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Phase jitter in an injection-locked semiconductor laser
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An expression for the mean-square phase jitter of an injection-locked semiconductor laser is derived. It leads to the
determination of the power spectrum of the locked laser. The theoretical results are in good agreement with
experimental results reported previously [IEEE J. Quantum Electron. 24,148 (1988)].

The injection-locking conditions of semiconductor la-
sers are usually expressed in terms of a locking range,
which can be reduced by instabilities.14 The stable
locking range is bounded by two limits: below the
lower limit, the optical injection results in modulating
the free-running signal,5 whereas above the upper lim-
it, the locked laser becomes unstable, i.e., multimode.
For a locked laser, the damping of the relaxation oscil-
lations is strongly dependent on the locking condi-
tions. The relaxation oscillations are caused by the
intrinsic resonance in the gain saturation process and
the resulting coupled fluctuations of light intensity
and carrier density. They give rise to sidebands in the
optical spectrum and may widen the spectral line
spread of the laser, resulting in penalties in transmis-
sion in optical-fiber systems. With good locking con-
ditions, they can be reduced substantially, improving
the system performance.

This Letter presents a study of the phase jitter of an
injection-locked semiconductor laser. Relaxation os-
cillation resonance is included in standard injection-
locking theory. The locked laser is described by three
coupled rate equations for the field amplitude, the
phase, and the carrier density. An expression for the
mean-square phase jitter is derived and allows one to
calculate the power spectrum.

The field E(t) of the slave laser, locked to the master
laser frequency wo, is expressed as

E(t) = E0 expli[wot + 4) + (p(t)]%,

where E0 is a real constant, since amplitude fluctua-
tions well above threshold are neglected, and 4) is the
constant cw phase. The phase noise ep(t) is treated
under the stationarity assumption. Thus the field
power spectrum is given by

S(A) =E 2z exP [ (- 12(r)) + i ( - ,)d

(1)

where (A*2(r)) is the mean-square phase jitter, ex-
pressed by

t+a
(4so2(T)) = (1o(W)12)(1 - cos wr)dw. (2)

The phase change (s(w) in the frequency domain is
evaluated by solving the rate equations for the slave

and master lasers4' 6 (the subscript m refers to the mas-
ter laser),
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P and Pm are the photon numbers in the slave and
master laser cavities, respectively. Pi is the injected
photon number and is related to Pm through Pi = 'qPm,
where \Ij is the coupling coefficient between the mas-
ter and slave laser electric fields. 0 is the phase detun-
ing, i.e., the difference between the phase of the optical
field of the master laser 4)m and that of the slave laser
4'. N and Nm denote the carrier numbers in each
active volume, R and Rm are the spontaneous emission
rates, and G and Gm are the gains per unit time. coo is
the stationary value of the optical frequency that is
equal to that of the master, and wj is the resonant
frequency of the jth longitudinal mode of the slave
cavity. The Langevin forces Fp(t), Fpm(t), Fq,(t),
Fpm(t), Fn(t), and Fnm(t) are noise sources accounting
for fluctuations in P, Pm, 4', (Pm, N, and Nm, respective-
ly. In the following analysis, the linewidth enhance-
ment factors of both lasers are assumed identical, be-
cause the same type of diode was used experimentally
for the master and slave lasers.4

We call P(t), n(t), sp(t), pm(t), nm(t), and pom(t) the
deviations of P(t), N(t), 4'(t), Pm(t), Nm(t), and 4'm(t)
from their steady-state values P, N, 4), Pm, Nm, and 4m,
Within a first-order approximation,6 we have
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(9)

- 1 + F(,,m,
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G(m) = GO(m) + Gn(m)n(m)y
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2aGn (10)

Equations (3)-(8) are linearized and solved by Fourier
analysis, leading to the expression of the phase change
,P(W),

The mean-square phase jitter (A 02(-r)) is evaluated by
contour integration, closing the contour in the upper
half of the complex frequency plane. The contour
encloses several poles at complex frequencies co = 0, ix,
iY + z, and iym + Zm. The real part of X denotes the
relaxation oscillation frequency, and the imaginary
part of X denotes the damping rate. If we neglect the

Fn(w) [(iw + K)E - BC] + Fp(w) [(H + iW) (K + io) + FBI - Fp(c) [(i¢io + H) C + EF]
p0(w) = L() , (11)

high-frequency master laser phase noise contribution,
the mean-square phase jitter of the locked laser is
written as

(A'AT)) = Rm(l + a'2)r
2Pmn

k21[z2 + y2
- Z2 sin 0(a cos 0 + sin 0)]2 + Z4 sin2 0(cos 0 _-a sin 0)21

+ Ra2(+ 4PY1ZomI(Z2 + y2
- z2 )2 + 4(y2 + z2)y ]} [1 - exp(-Ty)cos(zr)], (12)

L(w) = FAE + FBD + HKD + HAC

-W2(H+D+K)+iw(FB+HD
+HK+KD+AC- _C2),

A = 2Pk sin 0,

D=kcos0, 1
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B = GnP, C = 2Pk sinB = G~ P, 2P P

aGE
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where

x = k(a sin 0 + cos 0),

GnP
Y= 2 +

Z2 = 2(
F = Go,

K = - + k cos 0,
P

k = 1 Vg(pi/p) 0 .5,

Fn(@ =n(W),

Fp'(o) = r k cos 0 pm(w)
Pm

- 2Pk sin 0 *°m(w) + Fp(o),

F' (w) = 2P sin 0 pm(w) + k cos 0t pm(w) + F,(w).

Fp(w), Fn(w), and Fp(w) are the frequency-domain
Langevin forces for the injected laser including the
influence of the master laser noise, and k is a normal-
ized injection rate. The term (I1e(W)12) in Eq. (2) is
then calculated by using the diffusion coefficient for
the Langevin forces in the master laser, which are
written6

Dpmpm = RmPm, Dpmnm =R-RnPr,
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Fig. 1. Mean-square phase jitter (As0 2 (T)) of the locked
laser: (Asp2 (T)) versus time r at an output power of 2 mW
for the locked laser, an output power of 4 mW for the master
laser, and an injection level Pi/P of -30 dB for different
values of the phase detuning 0.

N R.
Dnmnm = RmPm + r Dmm =

ern

whereas those of the locked laser are given by

Dpp = RP, Dpn =-RP,

Dnn = RP + T. 4o= 4P-

Table 1. Laser Parameters Used

X0 Wavelength 830 nm
L Cavity length 300 Asm
vg Group velocity of light 6.9 X 107 msec 1

a Linewidth enhancement factor 5.4
Gn Differential gain 5.75 X 103 sec1
Tp Photon lifetime 1.7 X 10-12 sec
Te Spontaneous carrier lifetime 2.2 X 10-9 sec

where

+ - R. (I - exp -rx)
2x P.

v
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Fig. 2. Power spectra: logarithmic relative intensity ver-
sus the frequency for an output power of the locked laser of 2
mW, an output power of the master laser of 4 mW, and an
injection level PiEP of -30 dB for different values of the
phase detuning 0.
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This expression is valid for injection rates smaller than
10-2, which is the case with the reported experimental
injection rates.4 '7 Nonlinear gain effects are not in-

cluded in the model, thus our results may underesti-
mate the damping of the phase jitter. Figure 1 shows
the mean-square phase jitter of an injection-locked
laser when it is operated through the stable locking
range. The values for the parameters used are given
in Table 1. In the calculations, the total cavity loss
rates, the carrier lifetimes, and the differential gains
are taken to be identical for both lasers. We focus our
attention on the influence of the phase detuning 0 on
the phase jitter. The damping of the mean-square
phase jitter oscillation and, consequently, that of the
relaxation oscillation is increased dramatically toward
the lower limit of the stable locking range (0 = -10°).
However, this damping is strongly reduced at the up-
per limit of the stable locking range (0 = 12°), where
the locked laser becomes unstable: the mean-square
phase jitter exhibits a strong oscillation, as shown in
Fig. 1. Figure 2 represents the corresponding power
spectra evaluated with a fast-Fourier-transform algo-
rithm. The first two terms in Eq. (12) cause a modifi-
cation of the laser linewidth, while the third term
results in the appearance of secondary peaks at the
relaxation frequency of the locked laser. The relax-
ation frequency peaks are reduced at the lower limit of
the stable locking range but strongly enhanced at the
upper limit. This is in good agreement with the ex-
perimental results reported earlier.4' 7 Phase detuning
values correspond to experimental values of detuning.
The theory also qualitatively agrees with the data
when reduced to the unlocked case. The asymmetry
in the sidebands does not appear in our model because
the amplitude fluctuations have been neglected.

In conclusion, an expression for the mean-square
phase jitter of an injection-locked semiconductor laser
has been derived. This expression may be useful for
evaluating the performance of a system that includes
an injection-locked semiconductor laser. Theoretical
calculations of the power spectrum of the locked laser
field are in good qualitative agreement with the ex-
perimental results reported earlier.
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