal signal detection  by  the  retardation  method  1321,  [33] a is 
closely one. a can take  any value in the case of noncoherent 
single-mode  transmissions systems  and  unbalanced sensors and 
when  the  modes  coupling in a single-mode fiber  with polariza- 
tion  dispersion is involved [21] . 

o T ,  is the  time-delay  which also refers to  the eventual re- 
maining  phase correlation  between  the  two  combined beams. 
For  coherent  communication  systems, 7, is the  time delay in 
the  optical  local field generator [23],  [27],  [30].  For  differ- 
ential phase shift  keying  systems  and  for  phase-modulated 
optical  detection  by  the  retardation  method  [32],  [33] T ,  is a 
bit  duration. Finally T ,  is the  optical  time  delay  for  unbalanced 
interferometric  systems  and  the dispersion time  for  the polari- 
zation-dispersed  modes  in single mode  fiber  mixing [21].  The 
optical  mixing  of  two fields  of equal  linewidth  and  uncorrelated 
phases is obtained  by T ,  = 00. 

n is the  mean  frequency  difference  between  two  mixed 
fields. a is the  intermediary  frequency in heterodyne  com- 
munication  systems  and  the  acousto-optic  frequency  in  hetero- 
dyne  sensors. 52 = 0 for  homodyne  communications  systems, 
for  fiber  interferometers  without Bragg-cell, for  the polariza- 
tion dispersed modes  in single mode  fiber  mixing  and  for  the 
phase  modulated  optical  detection  by  retardation  method. With 
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appropriate values  of CY, 7, and C2 (1) for  the  total  detected 
field  one  can easily  consider the above  mentioned  four cases. 

Because of  the  square  law  of  optical  detectors,  these  interfer- 
ometric  systems  are  able  to  convert  the  quantum phase  noise  of 
the laser field E(t) into  intensity  noise  and  then give a  spectral 
spread of photocurrent I(t). For  stationary  fields,  the  autocor- 
relation  function RZ(7) of  the  photocurrent  depends  only on 
the  intensity  correlation  function of the  detected  total  field 

G,g(r)  P I  (1 6 )  
For laser  phase  noise A@2 ( T )  is given by (8), using the  reduced 

difference W,T, between  the  two  mixed  fields G ( 2 ) ( ~ )  ex- 
~ ~ ( 7 )  = eo G$;(o) s ( T )  + 0 2  G$$) (I2) time  delay,  defined a s 7  = 277 and  noting  by 0 the mean  phase 

where  pressed  as ET 

e is the  electron  charge, 
u is the  detector sensitivity, 
& ( T )  is the Dirac function, 
Gz'(7) is the first  order  optical  intensity  correlation ___ - G g  (7) - 

function, E: 

i.e., the  second  order  optical field correlation  function  defined 
hv 

2 

[(I t c u 2 )  t 2a cos e exp (- 3 1  
for  any 7 

4a2 exp (-7,) {sin h ( 1 ~ 1 -  7,) 

cos2 e [ I  - exp ( i 7 1  -7,)J} 

for 0 <T<T,. (1 7 )  

[(I t t 2a cos e exp (- 3 1  2 

for  any 7 

4a2 exp (-7,) {sin h ( 1 ~ 1 -  7,) 

cos2 e [ I  - exp (171 -7,)J} 

for 0 <T<T,. (1 7 )  
-.' 

By virtue  of the Wiener-Khintchine  theorem,  the  spectrum 

autocorrelation  function.  Omitting  the  shot noise term  and 
'using the  reduced  angular  frequency,  defined  as 0 = (3/2y,  the 

G ~ ; ( T )  = ( ~ ~ ( t ) ~ $ ( t ) ~ ~ ( t  t T ) E * I C ( ~  t 7 ) )  (13) of  the  photocurrent is given by the  Fourier  transform of its 

where the  brackets  denote  a  time average. 

the  dc  component of the  photocurrent  and  the  second  account 
The  first  term  in (1 2 )  is the usual  shot-noise  associated  with 'two-sided spectrum is written as 

for  this  dc  component  and  fluctuations arising from phase into SZ((J) 
intensity  noise  conversion. - = [1 t a2 t 2cu cos e exp ( 3 1  

u2 E: 

2 

PHOTOCURRENT SPECTRUM IN THE HOMODYNE (S2 = 0) 
DETECTION CASE 

The  autocorrelation  function of the  photocurrent is obtained 
by  substituting (1 1)  into (13) with s2 = 0. This  substitution gives 
rise to  16 terms.  Using (1) for  the laser field  after  a  straight-for- 
ward  calculation  allow us to express  GET(^) only as a  function 
of  the phase jitter  of  linear  combination of @(t)  and @(t t 7): 

( 2 )  

G$:(T) =E," ((1 t cu212 t 2a(1 t a 2 )  expjw,T, 

. (exp  jA@(t t T ,  7,)) t CC t a2 exp 2jw,7, 

* (expjA\k(t, io)> t CC t a2 

1 (exp jA(a(t, 7 , ) )  + CC) (14) 

t 4cu2 exp (-7,) - 
1 t w 2  

w7, - - - sin 0 7, 
- 
(J 

(1 8) 

where 6(G) is the  delta  function. 
Let us consider  one  of  particular cases in  which  a  two  beams 

interferometer  with  equal  optical  field  intensities is tuned  up 
for  a  maximum  optical  power  output.  Therefore we have CY = 
1 and 0 = 2 k l  with k integer.  Taking  moreover  the  Gaussian 
probability  density  function  assumption  for  the  phase  jitter (4), 
one  can  find  the  following  expression derived  by Armstrong 
1151 

and CC denotes  the  complex  conjugate  of  the  preceding  term. The  approximately  Lorentzian  part  of  this  spectrum is plotted 
by  in  Fig.  l(a)  and  l(b)  for  variousvaluesof  the  parameters%, i.e., 

using (6) the  time  delay  to  coherence  time  ratio,  and 0 = (J,T,, i.e.,  the 
'$:(') can be expressed Only as a function Of 

mean  phase  difference  between the  two  mixed  beams. 
(1 t a2)2 t 4a(l t a2) cos (o,T,) PHOTOCURRENT SPECTRUM IN THE HETERODYNE (C2 # 0) 

DETECTION CASE 
In this paragraph  we  perform  a  quite similar  analysis as in 

the previous  chapter.  The  substitution  of (1 1) into (13) give 
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Fig. 1. Lorentzian  part of the  homodyne  spectrum as a function (a) and (b) of the  time delay to coherence  time ratio To 
and of the phase  matching  parameter cos2 e .  

also rise to 16 terms  but because an  explicit  time  dependencz G$;(T) =E," {( l  + 01~)' + o2 exp (~RT) 
appearing in the  form  of  exp + j R t ,  10 of them average out  to 
0 ;  using the previous notations,  the 6 surviving terms give the 
following result [22] - [ 2 3 ]  : where @ ( t )  have the same meaning as above (1 5). 

. (exp jA@((t, 7 , ) )  + CC) 
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Using  again the (6) G$;(T) is written 

(21) 
In  the  same  manner as the previous  chapter.,  using the same 

reduced  variables  one  obtains  the  first  order  optical  intensity 
correlation  function G$;(T): 

2a2 * cos E T + exp (-T), 

Omitting again the  usual  shot  noise  term,  the  two-sided  het- 
erodyne  photocurrent  spectrum is then  obtained  by  Fourier 
transform 

t a’ exp (-7,) 1ITT 
1 +(a- 2 ) 2  

sin (TS  - i 7 ) ~ ~  
w - 2  

- cos (W - 2 ) T o  . 1 
The  approximately  Lorentzian  part of  this  spectrum is plotted 

in  Fig. 2 for  various values  of the  parameter 7,) i.e.,  the  time 
delay to  coherence  time  ratio. 

DISCUSSION 

The  homodyne  spectrum  consists of two  terms whose  behav- 
ior  relates  closely to  T,  and 0 values. Let us examine  the  phys- 
ical meaning of each  term  in  several  typical  cases.  The  first 
term  which is a  dc  component  refers to  the simple  adding of 
the  two  optical  powers  and  to  the  amount of remaining  phase 
correlation  between  the  two  mixed  beams.  For large  values of 
the  normalized  time-delay T,, i.e.,  for  completely  decorrelated 
fields:  its  dependence  on  the  phase  matching 0 vanishes. On 
the  other  hand  for  a value  of T ,  close to  zero  it  becomes  very 
sensitive on  the 0 value and  it  depends  no  longer  on  the  spectral 
spread.  The  second  term  takes  the  form of  an approximately 
Lorentzian  lineshape  which vanishes out for a close to  zero7, 
value. For large  values  of T, this  term  stands  for the  optical 
mixing  of two  independent  fields  and  it  becomes  rigorously 
Lorentzian  with  a FWHM which is twice the original laser line- 
width. Id this  case the  detector  acts as an  optical  product- 
detector  whose  output is the  autocorrelation  product  of  the 
laser  field spectrum.  The  spectrum is then  no  longer  dependent 
on  the  phase  matching 8 .  

The etlergies of  the  quasi-Lorentzian  component eL ( 7 , B )  
and  of  the  dc  component eg (‘roe) of  the  spectrum  are given 
by 

et (Toe)  = 2a2 [ 1 - exp (-T~)] [1 t sin’ e exp (-7,)] 

(24) 

€,(Toe) = 1 t a2 t 2a cos e exp c (- 3 1  ’. (25 1 
For  an  in  phase (e  = 0) and  an  out of  phase (8 = 7 )  optical 

mixing,  the eL (To, e )  arrives at  a  minimum value.  On the  other 
hand in the case of a  quadrature  optical  mixing,  according  to 
the well known  fact  that  the phase  noise  conversion  efficiency 
is optimum,  the eL (T~, e )  arrives at  a  maximum  value. 

The  heterodyne case is quite  different.  Here  the  photocur- 
rent  spectrum  consists  of  a  dc  component,  a  monochromatlc 
and  an  approximately  Lorentzian  component  centered  at  the 
intermediary  frequency G. The  first  of  them  refers to  the  dc 
current  associated  with  the  noninteractive  superposition of the 
two  optical  powers.  The  monochromatic  one  at  the  frequency 
!2 expresses the remaining  phase  correlation  between the  two 
mixed  beams.  The  third  and  last  term is quasi-Lorentzian 
spectrum  which  cancels  out  for To = 0 and  become  rigorously- 
Lorentzian  with  linewidth  twice  than  the laser spectrum  when 
7 ,  = 00. 

Because  of the  mean  frequency  difference  between  the  two- 
mixed  beams the  photocurrent  spectrum is no longer  dependent 
on  the  phase  matching even  in the  correlated case. It is to  be 
noticed  that because  of time averaging  of  phase matching  in 
the  heterodyne case the  photocurrent  spectrum is founded  to 
be the same as in  the  homodyne case, with  cos2 0 = i. 

The energies  in the  quasi-Lorentzian  part E ~ , ~ ( T , )  and  in 
the  monochromatic  part E ~ , ~ ( T , )  of the  spectrum  are given 
by 

eL, n(~,) = 201’ [ 1 - exp (-7,)] (26) 

eg, = 2a2 exp (-7,). (27) 

These  energies  expressions stand  for  an  uniform  transfer of 
energy  from  the  monochromatic  to  the  Lorentzian  component 
when  increasing  the  decorrelation  time 7,. 

As show  in Fig. 3 there is no significant  difference  in the  cor- 
related  spectral  spread  in  the  homodyne  and  heterodyne cases. 

Some  comparison of these  results  with  experimental  measure- 
ments  has  been  made  in  various  particular cases: Heterodyne 
detection of beams  with  uncorrelated  phases [20] , heterodyne 
detection  of  beams  with  correlated  phases [23]  -[24] and 
homodyne  detection  of  beams  with  correlated  phase  and  phase 
quadrature [21] . The  results  indicate  for  each case that  the 
used  theoretical  description  of  the  laser-phase  random  process 
is consistent  with  experiments.  Experimental  measurements 
in  the  more general  case  would  be  of  a  great  interest. 

- 

- 

CONCLUSION 

The  repercussion  of  quantum laser phase  noise in various 
coherent  systems  has  been discussed in  terms  of  autocorrela- 
tion  function  and  spectral  density  of  the  photocurrent.  The 
given treatment  includes  the  phase  matching,  the  balance  and 
the phase  correlation  between  two  coherently  combined  beams. 
For strongly  correlated  beams  the  photocurrent  spectrum is 
found to be  a  Dirac  function  both  in  the  homodyne  and  the 
heterodyne  cases,  and  extremely  dependent  on  phase  matching 
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in  the  liomodyne  case.  For  weakly  correlated  beams  the spec- photocurrent  spectrum is a  complex  mixture of the  two noises 
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