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Optimum conditions for soliton launching
from chirped sech2 pulses
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Simple and exact analytical formulas are derived for the optimum power and width of chirped sech2 pulses
that maximize the energy transfer to the fundamental soliton. The maximum achievable energy transfer is
shown to be equal to 2ys1 1

p
1 1 a2 d, normalized relative to the initial pulse energy, where a is the laser

phase-amplitude coupling factor. The critical values of the a factor for the fundamental soliton are given
simply in terms of the normalized pulse amplitude A by acr ­ s4A2 2 1d1/2.  1995 Optical Society of America
The generation of picosecond pulses required for soliton
communications is often accompanied by the frequency
chirping effect. This is particularly the case for gain-
switched pulses, for which the frequency chirp results
in pulses that are far above the Fourier-transform
limit. This effect is observed in the form of a time–
bandwidth product (TBP) DtDf much higher1,2 than
the 0.315 value obtained for the unchirped sech2

pulse. There had been some early interest in the
study of soliton formation from chirped pulses,3 – 5

but the results obtained were only numerical and
considered a linear frequency chirp, and they did
not determine some specifically favorable launching
conditions. On the other hand, experimental results
with chirped pulses having bandwidths up to seven
times the transform limit6 indicate that the loss of
energy that is due to chirping of the initial pulse
forms a dispersive nonsoliton pedestal; this can have
a highly detrimental effect on soliton propagation.
The purpose of this Letter is to propose simple and
exact formulas for the optimum launching conditions to
maximize energy transfer in the more realistic case of
chirping as given by the laser’s rate equations. In the
case of gain-switched laser pulses, the complex electric
field envelope at the output of the laser is given by2,7,8

Estd ­ sech11jastytd ,

where a is the laser phase-amplitude coupling factor
and t is a time scaling parameter. To study the
pulse evolution along the fiber we make use of the
method of inverse scattering.9,10 We need to solve
the following system of eigenvalue equations with
appropriate boundary conditions10:

j
≠y1

≠t
1 uy2 ­ zy1 , (1)

j
≠y2

≠t
1 upy1 ­ 2zy2 , (2)

where ustd ­ A sech11jastd is the initial pulse launched
into the fiber at z ­ 0 and z ­ j 1 jh are the complex
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eigenvalues of the system of Eqs. (1) and (2). The
boundary conditions are

µ
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y2

∂
!

∑
exps2jz td

0

∏
for t ! 2` ,

µ
y1

y2

∂
!

∑
asz dexps2jz td
bsz dexpsjz td

∏
for t ! 1` ,

which define the scattering coefficients asz d and
bsz d. The boundary conditions are imposed by the
form of Eqs. (1) and (2) and by the fact that jusz, tdj ! 0
as t ! 6`. The discrete eigenvalues are determined
by the zeros of asz d lying in the upper half complex
plane, i.e., by

asz d ­ 0 , Imsz d . 0 .

There is a soliton associated with each eigenvalue that
is of the form10

usz, td ­ 2h sechf2hst 2 2jz 2 t0dg

3 expf2j2jt 1 j2sj2 2 h2dzg

and is a particular solution of the nonlinear
Schrödinger equation with no loss. The soliton
amplitude is equal to 2h, the soliton velocity is equal to
2j, and t0 is a real constant. It is also easily seen that
the soliton energy is given by 4h and its FWHM pulse
width is 1y2h normalized relative to the initial
pulse width. Because of the symmetry10 of the
input pulse the real part j of the eigenvalue z

vanishes, meaning that chirping does not affect
the velocity of soliton propagation. An analytical
solution of the system of Eqs. (1) and (2) is ob-
tained in terms of hypergeometric functions for this
initial condition, and the functions that character-
ize the scattering problem are found, after some
lengthy calculations, to be expressible in terms
of gamma functions of a complex argument as
 1995 Optical Society of America
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asjd ­
Gf1y2 2 jsj 2 ay2dgGf1y2 2 jsj 1 ay2dg

Gf1y2 2 jj 1 sA2 2 a2y4d1/2gGf1y2 2 jj 2 sA2 2 a2y4d1/2g
, (3)

bsjd ­ j22jaA
Gf1y2 1 jsj 2 ay2dgGf1y2 2 jsj 1 ay2dg

Gf1 2 sA2 2 a2y4d1/2 2 jay2gGf1 1 sA2 2 a2y4d1/2 2 jay2g
. (4)
In the limit case that a ­ 0 when the pulse is
unchirped Eqs. (3) and (4) simplify to those given in
Ref. 10. When the principle of analytic continuation
is applied to Eqs. (3) and (4) the zeros of asz d that lie
in the upper half-plane of the complex variable z are
found to coincide with the poles of the gamma function
at the denominator of asz d:

zr ­ jhr ­ jfsA2 2 a2y4d1/2 2 r 1 1y2g , (5)

where r is a positive integer and the fundamental
soliton corresponds to r ­ 1. Because of the chirping
a part of the initial pulse energy goes into a dispersive
tail, decaying as 1y

p
z, which is deleterious to the

propagation of the soliton pulse. The ratio of the
energy going into the soliton component divided by
the total energy of the input pulse is given by10

R ­ 4
NX

r­1
hry2A2 , (6)

where R is the quantity to maximize. In the general
case that N -order solitons exist R can easily be shown
to be equal to

2NsA2 2 a2y4d1/2 2 N2

A2
, (7)

where N ­ IntfsA2 2 a2y4d1/2 1 1y2g and Int denotes
the integer part. Expression (7) is plotted in Fig. 1 for
various a factors depicting higher-order soliton propa-
gation. When r ­ 1, only the fundamental soliton
exists (this is the usual situation in soliton communica-
tion systems), and Eqs. (5) and (6) then yield

R ­
2fsA2 2 a2y4d1/2 2 1y2g

A2
. (8)

On differentiating Eq. (8) and putting the result equal
to zero we obtain the optimum normalized pulse ampli-
tude as

Aopt ­

√
1 1 a2 1

p
1 1 a2

2

!1/2

(9)

and the corresponding maximum energy transfer ratio

Rmax ­
2

1 1
p

1 1 a2
. (10)

This is our main result. However, a fundamental
soliton is formed as long as s1y2d

p
1 1 a2 # A ,

s1y2d
p

9 1 a2, leading to the well-known result for un-
chirped pulses when a ­ 0 that 1y2 #A , 3y2.
Moreover, for a ­ 1 and a ­ 2 one obtainsp

2y2 # A ,
p

10y2 and
p

5y2 # A ,
p

13y2,
respectively, for the region of existence of the
fundamental soliton, and this is also clearly
seen in Fig. 1. The discontinuities present in
Fig. 1 correspond to transition in order-2 and
order-3 soliton states. On the other hand, there
are critical chirp parameters corresponding to
vanishing eigenvalues and therefore to zero energy
transfer to the fundamental soliton component. They
are simply given from Eq. (5) by acr ­

p
4A2 2 1.

Furthermore, the asymptotic soliton width for infinite
distance, z ! `, is given by 1y2h relative to the initial
pulse width. Some examples of energy maximization
are shown in Table 1. The TBP DtDf is calculated by
use of Eq. (7) of Ref. 2. It is seen that the initial pulse
width should be chosen to be different from the final
pulse width for optimum results. For example, let us
assume that we want to launch Dt ­ 20 ps FWHM
solitons into dispersion-shifted fiber having the
following typical parameters: jDj ­ 2.5 psyskm nmd,
Aeff ­ 2.5 3 1027 cm2, and n2 ­ 3.2 3 10216 cm2yW,
at l ­ 1.55 mm. Using transform-limited, i.e.,
unchirped, pulses, we would need a peak power given
by

PN­1 ­ 0.776
l3

cp2n2

jDj

Dt2 Aeff ,

which yields 4.77 mW. On the contrary, if we dispose
of a laser source with a TBP of 0.85, we can calcu-
late from Table 1 that Dtopt ­ 20 3 1.80 ­ 36 ps and

Fig. 1. Normalized energy transfer to the soliton part of
a pulse as a function of the chirped pulse’s normalized
amplitude for various chirp factors.
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Table 1. Optimum Launching Conditions and
Maximum Normalized Energy Transfer to the

Soliton from Chirped sech2 Pulses

a DtDf Rmax s%d Aopt Dtopt

0.5 0.39 94.4 1.09 1.12
1.0 0.59 82.8 1.31 1.41
1.5 0.85 71.4 1.59 1.80

Popt ­ sPN­1y1.802d1.592 ­ 3.72 mW, yielding a maxi-
mum energy transfer to the fundamental soliton of
71.4%. In other words, we launch a wider and more
powerful (relative to its N ­ 1 power) pulse that is
asymptotically compressed to the 20-ps width. How-
ever, because these results are exact only asymptoti-
cally as z ! ` and in the zero-loss case, they should
be applied with care because pulses may broaden or
narrow significantly before they reach their asymptotic
width.3 – 5 On the other hand, neglecting the chirped
nature of the pulse and launching a 20-ps pulse with
4.77-mW peak power and 0.85 TBP, one would obtain
asymptotically according to Eqs. (5) and (8) a soliton
pulse with 62-ps FWHM carrying only 32% of the ini-
tial pulse energy. This is less than half of the en-
ergy transfer achieved with the optimum conditions
and demonstrates the effectiveness of our approach.

In conclusion, we have presented simple and exact
analytical expressions for the optimum launching of
solitons out of chirped sech2 pulses, using a realistic
model for the laser’s frequency chirp. It was shown
that the pulse power and width should be chosen
differently from those of an ideal unchirped pulse to
maximize energy transfer to the soliton component and
therefore to minimize at the same time the effect of the
dispersive tail. Critical chirp parameters were also
derived beyond which no soliton formation is possible.
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