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Effective Nonlinear Gain in Semiconductor
Lasers

Guang-Hua Duan, Philippe Gallion, and Govind P. Agrawal

Abstract— An effective nonlinear gain is introduced for semi-
conductor lasers by taking into account the effect of laser
structure and the associated distribution of the mode intensity
along the cavity length. It should be used in the analysis of laser
dynamics and noise in place of the material nonlinear gain
parameter. A general expression for the effective nonlinear gain
is given by using the Green’s function method. The results
obtained for Fabry-Perot and distributed feedback lasers show
that the effective nonlinear gain could be considerably enhanced.
The exact value of the enhancement factor depends on cavity
parameters. Affected by the laser structure, the nonlinear gain
has a different power dependence than expected from material
considerations alone.

INTRODUCTION

HE nonlinear gain is known to have an important influ-

ence on the dynamics and noise properties of semicon-
ductor lasers [1], [2]. The previous studies have used a form
of the nonlinear gain derived from the consideration of the
material properties alone such as spectral hole burning or
carrier heating [3], [4]. Based on the density matrix formal-
ism, an exact form of nonlinear gain due to spectral hole
burning has been obtained [3]. In every model, the nonlinear
gain is a function of the local photon density. However, in
most semiconductor lasers, the photon density is not uniform
along the cavity due to the output coupling. A natural ques-
tion is what is the effective nonlinear gain that should appear
in the rate equations governing the laser dynamics and noise
properties. The purpose of this letter is to clarify the influ-
ence of photon density distribution on the nonlinear gain.

ANALYSIS

The starting point of our analysis is the wave equation in
the frequency domain. Assuming perfect transverse and lat-
eral index guiding, we concentrate our attention to the longi-
tudinal axis. The one-dimensional propagation equation is
solved by using the Green’s function method, which has been
used to describe laser dynamics and noise [5], [6]. However,
the Green'’s function method is only valid for a linear dielec-
tric constant. To include the material nonlinear gain, the
initial Green’s function method was modified. The details
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will be presented in a forthcoming paper. The final result for
the effective nonlinear gain is given by
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where Z,(z) is the field distribution inside the cavity, N(z)
the carrier density, P(z) the photon density, k, = w/c,
with w the optical frequency and c¢ the light velocity in
vacuum, v, is the group velocity in the laser medium, 7 is
the linear refractive index, g, is the nonlinear gain, and W
is the Wronskian of the linear laser system [5], [6]. The
integration is performed over the cavity length L. It has been
shown that the refractive index changes also with an increase
in the output power [3]. This nonlinear refractive index can
be formally included by a complex material nonlinear gain
[2]. When the refractive index and the optical gain vary
smoothly in the cavity, as in the case of Fabry—Perot, DFB,
and DBR lasers, the effective nonlinear gain can be written as
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Thus, the effective nonlinear gain is a spatial averaging of
the material local nonlinear gain weighted by the squared
field distribution rather than by the intensity. This newly
defined nonlinear gain takes into account both material and
structural dependences. It reduces to the material gain for an
uniform intensity distribution. The effective nonlinear gain
has the same origin as the longitudinal spontaneous emission
enhancement factor K, [5], [6]: the different longitudinal
mode distributions {Z,(z), m =0, 1, ...}, forming a com-
plete set, are not orthogonal in the Hermitian sense, due to
the presence of optical gain in the cavity [7].

Several consequences of the above considerations can be
predicted from (2):

i) Different laser structures can give rise to different values
and forms of the effective nonlinear gain for the same mate-
rial. This is due to the field distribution Z,(z) dependence on
the cavity structure.

ii) As the field distribution generally includes a spatially
dependent phase, the material nonlinear gain can result in an
effective nonlinear index and vice versa.

iii) As the intensity distribution is not uniform and changes
with the output power due to spatial hole burning [8], the
effective nonlinear gain will have, in general, a different
power dependence than the material nonlinear gain.

()

1041-1135/92803.00 © 1992 IEEE




DUAN et al.: NONLINEAR GAIN IN SEMICONDUCTOR LASERS

RESULTS FOR FABRY-PEROT AND DFB LASERS

Neglecting the nonlinear refractive index, the nonlinear
gain can be approximated in the low output power regime by
8nL = —&,6P(z) where e is referred to as the gain com-
pression factor and g, as the linear gain. By relating the
photon density with the mode distribution by P(z) =
Py| Zy(z)|?, with P, a spatially independent parameter
proportional to the output power, the gg;® can be written as
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It is assumed for the moment that the spatial variation of
the linear gain due to spatial hole burning in the laser cavity
could be neglected [8]. By comparing this effective nonlinear
gain with the nonlinear material gain g\{*" corresponding to

the average photon density in the cavity:

g = —ePyg,
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a correction factor of effective nonlinear gain can be intro-
duced, which relates the effective gain compression factor
with the material gain compression factor. By using (3) and
(4), the correction factor C is given by

[z )122) 12 e
c= ° (5)

U()Lzé(z) dz)(/OL|ZO|2(z) dz/L '

Equations (2) and (5) are the main results of this letter.
The correction factor C given in (5) shows how the laser
structure can change the value of the material parameter e.
This factor is generally complex. The real part represents the
change in the material nonlinear gain, the imaginary part
represents the contribution of the material nonlinear gain to
the effective refractive index. The latter directly affects the
phase variation of the electrical field in the laser cavity and
thus contributes to the frequency chirp and the linewidth.

We have calculated the correction factor for different types
of laser structure. Fig. 1 shows the result for a Fabry-Perot
laser with one facet reflectivity of 30% (R, = 0.3) and a
varying reflectivity R, of the other. The real part of C is
slightly larger than unity for small values of reflectivity
(R, < 10~%). Beyond this value, the correction factor keeps
at unity. The imaginary part of C decreases with the increas-
ing facet reflectivity R,. The value of the imaginary part is
quite small compared to that of the real part.

The correction factor C is plotted as a function of the
normalized coupling coefficient in Fig. 2 for a conventional
DFB lasers. Both facets of the laser are assumed AR-coated
(R, = R, =0.). The real part of the correction factor in-
creases from 0.87 for k L = 1.0 to 1.3 for k L = 5.0. The
imaginary part of the correction factor changes from negative
values to positive values with the increasing normalized
coupling coefficient. It is not surprising that the effective
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Fig. 1. The real and imaginary parts of the correction factor C as a

function of facet reflectivity R, for a Fabry-Perot laser. The reflectivity of
the other facet R, is assumed to be 30%.
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Fig. 2. The real and imaginary parts of the correction factor C as a
function of the normalized coupling coefficient « L for a conventional DFB
laser with AR-coated facets.

nonlinear gain in Fabry-Perot and conventional DFB lasers
is not very different from the material nonlinear gain corre-
sponding to the average photon density, as the intensity
distribution in these lasers is rather uniform.

The result for a AR-coated \/4 phase-shifted DFB laser is
shown in Fig. 3. The real part of the correction factor
becomes larger than unity for x L > 1.25 and attains 2 for
kL = 4.0. The imaginary part of the correction factor
changes sign at xk L = 1.25 and becomes negligible for larger
values of « L. This is due to the fact that for k L = 1.25, the
field-intensity distribution is nearly uniform inside the cavity
[8]. For « L larger than 1.25, the field intensity is more
concentrated in the center of the cavity. Otherwise, the field
intensity is concentrated near the two facets [8].

To evaluate its output power dependence, the effective
nonlinear gain is calculated by using (2) for a AR-coated \/4
phase-shifted DFB laser with « L = 3.0. In our calculations,
the field distribution and the linear gain are calculated by
including the spatial hole burning [8]. The material non-
linear gain is assumed to have the form gy =
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Fig. 3. The real and imaginary parts of the correction factor C as a

function of the normalized coupling coefficient « L for a \/4 phase-shifted
DFB laser with AR-coated facets.

2, /V1+2eP(z) — g, [3]. The real and imaginary parts

of the effective nonlinear gain are plotted as a function of the
output power in Fig. 4(a) and (b), respectively. The material
nonlinear gain corresponding to the average photon density is
also plotted in Fig. 4(a) for comparison. It can be seen that at
low output powers (< 1 mW) the effective nonlinear gain
and the material nonlinear gain give a similar power depen-
dence. The ratio of their values is close to 1.5, the same as
the correction factor C given in Fig. 3 for x L = 3.0. When
the output power increases, the intensity distribution becomes
more uniform due to the spatial hole burning [8]. Conse-
quently, the real part of the effective nonlinear gain ap-
proaches the material nonlinear gain at an output power of
about 10 mW and continues to decrease for higher output
powers. At the same time, the imaginary part of the nonlin-
ear gain tends to change sign.

CONCLUSION

The concept of an effective nonlinear gain is introduced,
which takes into account both the material and structural
dependences. The effective nonlinear gain can be twice the
magnitude of the material contributions for some device
parameters in the case of DFB lasers. The effective nonlinear
gain has generally a different power dependence than the
material nonlinear gain. The consequences of the effective
nonlinear gain on laser dynamics and noise are under study.
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