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Exact solutions for linear propagation of chirped pulses using
a chirped Gauss–Hermite orthogonal basis
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A generalized solution of the linear propagation equation is proposed in terms of chirped Gauss –Hermite
orthogonal functions. Some well-known special cases are pointed out, and the usefulness of this approach in
analyzing arbitrarily shaped chirped pulses in rapidly converging series is discussed.  1997 Optical Society
of America
Laser-generated pulses frequently suffer from the fre-
quency chirping effect.1 – 5 During their propagation
in an optical f iber, in the linear regime chirped pulses
give rise to an extra pulse broadening that is highly
detrimental to the maximum bit-rate-length product
achievable.1,2 In some cases, however, the chirping
effect can also be used to compress pulses tempo-
rally.1,3 To study the propagation effects of chirped
pulses and consequently to calculate optimum parame-
ters (optimum compression length, minimum time
duration, etc.), numerical convolution3 or fast-Fourier-
transform (FFT) methods4 are generally used. A well-
known exact solution is, however, available in the case
of the chirped Gaussian pulse.1,2,4 Here we generalize
this result to an orthogonal set of chirped Gauss–
Hermite functions, of which the chirped Gaussian
solution is the first term. We then show that this
orthogonal function expansion can be advantageously
used to analyze arbitrarily shaped chirped pulses with
rapid convergence and with an a priori fixed rms
error.

The normalized linear propagation equation in opti-
cal f ibers, including up to second-order dispersion,1 is
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where wsz, td is the normalized electrical field en-
velope. Taking the Fourier transform of Eq. (1) and
solving the resultant ordinary differential equation
yield
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For Fs0, vd we then choose, somewhat arbitrarily, the
set of orthogonal functions
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where a is the laser chirp factor, or phase–amplitude
coupling factor, and Hmsvd is the mth-order Hermite
0146-9592/97/100685-03$10.00/0
polynomial. Some of the coeff icients in Eq. (3) are
chosen to yield normalized functions in the time do-
main. We obtain the inverse Fourier transform of
Eq. (2) by using Eq. (3) and the properties of the
Gauss–Hermite functions, after some lengthy calcula-
tions, as follows:
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where
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hmstdhnstddt ­ dmn (5)

are the orthonormal Gauss–Hermite functions. It
can be proved, in a general way, that orthogonality
for the Fms0, vd functions leads to orthogonality for
the wmsz, td functions by virtue of relation (2) and
the Fourier-transform properties. Furthermore, the
special choice of coefficients in Eq. (3) results in the
orthonormality of chirped Gauss–Hermite functions of
Eq. (4), namely,
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Some easily recognizable special cases of relation (4)
are the following. For a ­ 0 and z ­ 0, relation (4)
reduces to the well-known property of the Gauss–
Hermite functions that they are their own Fourier
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transforms multiplied by the proportionality factor
s2jdm

p
2p. For a ­ 0 and arbitrary z, relation (4)

reduces to the unidimensional Gauss–Hermite modal
functions of optics, used in the product solution of
the paraxial wave equation in rectangular coordi-
nates.6 When a and z are arbitrary and for m ­ 0,
relation (4) reduces to the solution of chirped Gauss-
ian pulse propagation in the linear regime.1 This
fexact solution has frequently been used for the estima-
tion of bit-rate–length products in optical communica-
tions as well as for optimum parameter determination
in chirped pulse compression schemes.2

The generalization proposed in relation (4) to arbi-
trary order m is in fact quite remarkable if we take into
account that the functions wmsz, td are orthonormal to
each other with respect to t for every z and a. This
property, together with the energy conservation prop-
erty of Eq. (1), permits an a priori rms error estima-
tion for the orthogonal series expansions of arbitrarily
shaped chirped pulses.

The series expansion of an arbitrary solution of
Eq. (1) is written as

usz, td ­
1X̀

m­0
cmwmsz, td , (7)

where, because of orthonormality property (6), the
coeff icients cm are given by
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and the relative rms error of the N -term approxima-
tion in Eq. (7), for every z, is
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Especially for pulses of the form
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where Astd is a real function, the coefficients cm of
Eq. (8) are real, independently of a, and expansion (7)
converges rapidly for every a and z. In the special
case that Astd ­ exps2t2y2d, the summation in Eq. (7)
reduces to only one term. It is logically expected that
similarly shaped (bell-shaped) functions5 will be well
represented with only a limited number of terms in
Eq. (7).

To validate our approach we analyze a chirped
hyperbolic secant pulse1 of the form

us0, td ­ sech
≥q

py2t
¥
exp

µ
2j

at2

2

∂
. (11)

Because of symmetry, only even-order terms in ex-
pansion (7) are nonzero. Furthermore, with the spe-
cial choice of

p
py2 as a scaling factor in Eq. (11),
it turns out that only one of every four coefficients
cm is nonzero. In Table 1 the first four nonzero co-
efficients are shown, together with the relative rms
error of each of the f irst four approximations. The
first-order approximation corresponds to the Gauss-
ian approximation of the hyperbolic secant pulse. In
Table 2 the number of nonzero terms required in
Eq. (7) for a predef ined relative rms error to be ob-
tained are shown. It should be stressed that, in this
case, the order of the approximation N in Eq. (9) is
higher than the number of nonzero terms used. More-
over, a graph of relative rms error versus number of
nonzero basis functions in Fig. 1 depicts clearly the
rapid convergence rate in this case. In fact, in this
case, four terms are enough for a good working accu-
racy of 0.2% for every a and z. However, when the
chirped pulse is not of the special form of Eq. (10), the
expansion coefficients of Eq. (8) become complex and
depend on the value of a. It is then advisable to use
the simpler form of the expansion functions wmsz, td
with a ­ 0.

Some other computational methods frequently used
for the same problem are the numerical convolution3

Fig. 1. Relative rms error (Erms) versus number of
nonzero basis functions in the approximation of the pulse
of Eq. (11).

Table 1. Nonzero Expansion Coeff icients and Rela-
tive rms Error Erms of the First Four Approximations

to the Chirped Hyperbolic Secant Pulse of Eq. (11)

Basis Function cm Erms s%d

1 c0 ­ 1.259707 7.47
2 c4 ­ 0.091934 1.69
3 c8 ­ 0.020216 0.53
4 c12 ­ 0.006254 0.20

Table 2. Number of Nonzero Basis Functions
Required for a Predefined Relative rms Error Erms

in Approximating the Pulse of Eq. (11)

Erms s%d Basis Functions

0.01 8
0.001 12
0.0001 17
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Table 3. Comparison between the Peak Amplitude Computed by the CGH and FFT Methods in the Case of
the Pulse of Eq. (11) with a 5 210

FFT (2048 Points)

Distance z CGH-4 Basis Functions t [ s240, 40d t [ s2200, 200d

0.1 3.16 3.16 2.63
1.0 0.329 0.329 0.343

10.0 0.0994 0.0112 0.0974
100.0 0.0313 0.0682 0.0269
and the spectral FFT4 methods. The main difficulty
with the f irst method arises in the numerical calcu-
lation of the integral of a rapidly oscillating function.
On the other hand, the spectral FFT method requires
suff iciently large calculation windows in the time and
frequency domains that are difficult to evaluate with-
out some prior knowledge of the solution. Our method
does not suffer from these problems, and once the ex-
pansion coefficients are known the solution has an ana-
lytical form, rendering itself easily amenable to further
manipulations.

An example application of our chirped Gauss–
Hermite (CGH) method and its comparison, in terms
of accuracy, with the well-known FFT method in the
linear case of chirped pulse compression follow. The
initial pulse is of the form of Eq. (11) with a ­ 210,
and it is used to model a gain-switching laser pulse.
Table 3 summarizes the results of the comparison
for the peak amplitude of the propagating pulse
jusz, t ­ 0dj for various normalized distances z. It
is seen that the CGH method converges to the true
solution with three-digit accuracy, with only four
nonzero basis functions, for all z. The FFT method
is seen to be highly sensitive to the correct choice of
the computational window in the time domain, espe-
cially when the pulse undergoes signif icant changes
in width, as is the case in pulse compression. As a
result, different computational windows should be
used for different propagation distances z, through
an essentially trial-and-error procedure, to preserve
a reasonable error bound. This procedure is avoided
in the case of the CGH method, as its error properties
remain invariable for all normalized distances z, even
asymptotically for z ! `. Thus precious simulation
time can be gained when multiple calculations are
required, e.g., to determine the optimum compression
distance as a function of the chirp factor a.
It should also be noted that the Fourier transform
of the solution is analytically calculated with Eqs. (7),
(4), and (5) in the form of a similar orthogonal function
expansion:
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In conclusion, we have presented a generalized
orthogonal function basis for the solution of the
linear propagation equation, derived from an ana-
lytically calculated Fourier transform, using chirped
Gauss–Hermite functions. Some well-known solu-
tions of the linear propagation problem, such as chirped
Gaussian pulse propagation, are shown to be special
cases of our generalized solution. Rapid convergence,
a priori rms error estimation, and analytical Fourier-
transform calculation are some of the advantages of
our orthogonal function expansion method.
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