Locking range, phase noise and power spectrum of
an injection-locked semiconductor laser

O. Lidoyne
P. Gallion

C. Chabran
G. Debarge

Indexing terms: Semiconductor lasers, Phasing and phase control

Abstract: The locking range of an optically
m_|ected semiconductor laser is discussed, includ-
ing the spectral hole burning and lateral carrier
diffusion effects. These effects are modelled with a
gain supprcssion coefficient. In addition, an
expression for the mean square phase Jltter of an
injection-locked semiconductor laser is derived
when these effects are insignificant. The power
spectrum of a locked laser is obtained and com-
pared with experimental results.

1 Introduction

Injection locking is an example of the intracavity inter-
action of an external radiation and a lasing field. This
technique represents a great interest for semiconductor
laser applications. It improves the laser’s free running
propertles by reducing the partmon noise [1], suppress-
ing the mode hopping, improving the coherence proper-
ties [2] and reducing their sensitivity to spurious
feedback. In addition, the technique allows a direct
modulation of the injected laser with a reduction in the
frequency chirp [3-5], improves the system performances
[6], the conversion of frequency to phase modulation [7]
and the achievement of optical carrier recovery.

In order to avoid penalties in optical fibre systems,
transient relaxation oscillations should be considered
since they generate sidebands in the optical spectrum and
can widen the spectral linespread of the laser. Relaxation
oscillations are caused by an intrinsic resonance in the
gain saturation process and by the subsequent coupled
fluctuations of light intensity and carrier density. For a
synchronised laser their damping is strongly dependent
on the locking conditions. The latter are usually
expressed in terms of a locking range whose width is
strongly dependent on the phase amplitude coupling.
This dependence represents the main difference with the
locking conditions of microwave oscillators [8-14].
Moreover, spectral hole burning and lateral carrier diffu-
sion, treated analytically by a gain saturation term [15],
are typical features of a semiconductor laser, and their in-
fluences on the locking conditions have to be considered.
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2 Locking range: influence of spectal hole
burning and lateral carrier diffusion

2.1 Theory

Two semiconductor lasers are considered: a master and a
slave. The light of the former is injected into the latter.
An isolator prevents the reverse coupling. The operating
conditions have been extensively reported [14, 16].

The theoretical analysis is based on the single mode
rate equations written to take into account the dynamic
behaviour of both the semiconductor lasers. Two sets of
equations concerning, respectively, the master laser and
the locked laser are considered. They relate the mode
intensities, the optical phase and the numbers of carrier
responsible for the gains of the two lasers [5, 17], and are
written:
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P and P,, are the photon numbers in the slave and
master cavities, respectively. The injected photon number
P, is related to P,, through P; = nP,, where #%° is the
coupling coefficient between the master and slave laser
fields. 0 is the difference between the phase of the optical
field of the master laser ®,, and that of the slave laser @,
that is 6 =®,, —®. N and N,, stand for the carrier
numbers in each active volume. R and R,, are the sponta-
neous emission rates, G and G,, the gains per unit time, 7,
and 1, the photon lifetimes, 7, and z,,, the spontaneous
carrier lifetimes, I/e and I, /e the carrier injection rates
and a,, is the linewidth enhancement factor of the master
laser [18]. w, is the stationary value of the optical fre-
quency which is equal to that of the master and w; the
resonant frequency of the jth longitudinal mode of the
slave cavity. v, is the group velocity of the light and L the
cavity length. The Langevin forces F(t), F,.(t), F,(1t),
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Fom(®), F(t), F,(t) are noise sources accounting for fluc-
tuations in P, P,,, ®,®,,, N,N,,.

The steady state values are obtained by setting the left
parts of the eqns. 1-6 equal to O and neglecting the
Langevin forces.

We call p(t), n(t), @t), pu(t), nalt), @.(t) the deviation of
P(t), N(¢), ®(t), P,(t), N,(t), D,(t) from their steady state
values P, N,®,P,,,N,,and ©,,.

Within a first order approximation, we have [17]:

G=Gy+G,n+G,p
Gm = Gom + Gnm B + Gpm Pm

aG,n

wj=woj+w,n+wppzwa]+T @

where G,, G,,, and w,; are the steady state values of G,
G, and w;, respectively. « is the linewidth enhancement
factor of the slave. G, = (¢G/oN) and G,,, = (¢G,/ON,,)
are the differential gains. G,=(0G/0P) and G,, =
(0G,,/OP,,) are the parameters standing for spectral hole
burning [17]. It has been shown in Reference 15 that a
narrow stripe laser with non-uniform electron density
and lateral carrier diffusion is equivalent to a laser
exhibiting no lateral diffusion but gain saturation instead.
G, and G,, are also parameters standing for lateral
carrier diffusion; w, = (0w;/0P), expresses the relation
between the resonant frequency and the number of
photons. It can be neglected in eqn. 7 because the gain
change resulting from spectral hole burning is nearly
symmetric with the laser line [19] and the corresponding
index change obtained by the Kramers-Kronig transform
is nearly equal to zero. That is also the reason why G,,
will be only expressed as G,,, + G, n,, in eqn. 2.

Eqns. 1-6 are linearised in terms of small deviations
from the steady state values. The second order terms in n,
n,, P, Pm» @ @nare neglected.

The Fourier analysis is then used to solve the linear
system of equations through the use of the transform
definition:

1 + o )
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Eqgns. 1-6 now become:
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Fy(w), Fi{(w) and F(w) are the frequency domain
Langevin forces for the injected laser including the
master noise influence. I', and I, are the contributions to
the damping rates of the slave, the subscript (m) stands
for those of the master and k is the normalised injection
rate.

Defining:
A = 2Pk sin 6
B=G,P
k sin 6
C="3p
D=kcos?8
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E=—"
2
F=G,+G,P
1
=—+G,P
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the Fourier transform of the phase change is then:
dw) =
Fi(w)[(io + K)E — BC] + F(®)
x [(H + io)K + iw) + FB] — F (o)[(io + H)C + EF]

Lw)
(14
where:
L(w) = (FAE + FBD + HKD + HAC)
—owX¥H+D+K)

+ic{FB + HD + HK + KD + AC — w?*) (15)

The roots of the eqn. L{(w) =0 correspond to the
complex frequencies w = ix, iy + z where x and y rep-
resent the decay rates of the relaxation oscillations (they
describe the transient behaviour necessary to saturate the
locked laser gain) and z is the frequency of the relaxation
oscillations.

They can be calculated by solving:

x + 2y =2T + k cos 6) (16)
R
2y + y: + 2% = zfe<1 +G,Pt, — '};Tp — 2kt cos 9)
+T,T,+ 4Tk cos 6 + k? a7
R
x(y? + 23 = kl:zfe(l + G, Pr,— PO 2kt,, cos 9)
x (o sin 6 + cos 0)
+ I, cos 0+ k) + 2Fk] (18)
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An analytical solution can be obtained in the case of
weak injection, ie. k < z,,, and I < z,,; then the decay
rates x, y and the frequency of relaxation oscillations z
reduce to:

x = k(e sin 6 + cos ) @1
y=r+kcosﬂ—2asm0 22)
2 _ L2 1 R 2

7 =z 1+ G, Pr,— 51, — 2ke,cos 0 | — 23

Stability is achieved when, after a perturbation, the
laser returns to its stationary values after an unperiodic
behaviour or damped relaxation oscillations. In mathe-
matical terms, the roots of the equation L{w) = 0 must be
in the upper half of the complex frequency plane. In addi-
tion, the net gain G — 1/1, must be negative in order to
have a forced oscillation prevailing over the amplification
of the spontaneous emission [12]. The locking range can
be expressed in terms of a phase detuning 6, which can be
casily related to a frequency detuning Aw through:

Aw = w, — w;, = k(sin 6 — « cos )

where o, is the optical frequency of the master and w,
the resonant frequency of the jth longitudinal mode for
the free running laser.

2.2 Discussion
The parameters used in the calculations correspond to
some 0.83 um weakly index guided CSP AlGaAs Hitachi
1400 semiconductor lasers used in the experiment.
The active region is 300 um long, its volume 12
x 107*%cm™3. The photon lifetime is 7, =n,c™ [,
+ 1/Llog (1/R,,)] ' where n, = 4.3 is the group index, ¢
the velocity of light, a, = 45 cm™! the internal distrib-
uted loss and R,,, = 0.31 the mirror reflectivity. « = 5.4 is
the linewidth enhancement factor. This value originates
from locking range observations [14] and linewidth mea-
surements [20] for the same type of laser. The active
region gain is evaluated by using G = G, (N — N,) where
G, =5.75 x 10% s7! is the differential gain and N, = 1.7
x 10® the carrier number at transparency. The sponta-
neous emission rate R is related to the gain G by R =
n,, G, where ny, = 2.6 is the spontaneous emission factor.
The carrier recombination rate is N/r, where 1, =22
x 1072 5. The bias current I is chosen to correspond to
an average output power with injection P, of 2 mW per
facet, and is related to the number of intracavity photons
P through P =2LP,n,c - hv, - log (1/R). The gain sup-
pression coefficient is { = G, P/G.

The stable locking range is calculated by ensuring that
the roots the equation L{w) = 0 are in the upper half of
the complex frequency plane. Fig. 1 shows that the stable
locking range widens as the injection level increases,
adding to the results of Mogensen et al. [11] and in
agreement with Lang [9].

The spectral hole burning and the lateral carrier diffu-
sion are phenomena enlarging the stable locking range as
shown in Fig. 2 where the stable locking range has been
calculated for different gain suppression coefficients { in
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the weak injection level approximation. The maximum
injection level under which a quite large phase difference
can be obtained increases with increasing gain suppres-
sion coefficient.
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Fig. 1 Stability range diagram

An extension of the stability range at high injection levels, for a gain suppression
coefficient { = 0.1%. Heads of arrows indicate the stability range
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Fig. 2  Stability range diagram

An influence of spectral hole burning and lateral carrier diffusion on the stability
range for different values of the gain suppression coefficient {: (a) { = 0%, (b)
{=0.1%,(c){ =05%
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Fig. 3  Decay rate of relaxation oscillations

An influence of the injection rate Pi/P on the decay rate y through the st.abi!ity
range at an output power P, of 2mW and for different values of the injection
rate: (a) P,/P = 0, (b) P/P = —70dB, (c) P/P = —60dB,(d) P/P = —53dB
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For coherent communication applications using
optical phase modulation, it appears that the maximum
phase range is limited by stability considerations to a
value slightly higher than =/2 for the value of a con-
sidered. In that particular operating region, the decay
rate of relaxation oscillations y,, for the free running
slave laser has been compared with its injection locked
value y, for an output power of 2 mW (Fig. 3). Particular
attention must be paid to the working injection level: if
the decay rate y decreases dramatically, the power spec-
trum exhibits high lateral peaks (see Section 3). This is

critical for long-haul transmission in dispersive optical
fibre.

3 Phase jitter in an injection locked
semiconductor laser

3.1 Analytical approach

An expression for the mean square phase jitter caused by
noise is derived in this Section. It shows the effects of the
dynamics of the master and of the locked laser on the
power spectrum. Studies on noise in injection locked
semiconductor lasers, ie. on frequency and intensity
noise and on side mode suppression and relative intensity
noise, have been reported elsewhere [21-23]. The present
theory is based on that of Spano et al. [22], and includes
the derivations of the phase jitter and the laser power
spectra.

Following Henry [17], we neglect amplitude fluctua-
tions above threshold. These fluctuations lead to an
asymmetry in the side peak intensities resulting from a
correlation between phase and amplitude fluctuations
[24].

The field is then expressed as E(t) = E, exp i{w,t
+ ¢(t)} where E, is real. The autocorrelation function of
the field Ryg(r) may be written, under a stationary phase
noise assumption:

Rp(t) = E2{exp i Ad(t, 1)) exp iw,T 249)
where
Aglt, ) = @t + 1) — 1) 25)

is the phase jitter.
As Ag(t, 7) is known to have a Gaussian distribution
[25, 26], it can be shown [27] that:

(AP
2
thus the spectrum may be written as:

\/1(2231:) J+w exp {— —<A¢22 © + itlw, — w)} dt

{exp i A¢(t, 7)) = exp ( (26)

S(w) =

7

In order to evaluate {Ag?(1)), Agt, 1) is expressed by its
Fourier transform:

Aglt, T) = \/TIZnS J_+w¢m) exp (iot)[exp (iwt) — 1] dw

(28)

@(w) depends on the Langevin forces which describe the
random phase, intensity, and current fluctuations and are
modelled by Diracs functions [17] as:

{H@)g*(@)) = | dw)| 2> — o) (29)
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by squaring egn. 28 we obtain:

+o©

<A¢2(r)>=i @) |21 — cos 1) do (30)

For simplification,
follows:

new parameters are defined as

P
A=—k 0
p_ kcos

B’ = — 2Pk sin 6

’ k :
C —2Pmsm0
D' =kcos 0

a=(KE — BC) + inE
b= (HK + FB — w? + io(H + K)
¢ =(HC + EF) + ioC
d=(CEF + CHK — A'EF — AHC — C'»?)
+ ie{C'H + C'K — A'C)
e = (D'EF + DHK — BEF — BHC — D'w?
+ io(D'H + DK — BC)
Leading to:
L@)L*@)X| #w)|?> = aa*(F(@)F ()
+ bb*(F (w)F¥(w)} + cc*{F (w)F ¥(w)>
— 2Re(ac*{F (0)F3()>) + dd*{pn(@)pr(®))
+ ee*{ @ ()pn(@)) + Reled*{p(w)pn(@)y) (31)

where Re(x) is the real part of the variable x. F,(w),
F (@), F () are the frequency domain Langevin forces
characterising noise in the locked laser, and p,(®) and
¢.(w) intensity and phase linked to the Langevin forces
characterising noise in the master laser.

In the following analysis, the influence of a gain
dependence on the number of photons is neglected. Con-
sequently, the calculation of the mean square phase jitter
is simplified greatly. This has obviously an effect on the
quantitative results since the damping has been modified.
However, the general behaviour is not significantly
altered. The linewidth enhancement factors of the slave
and master lasers are assumed to be similar as the same
type of laser diodes are used.

The diffusion coefficients for the Langevin forces in the
master laser can be written [17]:

mepmszPm menm= _Rum
R N,
Dmmz_m_ DnmnmszPm"'_"l
one 4Pm em

whereas those of the locked laser are given by:
D,,=RP D, = —RP

N
D,,=RP +—

Do = 4P T,

where N/tr, and N,/t,, are the carrier recombination
rates, R and R,, the spontaneous emission rates.

Now {A¢’(1)) can be evaluated by contour integra-
tion, providing that lim,.o<| @w)|?) =0, ie. that
{A¢@* (7)) converges. Therefore:

(A*D)> = Re{2K(Y. ¢, — Y. d)} (32)
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where

¢; = Res {{| dw)|*>}

and
d; = Res {<| gw)|*> exp (iwr)}

Re(x) is required because the cosine function in eqn.
30 is not bounded in any half plane. The summation is
extended over all the poles w; located in the upper half of
the complex frequency plane. c; and d; are the residues of
d@w))*> and {J@w)]*) exp (iwt), respectively, at the
pole w;.

The double pole at the frequency w = 0 is handied by
setting w = lim,_, ¢ (w + ig), leading to:

R,(1 + o)
2P

The simple pole at the frequency w = ix gives:

2i Res (0 = ix) = % (% - 1—;!)[1 — exp (=]
(34)

The two poles at frequencies w = iy,, + z,, issued from
the zeros of A(w) for the master laser (see Appendix) are
obtained in the same way as L(w), and give:

2i Res (0 = iy,, + z,,)

2i Res (w = 0) = (33)

_ R, K*[(1 + o?) sin 0z, — (x cos 6 + sin 6)z2,1°
B 4Pm Vm z:m[(23m - 232)2 + 4231" y2]
x [1 — exp (—1y,,) cos (1z,,)] (35)

where

Zom = Zn + Vi
The two poles at frequencies w = iy & z issued from the
zeros of L(w) give:

2i Res (w =iy + 2)

k(22 + y* — 22, sin 6(x cos 0 + sin 6)]?
1+ + z* sin? f(cos 0 — a sin 0)%]

4Py{z2[(2* + y* — z2,)" + 4 + 2)ya)}
x [1 — exp (—1y) cos (z7)] (36)

We now define the lower and the upper limit of the
stability range as the phase detuning for which the decay
rate x in eqn. 21 is zero and the phase detuning for which
the decay rate y in eqn. 22 is zero, respectively.

Eqns. 33 and 34 lead to the static power spectrum. As
the phase detuning approaches the upper limit of the sta-
bility range the master imposes its linewidth on the slave
laser, whereas by detuning towards the lower limit, the
linewidth becomes that of the free running laser [28].

Eqn. 35 takes into account dynamics associated with
the master laser. It appears that a reduction in the effect
of the dynamics of the master laser, for any arbitrary
phase detuning in the stability range, requires an increase
of the average output power P, of the master laser or an
operation at low injection level. When the mode inten-
sities of the slave and master lasers are equal, the
dynamics of the master laser have no effect on the mean
phase square jitter for a phase detuning 8 = tan~'(1/x);
but when the upper limit is neared, the contribution of
the master dynamics to the mean square phase jitter
increases, leading to enhanced sidebands in the power
spectrum.

= Ro?
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Eqn. 36 accounts for dynamics associated with the
locked laser. When the phase detuning approaches the
lower limit of the stability range, the mean square phase
jitter undergoes strongly damped oscillations at the relax-
ation frequency z, whereas they are weakly damped near
the upper limit. For small values of the normalised injec-
tion rate k in relation to the decay rate I', the phase jitter
of the locked laser approaches that of the free running
laser.

The mean square phase jitter is then obtained by
summing up the terms of eqns. 33-36.

3.2 Numerical results

The parameters chosen for the calculations are those
used in Section 2.2. The total cavity loss rates, the carrier
lifetimes and the differential gains are assumed to be
identical for the slave and master lasers because attention
is paid to the effects of the phase detuning and the injec-
tion level on the power spectrum. Fig. 4 shows the mean

Le

[} w
T T

mean square phase jitter, rad?

00 1 2 3 4 5 6 7 8

time,ns
Fig. 4 Mean square phase jitter (A@(1)) of the free-running laser

square phase jitter of the free running slave laser for an
output power of 2 mW. The mean square phase jitters of
the locked laser for the same output power is shown in
Fig. 5 and Fig. 6 for different values of the phase detun-
ing 6. The output power of the master laser is 3 mW at

L

time, ns
Fig. 5  Mean square phase jitter (Ag?(1)) of the locked laser

Injection rate P/P = —30dB for different values of phase detunings: (a)
§=—10°()0=0%(c) 0 =12°

Lr

~N w
T T

mean square phase jitter, rad?

injection levels of —30dB in Fig. 5 and —60dB in Fig.
6. The behaviour of the locked laser can be understood
by comparing the decay rate y in eqn. 22 with the decay
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rate I' in the same equation: when 6 lies in the interval
[—n/2+tan ' o, n/2 —tan"!«], ie. [—10.5°, 10.5°]
with « = 5.4, the damping of relaxation oscillations for
the locked laser is stronger than that for the free running

mean square phase jitter, rad?

time, ns
Fig. 8  Mean square phase jitter {A@*(t)) of the locked laser

Injection rate P,/P= —60dB for different values of phase detunings: (a)
8= —10°(b) 6 = 40°, (c) 6 = 90°

laser. It is the case in Fig. 5 with curves a and b and in
Fig. 6 with curve a. In Fig. 5 curve ¢, the phase detuning
approaches the upper limit of the stable locking range:
the decay rate y, given by eqn. 22 decreases towards a
zero value. It results in the vanishing of the damping of
the relaxation oscillations. At the upper limit of the stable
locking range, the locked laser becomes unstable, ie.
multimode [11]. Under a critical injection level, the
locked laser is stable on its whole locking range. At the
value @ = n — tan ! a, the decay rate y has a minimum
value. When the phase detuning 6 increases towards this
value but remains in the locking range, the mean square
phase jitter shows enhanced oscillations, as shown in Fig.
6 with curves b and c.

Power spectra are calculated by using a fast Fourier
transform algorithm. Figs. 7, 8 and 9 represent power

|
L
T

power spectrum

|
N
T

I n I

-4 -2 0 2 4

L

frequency, GHz
Fig. 7 Power spectrum of the free-running laser

spectra corresponding to the mean square phase jitters
displayed in Figs. 4, 5 and 6, respectively. The influence
of the different components of the mean square phase
jitters, given by eqns. 33-36, is illustrated in these figures:
the modification of the linewidth, the peaks at the relax-
ation frequency of the master laser and at the relaxation
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frequency of the locked laser. The damping of the relax-
ation frequency peaks varies strongly with the injection
level and the phase detuning. In Fig. 10, the output
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1 i i %‘—l
-4 -2 0 2 4

frequency, GHz
Fig. 8  Power spectra of the locked laser

Injection rate P/P = —30dB for different values of phase detunings: (a) 6 = 0°,
®)6=—10°()0=12°
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frequency, GHz
Fig. 9  Power spectra of the locked laser

Injection rate P/P= —60dB for different values of phase detunings: (a)
0= —10°(b) 8 =40°(c) 0 = 90°
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frequency, GHz
Fig. 10 Power spectra of the locked laser

Injection rate P/P = —30 dB for different values of phase detunings: (a) 8 = 0°,
b)6=—10°()0=12 ’

power of the master laser has been increased, when com-
pared with Fig. 8. This results in a reduction of the
damping time and an increase in the frequency of the
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relaxation oscillations of the master laser, as shown in the
power spectra of the locked laser in curves a and b. But
the increase in the output power of the master laser does
not influence the linespread of the locked laser when the
phase detuning approaches the upper limit of the stable

locking range.
optical
isolator

-

optical || ]
isolator

recorder pin
* Fabry-Perot
ramp monochromator
generator JobinYvon HRS2
Fig. 11 Experimental setup
Pé
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frequency, 2GHz/div.
Fig. 12  Experimental power spectra of the locked laser

Operating point is moved from (a) lower limit, (b) to upper limit of locking range

3.3 Experimental results

The experimental measurements were carried out using
two CSP-AlGaAs lasers (Hitachi 1400), thermally stabil-
ised within a few hundredths of degrees by thermoelectric
elements. The oscillator threshold currents are 53 mA for
the master laser and 51 mA for the slave laser. Fig. 11
represents the experimental setup. The output beam
passes through a spectrometer in order to filter the spon-
taneous emission and eliminate sidemode effects in the
Fabry Perot interferometer. The locking of the slave laser
is performed by tuning the optical frequency of either the
master or slave laser. The tuning is performed by chang-
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ing the temperatures or the bias currents of the lasers.
The injection level is determined by the method described
by Kobayashi and Kimura [29].

Before the locking occurs, for phase detunings under
the lower limit of the locking range, the optical injection
induces a modulation in the free-running signal [30].
When the locking occurs, the operating point is moved
through the locking range by adjusting the bias current
of the slave laser. It results in a slight variation of the
relaxation frequency of the locked laser. At the upper
limit of the stable locking range, the locked laser becomes
unstable, ie. the laser becomes multimode and the
damping of the relaxation oscillations disappears. Fig. 12
shows power spectra as the phase detuning is scanned
from the lower limit to the upper limit of the stable
locking range. The amount of current adjustment neces-
sary to tune through the stable locking range is 0.3 mA.
As the locking range is small enough to be scanned with
little change in the output power of the slave laser, the
injection level is nearly constant at —33 dB. The bias
currents are 59 mA for the slave laser, and 67 mA for the
master laser. The master laser exhibits sidebands at a
higher frequency than the slave laser because it is oper-
ated at a higher bias current. These observations quali-
tatively agree with the theoretical results, except for the
asymmetry arising from amplitude fluctuations, not con-
sidered in our model.

4 Conclusion

A detailed study of stability of an optically injected semi-
conductor laser has been carried out, considering pheno-
mena such as spectral hole burning and lateral carrier
diffusion. It has been shown that they can result in an
increased stable locking range. An expression for the
mean square phase jitter of an injection-locked semicon-
ductor laser has been derived when these effects are insig-
nificant. The expression shows that the noise behaviour
of the locked laser is dramatically affected by the injec-
tion level and the phase detuning between the slave and
master laser fields. Power spectra are then calculated and
show good agreement with experimental results.
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6 Appendix

Expressions of the mean square intensity, phase and
crossed fluctuations pertaining to the master laser:
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