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Strong Signal Analysis of Optical
Nonlinearities in Single-Quantum-Well and
Double-Heterostructure Lasers

J. Yao, G.-H. Duan, and P. Gallion

Abstract—Based on the numerical strong signal solution of
the density-matrix formalism, the nonlinearities of the gain and
the refractive index are discussed for both bulk double-hetero-
structure (DH) and single-quantum-well (SQW) InGaAs lasers.
The results show that for both structures the nonlinear gain is
well approximated by the recently proposed analytical expres-
sion and modified two-level system approximation up to a range
of photon density discussed in this letter, and the refractive
index could either increase or decrease with the photon density
depending on the wavelength detuning from the gain peak. The
results of new analytical expression for nonlinear refractive
index is in qualitative agreement with the numerical ones;
however, significant quantitative difference occurs between these
two model results for high photon density values. Due to the
more important nonlinear gain in SQW structures, the linewidth
enhancement factor increases more rapidly with increasing pho-
ton density in these structures than in DH structures.

I. INTRODUCTION

T has been shown that the optical nonlinearities have a

strong impact on the noise and dynamic performances
of semiconductor lasers [1], [2]. Most previous studies on
spectral-hole-burning induced optical nonlinearities are
based on the third-order perturbation theory [3], which is
only valid in the low output power regime. In effect, the
optical nonlinearities become predominant particularly in
the high output power regime; thus, it is important to
discuss these properties using a strong signal analysis.
Usually, for double-heterostructure (DH) semiconductor
lasers, the same form of the nonlinear gain as in an
homogeneously broadened two-level system is used di-
rectly and the refractive index nonlinearity is neglected
[4]. Based on the strong signal theory (SST) of the
density-matrix formalism, a new analytical nonlinear gain
expression taking into account the energy band structure
of bulk semiconductors has been proposed, and the re-
fractive index has also been shown to have a nonnegligible
nonlinear part [S]. However, the validity of these analyti-
cal expressions has not been examined, so the first pur-
pose of its letter is to give an exact numerical solution for
nonlinear gain and refractive index, and to compare these
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results with that obtained by the new analytical expres-
sions.

Recently, quantum-well (QW) structures have attracted
much attention owing to some improved characteristics,
such as high differential gain and small linewidth en-
hancement factor [6]. In this type of structure the conven-
tional conduction and valence bands are split into many
subbands due to the energy quantization of electrons and
holes in the direction of quantum well thickness. The
three-dimensional parabolic density of states becomes two
dimensional step-like. This modified density state leads to
a high differential gain and thus to a potentially enhanced
modulation bandwidth [6]. Unfortunately, this advantage
is compensated by a high nonlinear gain in this type of
structures [7]; theoretical analysis based on the small
perturbation solution confirms this result [8]. But in QW
structures, practically achievable output power is of the
same order of magnitude as the output saturation power
because of their decreased output saturation power and
increased maximum output power; thus, the validity of the
small perturbation theory usually used for QW structures
becomes questionable. The other purpose of this letter is
to analyze, for the first time, the gain and the refractive
index nonlinearities in this type of structures by using the
numerical strong signal solution, and these results will
also be used to verify if the new analytical expressions
could be extended to QW structures.

II. THEORY

The starting point of our analysis is the density-matrix
formalism, which gives the linear and nonlinear contribu-
tions to the optical susceptibility [3]. For lasers oscillating
in a single longitudinal and transverse mode, the density-
matrix equations have been solved exactly. The suscepti-
bility x, which represents the response of the medium to
applied field including the spectral-hole-burning effect, is
written as [5]
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where E is the photon energy, P is the photon density,
Ry, is the dipole moment, E_, is the transition energy, f,
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and f, are the occupation probabilities of electrons in the
conduction band and the valence band at thermal equilib-
rium, E, is the energy separation between the fundamen-
tal levels in the conduction band and the valence band,
D(E,) is either the step-like reduced density of states for
QW structures or the parabolical reduced density of states
for DH structures, P, is the saturation photon density
defined as [5]
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where 7., 7,, 7;,, are the intraband relaxation times for
electrons, holes and polarization respectively, and n, n,
are the effective index and group index.

From (1), Agrawal obtained new approximative analyti-
cal expressions for nonlinear gain and refractive index for
DH structures [S]:
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where g, is the linear gain, k, is equal to w/c, ¢ is
the light velocity in vacuum, a, is the linear linewidth
enhancement factor, and B is defined as B =
1/(gm,) dg,/do.

The analytical expressions are obtained on the basis of
some approximations such as infinite polarizition relax-
ation time. In the following, an exact solution of (1) will
be obtained by using numerical simulation for both DH
and QW structures. Finally, these numerical results will
be compared with analytical ones given by (3) and (4).
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II1I. RESULTS

In our discussion, the recombination of electrons and
light holes is neglected due to the small effective mass of
the latter. We assume that the following parameters have
the common values in both DH and QW structures: the
effective mass of electrons m, and heavy holes m, are
equal to 0.041 m, and 0.424 m, where m, is the free
electron mass; 7, 7,, and 7, are equal to 3 X 107" s,
7x 107" s, and 1 X 107" s respectively; n and n, are
equal to 3.65 and 4; the temperature considered is 300 K.
The band gap energy E (DH) and E(QW) are equal to
0.75 and 0.675 eV. The thickness of the active layer
L,(DH) and L,(QW) are assumed to be 100 and 10 nm,
respectively. The dipole moment is calculated by the fol-
lowing formula [9]:
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where e is the electron charge, A is the spin-orbit splitting
assumed to be 0.33 eV for both structures, B is equal to
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2/3 for DH structure and about 1 for QW structure at
subband edge [9].
In the following, we will discuss the calculated results.

A. Gain Nonlinearity

The numerical results of gain as a function of normal-
ized photon density P/P, is depicted in Fig. 1 for a carrier
density N equal to 2 X 10'® cm™® and at the peak gain
wavelength Ap, which is equal to 1.55 um for both struc-
tures. In this figure, the saturation photon density P,(DH)
and P(QW) are equal to 5.86 X 10'® cm™* and 4.3 X 10'°
cm ™3, corresponding to an output saturation power of 234
and 172 mW respectively, for a mode volume V/T' = 2 X
107" ¢m® and a mirror loss «,, =45 cm~' for both
structures; this difference in the output saturation power
originates in the different dipole moments values for the
two structures. In order to demonstrate the validity of
different approximate expressions for nonlinear gain used
until now, the results by using the new expression (3), the
modified two-level system expression g = g,/(1 +
P/(2P,)) and the small signal approximation g = g,(1 —
P/(2P)) are also given in this figure. It can be seen that
for both structures the numerical results of the SST are
well approximated by the analytical expression (3) and the
modified two-level system approximation in the range of
photon density discussed. The small signal theory is only
valid for low photon density values (P/P, < 0.1). The
enhanced gain nonlinearity in QW structures is also ob-
served from this figure. This is in agreement with previous
small perturbation theory predictions [9] and the experi-
mental observations [7]. This stronger gain nonlinearity in
QW lasers limits seriously its maximum achievable modu-
lation bandwidth.

B. Refractive Index Nonlinearity

The numerical and analytical results for refractive index
are given as a function of normalized photon density P /P,
in Fig. 2 for the DH structure and in Fig. 3 for the QW
structure. The carrier density is assumed to be 2 X 1018
cm® and the parameter is the wavelength detuning
AM= A — 1)) from the peak gain wavelength. It can be
seen that the refractive index increases for AA > 0 and
decreases for AA < 0, and at the peak gain wavelength, it
remains almost constant. We can qualitatively explain
these refractive index nonlinearities as follows: the non-
linear gain and nonlinear refractive index are related by a
modified Kramers—Kronig relation, which can be obtained
from (1). At the peak gain wavelength, the spectral hole in
the gain spectra is symmetrical and its contribution to
nonlinear refractive index is about zero; at wavelength
detuned from the gain peak, the spectral hole is not
symmetrical and leads a nonlinear part of the refractive
index; the shape of the spectral hole, which is different for
positive and negative wavelength detuning, determines the
sign of the nonlinear refractive index. For the DH struc-
ture, the nonlinear index is nearly symmetric against the
wavelength detuning, and for the QW structure, an asym-
metric behavior is observed; this symmetry or asymmetry
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Fig. 1. The gain at the peak gain wavelength as a function of normal-
ized photon density obtained by different models for the DH structure
and the QW structure. NR: numerical results.
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Fig. 2. The refractive index as a function of normalized photon density
for different wavelength detunings for the DH structure. NR: numerical
results, AE: results obtained by the analytical expression (4).
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Fig. 3. The refractive index as a function of normalized photon density
for different wavelength detunings for the QW structure. Symbols and
abbreviations have the same definitions as in Fig. 2.
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could be well accounted by the shape of linear gain
spectra in these structures. The results of the analytical
expression (4) are in qualitative agreement with the nu-
merical ones for both structures. However, for the DH
structure, the analytical expression appears to give a more
important refractive index nonlinearity than the numeri-
cal calculation of SST for wavelengths detuned from the
gain peak for high photon density (P/P, > 1); for the
SQW structure, there is a good agreement between these
two results for the negative detuning in the range of
photon density discussed, and for the positive detuning, as
found in the DH structure, the analytical results give a
more important nonlinear refractive index than the nu-
merical ones for P/P, > 1. The small contribution of
refractive index change with photon density in the usual
power range (P/P, < 1.0) is expected to give negligible
effects on laser dynamics and noise.

C. Linewidth Enhancement Factor

The linewidth enhancement factor a describes the am-
plitude-phase coupling via the coupling between real and
imaginary part of the susceptibility. Due to the gain and
the refractive index nonlinearities, the factor « will de-
pend on the photon density. This dependence analysed by
the numerical strong signal solution for both DH and
SQW structures is given Fig. 4. The a value is smaller for
the SQOW structure than that for the DH structure for low
photon densities. With the increase of photon density, the
factor a increases for both structures mainly due to the
gain nonlinearity; however, this increase is more rapid in
the SQW structure than in the DH structure due to the
more important gain nonlinearity in the former structure.
For very high photon density (P/P, > 11), the factor
«(SQW) could be even larger than a(DH).

IV. CONCLUSION

In this letter, the numerical results of the strong signal
solution for nonlinear gain are given and compared to
that of the new analytical expression, the modified two-
level system expression and the small signal approxima-
tion for the DH and the SQW structures. The new pro-
posed analytical expression (3) and the modified two-level
system expression for nonlinear gain has been proven to
be good approximations for both structures in the range
of photon density discussed. The numerical results for
nonlinear refractive index show that the refractive index
remains almost constant at the peak gain wavelength and
can either increase or decrease with the photon density
depending on the wavelength detuning from the gain
peak. These results are in qualitative agreement with that
of the analytical expression. However, for the DH struc-
ture, the analytical expression appears to give a more
important refractive index nonlinearity than the numeri-
cal calculation of SST for wavelengths detuned from the
gain peak; for the QW structure, there is a good agree-
ment between these two results for the negative wave-
length detuning, and for the positive wavelength detuning,
as found in the DH structure, a more important refractive
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Fig. 4. Linewidth enhancement factor at the peak gain wavelength as a

function of normalized photon density for the DH and the QW struc-
tures.

index nonlinearity is given by the analytical expression as
compared with numerical results. Finally, the dependence
of the a factor on the photon density is studied by
including nonlinear gain and refractive index. It has been
found that the factor @ in QW structures increases more
rapidly with photon density than in DH structures mainly
due to the more important gain nonlinearity in the former
structures.
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FM Mode-Locking at 2.85 GHz Using a
Microwave Resonant Optical Modulator

K. J. Weingarten, A. A. Godil, and Martin Gifford

Abstract—We harmonically mode locked a diode-pumped 1053
nm Nd:YLF laser using a microwave resonant optical modula-
tor (MROM), achieving pulsewidths of 4.5 ps at a repetition rate
of 2.85 GHz and 4 ps at 237.5 MHz. The laser produced average
output powers greater than 400 mW.

ODE-LOCKING of diode-pumped solid-state lasers
has been a very active research area for the last
several years. Active mode-locking at gigahertz repetition
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rates with diode-pumping has been demonstrated by sev-
eral groups using both amplitude and phase modulators
[1}-[4]. Mode-locking at a 20 GHz repetition rate was
demonstrated with a new type of resonant phase modula-
tor termed the dielectric resonator/optical modulator
(DROM) [4]. We have used a similar device termed a
microwave resonant optical modulator (MROM) to
demonstrate harmonic mode-locking [5] in a diode-
pumped Nd: YLF laser at a repetition rate of 2.85 GHz,
which is very near the drive frequency of linear accelera-
tors such as the Stanford Linear Accelerator (SLAC).
Such a laser, suitably amplified and frequency converted
to the UV, can be used to drive a photocathode as a high
brightness source of electrons for seeding the accelerator.
Other applications include optical communications and
photonic switching.
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