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Analysis of the Phase-Amplitude Coupling Factor and
Spectral Linewidth of Distributed Feedback and
Composite-Cavity Semiconductor Lasers
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Abstract—The methed for the analysis of semiconductor lasers based
on a Green’s function approach is developed in a form suitable for
complex-cavity structures. Besides the spontaneous emission rate, the
effective phase-amplitude coupling factor can also be accurately eval-
uated. The application of this method to distributed feedback (DFB)
and composite-cavity lasers gives interesting new results. For DFB la-
sers, the spontaneous emission rate is strongly dependent on both the
facet reflectivities and the grating coupling coefficient. The effective
phase-amplitude coupling factor depends on the wavelength detuning
from the gain maximum. The calculated linewidth of DFB lasers differs
considerably from previous results and gives a better agreement with
reported experimental results. For composite-cavity lasers, the fre-
quency dependence of the equivalent reflectivity has a strong impact
on the phase-amplitude coupling factor and the spontaneous emission
rate. Distributed Bragg reflector (DBR) lasers are investigated as an
example of a composite-cavity structure. An optimum grating coupling
coefficient in the Bragg region is found which minimizes the spectral
linewidth. Negative detuning from the Bragg frequency results in low
phase-amplitude coupling factor and narrow spectral linewidth. This
method is also useful for lasers with multiple active sections.

1. INTRODUCTION

ARROW linewidth semiconductor lasers are key

components in coherent optical communication and
optical sensing systems [1]. To fulfill this requirement,
great progress has been made in the development of such
semiconductor lasers in recent years. Single or multiple
section distributed feedback (DFB) and distributed Bragg
reflector (DBR) lasers are of current interest, as they pro-
vide narrow linewidth, wavelength tunability, and low
frequency chirp [2]-[5]. In the optimum design of these
complex structure lasers, the analysis of their linewidth
becomes an important subject.

Much attention has been focused on improving the the-
oretical description of the linewidth of semiconductor la-
sers. Schawlow and Townes first pointed out that the
spectral linewidth-stimulated emission power product is
determined by the cold cavity bandwidth, which deter-
mines the amount of spontaneous emission coupled to the
lasing mode [6]. More recently, Henry has found that for
semiconductor lasers, the variation of the carrier density
caused by the random field amplitude fluctuation involves
an additional, delayed phase change, which enhances the
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laser linewidth [7]. This is the well-known phase-ampli-
tude coupling effect [8]-[10]. Thereafter, it was recog-
nized that in addition to the material contribution, a large
number of factors contribute to this effect. Some impor-
tant factors are: the lateral and transverse waveguide
structure [11], [12], the wavelength detuning from the
gain maximum, and the coupling with the external reso-
nator [13]-[17]. Meanwhile, it was shown that the spon-
taneous emission coupled to the lasing mode and in turn
the linewidth, are enhanced by the output coupling, i.e.,
the oscillator loading, due to the low facet reflectivities in
semiconductor lasers [18]-[21]. While exhibiting only a
minor impact on standard Fabry-Perot (FP) lasers, the
complete phase-amplitude coupling effect and the oscil-
lator loading effect strongly influence the noise properties
of complex structure lasers, and thus should be included
in the analysis of their linewidth.

The first objective of this paper is to present a method
for the analysis of laser linewidth, which includes simul-
taneously these two effects. This method follows the
Green’s function approach proposed by Henry for the
noise calculations of the open resonator laser [19]. In this
approach, the spontaneous emission noise is treated by
using classical electromagnetism and the dissipation fluc-
tuation theorem in a semiconductor at thermal equilib-
rium. The lasing field is the total cavity response resulting
from excitation by the distributed spontaneous emission.
As a factor of normalization, an explicitly spatially-in-
dependent Wronskian is introduced, which determines
both the threshold condition and the dynamic resonance
condition. The Wronskian is then expanded about the
complex resonant frequency. The main difference be-
tween the method used in this paper and that of Henry is
the consideration of the Wronskian as a function of both
frequency and carrier density. By expanding the Wron-
skian about the mean values of these two variables, a
structural dependent phase-amplitude coupling factor is
introduced. Although this treatment is not basically dif-
ferent from that of Henry, it allows us to consider the
effects of gain detuning or dispersive laser structures. This
method is also efficient in describing the dynamics and
high-frequency noise properties of complex structure
semiconductor lasers. Compared with other recently-de-
veloped models [22], [23], it has the advantage of giving
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an accurate evaluation of both the spontaneous emission
rate and phase-amplitude coupling factor, and conse-
quently, the spectral linewidth.

The second objective is the application of the proposed
method to the analysis of the spectral linewidth of DFB
lasers. In particular, two important features are empha-
sized. As is first pointed out by Wang et al., in a DFB
laser, the spontaneous emission rate is enhanced com-
pared to a similar FP laser without mirror loss [21]. In
this paper, this enhancement factor is studied systemati-
cally and expressed as a function of both facet reflectivi-
ties and the grating coupling coeflicient. This feature is
an extension of Henry’s analysis, in which the FP laser
and the extended cavity laser are treated in detail and the
DFB laser is only mentioned [19]. Moreover, the effec-
tive phase-amplitude coupling factor is discussed in terms
of the wavelength detuning from the gain peak of the
semiconductor material. These two factors are then in-
cluded in the linewidth evaluation. These results lead to
a more complete description of the linewidth than those
previously reported, which relate the total photon number
of the laser cavity to facet output power [24], [25].

The third and final objective is the investigation of the
spectral properties of composite-cavity lasers. The term
‘‘composite-cavity lasers’’ refers to a large variety of
structures, including external cavity, external resonator
loaded, and multisection lasers [2], [4], [5]. In our anal-
ysis, the role of the total external passive region is equiv-
alent to a frequency-dependent effective reflectivity [15]-
[17]. The spontaneous emission coupling to the lasing
mode is found to be reduced by the additional filtering due
to the frequency dependence of the effective reflectivity,
but to be enhanced by the laser oscillator loading. A DBR
laser is investigated as an example of a composite-cavity
laser. It is pointed out that an optimum value of the grat-
ing coupling coefficient in the Bragg region exists, yield-
ing the narrowest linewidth. The negative frequency de-
tuning from the Bragg frequency gives a low effective
phase-amplitude factor and thus a narrow linewidth.

This paper is organized as follows. Section II presents
the Green’s function method for the analysis of the spec-
tral properties. In Section III, this method is applied in
detail to various DFB laser structures. In Section 1V, a
general analysis is first given to composite-cavity lasers.
Next, DBR lasers are investigated. Some conclusions are
drawn in Section V.

II. METHOD FOR THE ANALYSIS OF THE SPECTRAL
LINEWIDTH

The analysis of the spectral properties is based on clas-
sical electromagnetism, which has been widely used for
the description of semiconductor lasers [18]-[20]. The
lasing process is a frequency selective amplification of the
spontaneous emission. It is assumed that the cavity me-
dium is isotropic and the laser is perfectly index guided.
Moreover, to concentrate our attention to the longitudinal
axis, which is of major interest in complex structure la-
sers, transverse and lateral axes are neglected. Under these

assumptions, the complex Fourier component E,(z) of
the electric field in the laser cavity is governed by the one-
dimensional scalar wave equation

VIE,(2) + kieE,(z) = F.(2) (2.1)

where V2 = 9°/3z° is the Laplacian operator for the lon-
gitudinal coordinate z, ky = w/c is the wavenumber, c is
the speed of light, both in vacuum, e is the complex di-
electric constant, and F,(z) is the frequential Langevin
force term accounting for the distributed spontaneous
emission. By relating the imaginary part of the refractive
index with optical gain and internal loss, the complex di-
electric constant is written as

e=[n+j(s—a)/(2)]. (2.2)

Here, n is the real part of the refractive index, g is the
optical gain, and «; is the internal loss due to waveguide
absorption and scattering. The dielectric constant e is, in
general, a function of the frequency w, carrier density N
and longitudinal coordinate z. The Langevin force is as-
sumed to have negligible spatial and frequency correla-
tion:

(Fu(2)F(2')") = 2Dpr:b(z — 2')0(w — @) (23)

where the diffusion coefficient 2Dgp+« is obtained by the
requirement that in equilibrium, dissipation by optical ab-
sorption is balanced by field fluctuations originating from
spontaneous emission. This leads to [19}

(2.4)

where A is Planck’s constant divided by 2w, ng, is the
spontaneous emission factor given by [19]

ho — EN ]
Ngp = I - exp T

where E is the energy separation of the quasi-Fermi lev-
els between the conduction band and the valence band, k
is Boltzmann’s constant, and T is the absolute tempera-
ture. By using the Green’s function approach, the general
solution of (2.1) is written as [19]

(2.5)

E@=| ceoree e
(L

where the integration is over the total cavity length. G, (z,

z') is the Green’s function given by [26]

Z,(25)Z_(z<)

Gulz, 2') = W(w, N)

(2.7)
z., or z. are the greater or lesser values of zand z', Z,, (2)
and Z_(z) are two independent solutions of the homo-
geneous part of (2.1), satisfying the boundary condition
at the left facet and the right facet, respectively. W(w,
N ) is the explicitly z-independent Wronskian of these two
solutions defined as [26]

(2.8)
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As the real Fourier frequency w and the carrier density N
are concerned in the solutions Z,(z) and Z_(z), the
Wronskian is thus an explicit function of these two inde-
pendent variables. Equation (2.6) can be rewritten as

E(z) = Z (25)2_ (2 )F,(z') dz'.

1
W(w, N) S(L)
(2.9)

The laser longitudinal mode corresponds to a zero point
of the Wronskian:

W(wo, Ny) = O. (2.10)

As the Wronskian is complex, both the lasing fre-
quency wp and the carrier density N, at threshold are de-
termined from this equation. Generally multiple solutions
exist for the pair (wg, Ny,). For each pair (wg, Ny, ), the
functions Z (z) and Z_ (z) degenerate to one solution and
represent the longitudinal distribution of the lasing mode.
The semiconductor laser is assumed to operate only in one
longitudinal mode with a field distribution denoted by
Z.(z) = Z_(z) = Zy(z). As the Wronskian is a function
of two independent variables w and N, its expansion about
the operating point can be written as

_ow

(N - th)-

wo. Nip

N
(2.11)

An equivalent treatment is to expand the Wronskian about
a complex resonant frequency w,:

_w
T dw

(2.12)

(w = w.)

we

where w, can be obtained by the requirement that the res-
onant condition is always satisfied, i.e.,

W(w., N) = 0. (2.13)

In general, the Wronskian is not an analytical function of
the pair (w, N'). The solution of the above equation yields
a complex solution of w. for an arbitrary N. For a small
deviation AN of N from N, the complex resonant fre-
quency w, is obtained from (2.13) by using the first-order
expansion in (2.11):

_aW/aN
07 5w /0w

w, = AN. (2.14)
Thus the complex resonant frequency is a linear function
of the carrier density. By substituting (2.14) in (2.12) and
neglecting the second-order derivative 62W/6w2 at wy,
these two expansions are found to be identical.

Henry has used the second expansion about a different
complex resonant frequency, which in our notation is
written as [19]

(0511 -

w = wy + 2 J) v, 8NAN (2.15)

where v, is the group velocity, gy = dg/dN is the differ-
ential gain, and «y is the linewidth enhancement factor
defined as [7]-[10]

on/oN

2o 5. 7aN" (2.16)

Oy =

By this definition, oy takes positive values in the lasing
frequency range [8]. Thus the expression given in (2.15)
considers simultaneously the change of gain and index
with the change of carrier density. In the case of open FP
resonator lasers discussed in [19], it can be proved that
these two expressions of w, in (2.14) and (2.15) are rig-
orously equivalent.

For lasers with multiple active sections, the Wronskian
should be expressed as a function of W(w, N\, N,, - + *),
where N; is the carrier density of the ith section. Conse-
quently the Wronskian should be expanded as a sum of
each deviation N; — N,. Although in this paper the dis-
cussion is restricted to lasers with one active section, the
formalism can be easily extended to lasers with multiple
active sections.

By multiplying the two sides of (2.9) by jW(w,
N)/Zy(z) and using (2.11), the rate equation for the elec-
trical field is then obtained after the inverse Fourier trans-
formation of (2.9):
dBo(t)  .dW/3N

dr oW /30

(N = Nuw)Bo(1) + Fg (1) (2.17)

where (1) represents the slowly varying envelope of the
electrical field in the laser cavity:

1 o0
Bo) = 5 | Boexpie -~ anrde (218)

where B, = E,(z)/Zy(z) is an explicitly z-independent
Fourier component of the electric field; Fg, () is the tem-
poral Langevin force term given by

J Sm Zy(2)Fo(z, 1) dz

Fyy (1) = (2.19)

oW
dw

where Fy(z, t) is

1 oo
Fo(z, 1) = oy S F (z)expj(w — wy)t dw. (2.20)
w —0o0
Equation (2.17) is the basis for the analysis of the spectral
and dynamic properties of semiconductor lasers. By using
(2.3) and (2.19), it can be shown that the temporal Lan-
gevin force F, (1) is delta correlated [19]:
(Fa()F§(1')) = R6(1 — 1) (2.21)
where the spontaneous emission rate R is discussed in de-
tail by Henry and written as [19]:
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Z*(z)ngny,Z(z sz Z*(z)nn,Z(z) dz
g POz b || Zomz(
C3 aWZ

ow

(2.22)

where n, is the group index in the laser cavity. The pa-
rameters n, g, N, M, in the integral are generally z-de-
pendent for complex structure lasers.

By comparing R to the conventional result of the spon-
taneous emission rate Ry = v, gn,,, the enhancement fac-
tor K of this rate used in the following sections is defined
as

R

K=—. 2.
R (2.23)

Although the enhancement factor K takes the same def-
inition as Petermann’s K-factor [27], their origins are very
different. The former results from the laser output power
coupling—a longitudinal effect, and the latter is due to the
gain-guiding mechanism—a transverse effect. As stated
previously, the latter effect is not considered in our anal-
ysis.

To investigate the phase-amplitude coupling effect, the
rate equation without the Langevin force term is consid-
ered. The solution of the homogeneous part of (2.17) is
denoted by A(1) = [1(1)]'/* exp (jp (1)), where I(r) is
the intensity and ¢ (¢) is the phase. Then the rate equation
for A(z) is written as

_OW /3N

dA(t) _ B
dt - J aW/aw (N Nxh)A(t)'

(2.24)

The effective phase-amplitude coupling factor is de-
fined as

__ 2de/dr__Im[d(in4)/di]
T d(In1)/dt Re[d(In 4)/dt]

(2.25)

where Re (), Im () denote the real part and the imaginary
part of (), respectively. By using (2.24), the effective
phase-amplitude coupling factor defined above is then

found to be
aW /AN
R
€ <8W/6w>

<8W/ aN>'
Im

IW/dw
In the above equation, both the material effect and the
structural effect are taken into account in oy through the
Wronskian. This result is similar to that obtained by R.
Lang for multielement cavity lasers [14]. The relation be-
tween the phase-amplitude coupling factor a4 and Hen-
ry’s factor ay will be discussed for DFB lasers and DBR

lasers.
Using (2.14) and (2.26), the effective phase-amplitude

(2.26)

Qeff = —

coupling factor oy can also be expressed as

Re(Aw,)

Im(Aw,)’ (2.27)

Qe = —
Thus the a.q is expressed as a ratio of variation of the
real and imaginary part of the complex resonant fre-
quency. This alternative expression for a.q results in a
simplification for many practical cases, and was used by
Arnaud [12], Gallion, er al. [16], and Henry [19].
Finally, using the standard procedure [7], the linewidth
of a complex structure laser is expressed by

_ KRy

Ay =
YT 4nl

(1 + ad) (2.28)
where I is the total photon number in the laser cavity. This
formula relates the spontaneous emission rate and the ef-
fective phase-amplitude coupling factor with the laser
structure. Its correspondence with the familar result in FP
lasers is straightforward.

It should be mentioned that a field independent carrier
density is used in the above formalism. This is a good
approximation for semiconductor lasers near threshold.
But when semiconductor lasers operate well above thresh-
old, some nonlinear effects such as spectral hole burning,
spatial hole burning, etc., arise [28], [29]. Further study
by including these effects would be interesting for under-
standing the phenomenon of the linewidth floor [29], for
instance.

However, the above formulation gives a relatively com-
plete description of laser properties. Besides the phase-
amplitude factor and the linewidth, which are the central
subjects of the present paper, the other main results of this
analysis are

1) the longitudinal field distribution in the laser cav-
ity represented by Z;

2) the emission spectrum below threshold, E,(z) in
2.9);

3) possible prediction of noise properties when the
laser operates as an optical amplifier [19];

4) the threshold condition given in (2.10);

5) the rate equation of the electrical field written in
(2.17). The incorporation of this equation with the rate
equation of the carrier density allows the prediction of the
intensity and phase noise spectrum and the current mod-
ulation properties.

III. AppLICATION TO VARIOUS DFB LASER STRUCTURES
A. Derivation of the Wronskian

From the analysis in Section II, it is clear that the
Wronskian of the laser cavity is the key in the analysis of
the phase-amplitude coupling factor and the spectral line-
width. Therefore, we begin by solving Maxwell’s prop-
agation equation without the noise driving term.

A DFB laser with a phase-shifted region is illustrated
in Fig. 1. The facet field reflectivities are denoted as g,
and p,. In a semiconductor laser of this type, having the
periodic variation of refractive index or gain, the Max-
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Fig. 1. Notations used for a phase-shifted DFB laser.

well’s homogeneous propagation equation reduces to
[30]-[33]

v2zZ0(2) + KO Z7(z) =0 (3.1)
where Z'(z) is the field distribution for negative z (i =
1) and for positive z(i = 2). The square of the z-depen-
dent propagation constant K‘’(z) is given by [31]

[K(2)]" = B + 2jaB + 4xB cos (2Bpz + QV).
(3.2)

Bo = mm /A is the Bragg wave vector, 8 = nw/c the
wavenumber, « the coupling coefficient of the grating, «
= (g — oy)/2 the net amplitude gain, Q" the phase shift
of the grating in the ith regionatz = 0, and Q') = —Q®
= (. A conventional DFB structure is obtained by setting
Q = 0. The solution Z'”(z) of (3.1) is sought by the de-
composition of two counterpropagating waves [30]-[33]:

Z0(z) = RV(z) exp (—jBoz) + S (z) exp (jBoz)
(3.3)

where R’ (z) and §'(z) are the forward and backward
field amplitudes, respectively. By inserting the above
expression into the wave equation (3.1) and using the
boundary conditions, the solutions Z_(z) and Z, (z) can
be found after substantial calculation. To focus on final
results, detailed calculations are presented in the Appen-
dix. Under the approximation that the coupling coefficient
in DFB lasers is not very high (kL < 10), the Wronskian
in a phase-shifted DFB laser with reflecting facets is eval-
uated by its value at z = 0 and is written as (see the Ap-
pendix)

A

Y r
k T/ (1 — Qo) — ' + TQe™

- F(yL) (3.4)

W(w, N) = 43¢’®

where the function F (L), defining the threshold condi-
tion, is given by [3], [32]

F(yL) = (1 — Pe ")(1 — Qe™)e?®

[ @ - Yo

(3.5)

6 = 8 — By is the detuning from the Bragg frequency and
7 is the complex propagation constant. Other parameters
', T, P, and Q are defined in (A.4), (A.9), and (A.12),
respectively.

B. Spontaneous Emission Rate Enhancement Factor

Using (2.22), (2.23), and neglecting the small variation
term of the gain and index of refraction in the integration,
the enhancement factor K of the spontaneous emission rate
is then expressed as

- oL/2 2
g ZZ* dz
-L/2 K

4 L ol + 8

2

Te?/%(1 — Q™) — I' + I'Qe™

R iF (3.6)
d(yL

~—

All of the parameters appearing in the above equation
are defined at threshold. Under the assumption of weak
grating coupling (kL < 10), the enhancement factor K is
a function of the normalized coupling coefficient kL and
the facet reflectivities. In the following paragraphs, sim-
plifications and numerical results for this general expres-
sion will be discussed for different practical cases.

1) Phase-Shifted DFB Lasers with Two AR-Coated
Facets: DFB lasers with phase shift at the center are well
known to give higher mode discrimination than conven-
tional DFB lasers. DFB lasers with two AR-coated facets
correspond to the maximum mode discrimination. In this
case p; = p, = 0. From (A.9) and (A.12), the parameters
P and Q are written as P = I'/T and Q = I'/T'. The
enhancement factor K is simplified to

r rL/2 2
S ZZ* dz ,
1 -L/2 K
K= ) 3
4| L o + 8
2j9 r L & L ’
Te/f(1 - get) = T(1 = o)
3.7
. dF (3.7)
r
d(vL)

where F(+yL) is then written as

F(yL) = [1 - <1—I:(>’ e_YLMI - (%)Z evl-] e2i®

— (1 = b (1 = o). (3.8)

Taking into account the symmetry of the field distri-
bution about the origin, [~/?/, Z*Z dz is written as
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L)2
S Z*Z dz
-L/2
_ [lr:n|2e~ﬂ/2 + |s:l)|2e—v’L/2 4 .,_én|lew/z

2 sinh (y'L/2)
'YI
+ [r{”*r“)Ze_””L/z + S{I)*sﬁl)e—jﬂr”L/l

+ [V [Fer /2]

+ rl“)rﬁ”*e” L/2 4 s{"sé”*e”lﬂ]

_2sin ():, L/2) (3.9)
Y

where r{", r{", s{" and s{" are the field coefficients
given in (A.8), the super-index * denotes the complex
conjugate, and v’ and " are real and imaginary parts of
7, respectively. By solving the threshold equation numer-
ically, the enhancement factor K for the spontaneous
emission rate is plotted as a function of the normalized
coupling coefficient in Fig. 2, for different values of phase
shift: 2@ = 0, w/3, and =. It can be seen that for low
values of L, the enhancement factor K greatly exceeds
unity and decreases rapidly with increasing «xL. The en-
hancement factor is not very sensitive to the phase devia-
tion from the optimum value 22 = 7. In this optimum
case, the enhancement factor K given by (3.7) is equiva-
lent to the result of Wang er al. [21].

2) Conventional DFB Lasers with Partially-Reflecting
Facets: For a conventional DFB laser with two partially-
reflecting facets, the Wronskian is obtained by setting
= 01in (3.4):

W(w, N) = 28, % F(yL) (3.10)

where F(+yL) is reduced to

(5] renn () -

- Q exp (1L). (3.11)

The enhancement factor K of the spontaneous emission
rate of DFB lasers is simplified to

SL/Z 5
Z7* d . _
-L/2 ¢ 2 daF |

L o’ + 8% |d(yL)

K= (3.12)

where the integral is

L/2
S Z*Z dz
2

~L/
sinh (y'L)

'

v

sin (y"L
+ (r¥r + rirf + stsy + s5%) sin (v"L) )

"

= (Il + [sil* + [l + 2]

(3.13)

10

ENHANCEMENT FACTOR K

NORMALIZED COUPLING COEFFICIENT xL

Fig. 2. The enhancement factor K of the spontaneous emission rate as a
function of the normalized coupling coefficient kL for a phase-shifted
DFB laser without facet reflections. The parameter is the phase shift.

The numerical results of the enhancement factor K are
plotted in Fig. 3 for three cases: i) DFB laser with two
AR-coated facets p; = p, = 0; ii) DFB laser with one AR-
coated facet and one cleaved facet p; = 0; p, = 0.565;
iii) DFB laser with two cleaved facets p; = p, = 0.565.
For the first two cases, this enhancement factor is dra-
matically larger than unity for small values of «L. In the
range 1 < kL < 2, the enhancement factor varies be-
tween 1.5 and 4.2, which is considerable. For the last
case this factor is practically negligible. In all three cases,
K decreases with the increase of the normalized coupling
coefficient kL except for a discontinuity, which corre-
sponds to the change of the lasing mode in the DFB laser.
As kL tends towards zero, the spontaneous emission rate
tends to the value for the FP laser with the same facet
reflectivities. In fact by setting kL = 0 in (3.12), the en-
hancement factor for the standard FP laser is obtained
[18], [19]:

K = I:(FA)} + ﬁr)(l — [)/ﬁr)wz. (3]4)

20,6, In (ps6,)
It should be noted that since p; and p, for DFB lasers

are generally complex, the spontaneous emission rate de-
pends not only on their modulus, but also on their phase.
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ENHANCEMENT FACTOR K

NORMALIZED COUPLING COEFFICIENT XL

Fig. 3. The enhancement factor K of the spontaneous emission rate as a
function of the normalized coupling coefficient «L for a conventional
DFB laser with different facets reflectivities: i) p, = p, = 0; ii) p, = 0,
p, = 0.565; iii) p; = p, = 0.565.
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Fig. 4. The enhancement factor K of the spontaneous emission rate as a
function of the phase 6 of the right facet reflectivity: p, = 0, p, = 0.565
exp ( j#). The parameter is the normalized coupling coefficient L.

The enhancement factor is plotted as a function of the
phase 8 in Fig. 4, for p, = 0 and p, = 0.565 exp (jf).
These curves present many discontinuities due to jumps
of lasing modes. It can be seen that the enhancement fac-
tor varies between 1.5 and 3.0 for kL = 1.0, and 1.3 and
1.7 for kL = 2. For a DFB laser with two AR-coated
facets, the enhancement factor given by (3.12) reduces to
the form obtained by Wang er al. [21].

C. Effective Phase-Amplitude Coupling Factor

Under the assumption of negligible frequency depen-
dence of the facet reflectivities ¢, and p,, we have from

(3.4)
W dw dy
or _ v 3.15
N dy ON (3.152)
W awd
D20 (3.15b)
ow dy dw

The above assumption is only valid for solitary DFB la-
sers without external optical feedback. Using (2.26) and
(A.5), the effective phase-amplitude coupling factor for a
DFB laser is then written as

ay — Gw/z
1 + aHGw/Z
where G, = v,3g/dw. For FP lasers, the oy is reduced
to the oy because the lasing frequency is always centered
at the gain peak. For DFB lasers, a detuning-dependent

phase-amplitude coupling factor is introduced. In general,
G, << 1, 50 (3.16) can be approximated by

aur = ay — (1 + af)G,/2.

Oy = (3.16)

(3.17)

The correction term is enhanced by (1 + o), which
results in a large difference between a5 and oy for high
values of Henry’s parameter ay .

Semiconductor materials are generally considered to
have a parabolic gain profile which can be expressed as

g(w) = g(“-’p) {1 - % <w ;ww!’> } (3.18)

where g(w,) is the gain peak, w, is the corresponding
frequency, and éw is the half-width of the gain band. It is
more practical to use the wavelength \ as the parameter.
By using the relation w = 27c /A, and (3.17) and (3.18),
a.q 18 then related to the wavelength detuning by

a8 (Y
aer(N) = ay(N) - % [1+ an(N)] %ﬁ' (ﬂ)

where g(A,) is the gain peak, N, is the corresponding
wavelength, and A\ is the half-width of the gain band in
wavelength. By using the theoretical model presented in
[10] and [34] for Henry’s material factor oy and (3.19),
oy and a5 are plotted as a function of wavelength for an
InGaAsP semiconductor laser in Fig. 5. It is supposed
that the peak gain is a linear function of carrier density:
g(N,) = gn(N — Np). The numerical values used in the
calculation are listed in Table 1.

From Fig. 5, it can be seen that there is a rapid increase
in ay for longer wavelengths [8]-[10]. In addition, an in-
crease in oy appears for shorter wavelengths [34]. In fact,
to compensate for the decrease in gain due to wavelength
detuning from the gain peak, a large value of carrier den-
sity is required, which results in a larger value of oy . This
effect does not appear in the curves presented in [8]-[10],
which are plotted for a given carrier density value. It is
clear that the effect of detuning tends to compensate the
change of the material factor ay. Coinciding with pre-
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TABLE 1
DFB LLASER PARAMETERS

Parameters Numerical Values
Cavity Length L 300 um
Group Index n, 4.33
Differential Gain gn 1.5 x 107 "* cm®
Carrier Density at Transparency Ny 1.0 x 10" em™*
Peak Gain Wavelength N, 1.545 um
Peak Gain g(\y) 85cm™!
Half Gain Bandwidth AN 20 nm
Spontaneous Emission Factor ng 2.7
Photon Energy hv 0.78 eV
Internal Loss @ 45cm™!

vious experimental results [35], negative detuning up to
approximately 10 nm from the gain peak decreases ay and
a.q. However, further negative detuning causes a large
o and thus a large linewidth.

D. Linewidth Calculation and Comparison to
Experimental Results

Relating the total photon number to the facet output
power, the linewidth can be written as [24], [25]

2011(1))§hUgnSp
"~ 4x(P, + P,)

where P,, P, are the output powers from the left and right
facets, respectively. The term 2a, representing the equiv-
alent mirror loss in the DFB lasers, can be obtained by
solving the threshold equation. The term g = o; + 2a is
the total threshold gain. The facet output powers P, and
P, are related by

P, |S“’(—L/2) |- ‘Pllz

- . (321)
P RO/ 1= ol

Av (1 + ay) (3.20)
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Fig. 6. The linewidth of a DFB laser with AR-coated facets as a function
of the normalized coupling coefficient «L for two lengths of laser cavity:
i) L = 300 pm; ii) L = 1000 pm.

Taking into account the field distribution (A.8) in the Ap-
pendix, the linewidth can be expressed as a function of
left or right facet output power.

The linewidth given in (3.20) differs from the previous
results [24], [25] in two aspects. The enhancement factor
K of the spontaneous emission rate is included, and an
effective phase-amplitude coupling factor o g is used, in-
stead of Henry’s material factor ay. To show quantita-
tively the differences, the linewidth of a DFB laser with-
out facet reflections is compared with the results of Kojima
[24] in Fig. 6 for a 0.8 um GaAs DFB laser. The decrease
of linewidth with the increase in L is more rapid for small
values of «L than is predicted in [24].

A recent letter by Ogita er al. [35] has reported mea-
surements of the linewidth of a DFB laser with one AR-
coated facet and one cleaved facet for L in the range of
0.8-1.0. The measured linewidth was found to be two
times larger than that predicted by conventional theory.
A large value of oy was used to fit the experimental re-
sults. The Green’s function approach leads, in this case,
to an enhancement factor of 2.0-1.7 in the range 0.8 <
kL < 1.0, as is shown in Fig. 3 for p, = 0, p, = 0.565.
This is in good agreement with Ogita’s experimental re-
sults. However, systematic verification of the theoretical
predictions is very difficult because parameter control in
the fabrication of DFB lasers is not yet sufficiently pre-
cise.

IV. APPLICATION TO COMPOSITE-CAVITY LASERS

A. General Analysis of Composite-Cavity Lasers

Composite-cavity semiconductor lasers are promising
candidates for achieving narrow linewidth, reduced chirp,
flat FM response, and wavelength tunability {2], [4], [5].
In this type of laser structure, the active region is loaded
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by a separate passive region with a higher Q than a simple
FP resonator whose phase and resonant frequency are
electrically controlled. The functions of amplification and
mode selection are then separated between these two dif-
ferent regions.

Composite-cavity lasers are usually described as a Fa-
bry-Perot cavity in which the external passive resonator
is taken into account by a complex frequency-dependent
effective reflectivity r.g(w) = r(w) exp (jo(w)) [15]-
{17]. The solutions of the homogeneous part of the prop-
agation equation in the active FP region are [19]

Zy- = ryexp (—jBz) + exp (jBz) (4.1a)
Zy, = ryexp (=jBz) + rire(w) exp (—2j8L)
- exp (jBz). (4.1b)
The complex propagation constant 8 is given by
B = koe'? = kon + j(g — ))/2 (4.2)

where n is the refractive index, g is the optical gain, and
« is the internal loss, all in the active region. By using
(4.1a) and (4.1b), the Wronskian for the composite-cavity
laser is then written as [19]

W(w. N) = 2jBr [rirei(w) exp (=2jBL) — 1] (4.3)

The angular lasing frequency and the threshold gain are
obtained by solving the equation W(wy, N,) = O:

wy = . [2mm — ¢(w)]

4.4
2nL (4.42)

Il

g=oqa — l%ln [rir(wy)] (4.4b)

where m is an integer. The effective phase-amplitude cou-
pling factor is obtained by using (2.26) and (4.3):

ay(l + A) — (B + G,/2)
14+ A4+ ay(B+G,/2)°

(4.5)

ey =

Here, oy is the phase-amplitude coupling factor in the
active region, and A and B are defined as
Azldqb(w) ’ ledlnr(w)

7 dw |, T dw o

(4.6)

which differ slightly from the definition of Kazarinov and
Henry in that the factor ay is eliminated in B [15]. 7 is
the photon round-trip time in the active region. It is clear
that this effective phase-amplitude coupling factor de-
pends strongly on A and B, and that it could be greatly
different from Henry’s factor. This suggests that by an
appropriate design of the passive section, it is possible to
achieve a high o,y for frequency modulation with sup-
pressed intensity modulation, or a low a.; for intensity
modulation with reduced chirp. It is noted that this result
agrees with that previously obtained by Vahala et al. [13],
Gallion ez al. [16], and Tromberg ef al. [23].

By using (2.22), (4.1), and (4.3), the enhancement fac-
tor K of the spontaneous emission rate for composite-cav-

ity lasers is found to be

K = Ko . @)
(1 +A)y +(B+ G,/2)

The denominator in the above equation shows the re-
duction of the spontaneous emission, due to the frequency
dependence of the effective reflectivity and the gain. The
numerator K, indicates the enhancement of the sponta-
neous emission rate due to the output coupling and is given
by

0 =

o - [[r, + r(w)][1 - rlr(wo)]}“. (4.8)

2r,r(wg) In [r, r(wo)]

The relation between the output power from the left facet
and the total photon number is written as [19]

r(wo)(1 = ri)
[r, + r(wo)][l - rlr(wo)]
The mirror loss «,, is related to facet reflectivities by «,,
= —(1/L) In [r,r(wy)]. By using (2.28), (4.5), (4.7),
and (4.9), the linewidth of a composite-cavity laser is then
obtained:

P, = hwyv, 1 (4.9

2
vg hwoam gnipK()
47l' P]

(1 + 01,21)
[1+A4+ ay(B + Gw/2)]2

el =)
[rl + r(wo)][l — r,r(wo)]

This linewidth expression differs from previous results
[15] by considering the oscillator loading K, and gain de-
tuning G,,. The influence of the oscillator loading may be
strong for composite-cavity lasers with low facet reflec-
tivities, and should not, generally, be neglected.

Av =

(4.10)

B. Results for DBR Lasers

The notations used for a DBR laser are represented in
Fig. 7. The power coupling efficiency between these two
regions is denoted by C,. By using coupled-wave theory,
the effective reflectivity r.y(w) is given by [33]

_ —jkCy
v coth (yL,) + (ay — jé)

Feit (4.11)
where «, is the residual amplitude amplification coeffi-
cient, « is the grating coupling coefficient, § is the detun-
ing from the Bragg frequency, v is the complex propa-
gation constant, and L, is the length, all within the Bragg
region.

When the DBR laser oscillates at the Bragg frequency,
the mode discrimination is maximum. The lasing fre-
quency corresponds to the maximum of the effective re-
flectivity, which results in B = 0. The effective phase-
amplitude coupling factor is then simplified to

ag(l + 4) — G,/2

= . 4.12
T (1 4) + anG,/2 (4.12)
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Fig. 7. Notations used for a DBR laser.

TABLE 11
DBR LASER PARAMETERS®

Parameters Numerical Values
Active Section Length L 300 pm
Bragg Section Length L, 300 ym
Coupling Coefficient Between these Two Sections Cy 0< Cy< 1
Residual Amplification Coeflicient a, 3.5cm™!
Cleaved Facet Reflectivity r 0.565
Cleaved Facet Output Power P 1.0 mW
Phase-Amplitude Coupling Factor oy 4.0
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Fig. 8. (a) The enhancement factor K of the spontaneous emission rate and
(b) the linewidth as a function of the normalized coupling coefficient kL,
for a DBR laser. The parameter is the power coupling efficiency C.

In the range 1.0-2.0 of the normalized coupling coeffi-
cient kL,, the value of A varies between 0.1 and 0.3. When
the DBR laser is detuned from the gain maximum, for any
given wavelength its a.q is located between ay and .4
for a DFB laser.

The enhancement factor K and the linewidth are plotted
against kL, for three values of the coupling efficiency Cy
= 0.4, 0.6, and 0.8 in Fig. 8. The parameters used in the
calculation are listed in Table IL. It is noted that an opti-
mum value of kL, exists, which gives the lowest enhance-
ment factor and the narrowest linewidth. This effect can
be easily understood; in the range of low values of L,
the modulus of the effective reflectivity is small, which
gives rise to high mirror loss, high threshold gain and high
spontaneous emission rate due to strong output coupling.

“Other parameters take the same values as for the DFB laser.

With increasing normalized coupling coefficient «L,, the
modulus of the effective reflectivity increases rapidly, re-
sulting in a decrease of Ky, thus tending to reduce the
enhancement factor K. At the same time, the frequency
dependence of the effective reflectivity decreases, tending
to increase the enhancement factor K. The opposition of
these two effects leads to a minimum enhancement factor,
and the narrowest linewidth in the range 0.5-1.0 of «L,.

Another case of interest is that of the DBR laser de-
tuned from the Bragg frequency. Fig. 9 shows the en-
hancement factor K, the effective phase-amplitude cou-
pling factor, and the linewidth as a function of the
detuning parameter 8L,, in the vicinity of the Bragg fre-
quency; Cy is assumed to be 0.8. A negative frequency
detuning reduces the phase-amplitude coupling factor aeq
and the enhancement factor K, and thus leads to a reduc-
tion of linewidth. This is due to the fact that in the neg-
ative detuning region, the effective reflectivity is strongly
dependent on the lasing frequency and thus gives high
positive values for A and B. However, for a DBR laser
detuned from the Bragg frequency, the mode discrimina-
tion decreases.

V. CONCLUSION

A method for the analysis of the spectral linewidth of
semiconductor lasers is presented which simultaneously
takes into account the structure dependent spontaneous
emission rate and the phase-amplitude coupling factor.
This method is particularly useful for lasers with complex
structures, which are beginning to appear in coherent op-
tical communication systems.

The proposed method has been applied to phase-shifted
and conventional DFB lasers with partially-reflecting fac-
ets. Numerical examples show that the enhancement fac-
tor of the spontaneous emission rate is significant for a
DFB laser with one or two AR-coated facets, especially
for low grating coupling coefficients. The effect of wave-
length detuning on the phase-amplitude coupling is to par-
tially compensate the change of the material contribution.
The evaluated linewidth is in good agreement with Ogi-
ta’s measurements.

This method has also been applied to composite-cavity
lasers. It is pointed out that the frequency dependence of
the passive section strongly affects both the effective
phase-amplitude coupling factor and the spontaneous
emission rate. As an example, DBR lasers are discussed
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Fig. 9. (a) The enhancement factor K of the spontaneous emission rate,
(b) the effective phase-amplitude coupling factor a.¢, and (c) the line-
width as a function of the detuning 8L, for a DBR laser. The parameter
is the normalized coupling corfficient xL,.

in detail. An optimal value of the grating coupling coet-
ficient in the Bragg region is found, which minimizes the
spectral linewidth. The phase-amplitude coupling factor
and the linewidth depend strongly on the detuning from
the Bragg wavelength, but compared with DFB lasers are
less sensitive to the detuning from the gain maximum. In
general, it appears that the DBR structure has more pos-
sibilities for obtaining narrow linewidth compared to the
DFB structure.

Further improvement of the method would result from
the inclusion of the gain saturation effect in the analysis.
This would be helpful in the understanding of laser be-
havior in the high-power regime. In view of the current
trends in semiconductor laser development, further appli-
cation of this method to multisection DFB or DBR lasers
would be of great interest.

APPENDIX
DERIVATION OF THE WRONSKIAN OF THE DFB LASER
By inserting Z'"’(z) in (3.1) and neglecting second-or-
der terms, the coupled-wave equations for R‘") and §"
are obtained:

drR"

ol (@ — j8)RY — jkexp (—jQ)SY  (A.1a)
dS(i) ) ) ‘
i C — Jo)S + jrexp ()R (A.1b)

where 6 = B8 — By is the detuning from the Bragg fre-
quency. The solution of this coupled equation has the form

(A.2a)
(A.2b)

RV(z) = ri” exp (y2) + ri” exp (—72)
50(2) =

where v is the complex propagation constant to be deter-
mined. Inserting this solution in (A.la) and (A.1b), one
obtains

()
2

si? exp (yz) + 58 exp (—7z)

Iri) = jre /5D (A.3a)

Iri) = jke ™" ef). (A.3b)
I and T are defined as

'=sy+a—jé (A.4a)

= -y +a—js (A.4b)

and the squared complex propagation constant v is given
by
v =k* + (« —j5)2. (A.5)
The continuity condition at the phase-shifted point z =
0 is written as

(A.6a)
(A.6b)

rD A = A HD

S0+ s = 5@+ @,

Finally, the boundary condition at the left facet is written
as

R (~L/2) exp (jBoL/2)
= pSP(—L/2) exp (—jBoL/2).

o, is the field reflectivity at the left facet. These equations
give the relative field distribution in the laser cavity with
one degree of freedom. For the sake of simplicity, we

(A.7)

choose r{") = 1. The different coefficients are then deter-
mined as
A\ 2
(1 (1) r
=1 nrn'=—-(—) Pexp(—vL)
Jjk
(N [ . o _ T ) (D
si- = —exp (jQ); S2- —j_KeXP (JQ)r-

1 . R
[~ T(1 + Pe")e?® + T + ['Pe™)];
"
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1|4 0 3
A = — 1 T(1+Pe ™)+ T {1 + L peit
2y r

A

T N T .
s = Zexp (—j@) Y s = —exp (—jQ)rsY
JK JK
(A.8)
where P is defined as
r
P _7
P = = .
. (A9)
P —
Jjk

with p,; related to the facet reflectivity g, by p, = p, exp
(—=2jBoL + if).
The boundary condition at the right facet is written as

5, R (L/2) exp (—jBoL/2)
= SD(L/2) exp (jBoL/2)

where p, is the field reflectivity at the right facet of the
DFB lasers. By choosing r{} = 1 and combining (A.3),
(A.6), and (A.10), the coefficients of the solution for Z,

are then obtained:

(A.10)

 _ f‘ezm(l - Q) ' + rQerl

r§l+) =1 Ry = T 5350 T = L
Te*/¥(1 — Qe") = T' + T'Qe”
r , T )
stV = —exp (jO); 83 = —exp (jQ)r3Y
JK jk
@ _ L+nd ) L2
_ . = — OV
rny = 1 = Qe"’L’ rny = —0e"ry

(2)

f , T .
s = —exp (—j)rY; 88V = —exp (—jQ)r2Y
Jx jx

(A.11)
where Q is defined as
I\
4 _j_K
= —— A.

Qo T (A.12)
pr—
Jjk

where p, is related to the facet reflectivity p, by p, = p,
exp (—2jBoL — if).

It should be noted that because of the approximation
made in deriving (A.la) and (A.1b), the obtained solution
is not rigorously exact, and that the Wronskian is not ex-
actly explicitly z-independent. As an approximation, the
Wronskian is estimated by its value at z = 0. By differ-
entiating (A.2) and using (2.7), we have

W(w, N) = WRR + WSS + WRS + WSR

+ 2jBo(S_R, — S.R_) (A.13)

where Wgg, Wss, Wrs, Wsg are defined as

Wge = R_LR, — R_R. = 2y(ri-r. — rir-)

(A.142)
Wes = S'S, — S-S = 2y(s1-824 — 51452-)
(A.14b)
Wes = RLS, — R_S% = 2y(ri_s2 — 1ss1-)
(A.14c)
Wg = SLR, — S_RL = 2y(s1412- = $2-1+)-
(A.14d)

Due to the continuity condition at z = 0, (A.6a), and
(A.6b), the superscripts are not necessary in the above
equations. Then the Wronskian can be split into two parts:

W(w, N) =W, + W, (A.15)
where W, and W, are written as
W, = Wgg + W + Wgs + W (A.16a)
Wy = 2jBo[(ri— + r-)(s14)(524)
— (51— + 5, ){(r+ + 1)) (A.16b)

For a DFB laser with a moderate coupling coefficient, the
complex propagation constant y is much less than 8. The
first part of the Wronskian can then be neglected. In this
condition, the Wronskian is approximated as

W(w, N) = 2jBo[(ri- + r_)(s14+ + 524)
— (5i- + 5 )(rne + )] (A7)

Using (A.8) and (A.11), the Wronskian of a DFB laser is
then found to be

N

b r
k Te?/%(1 — get) — T + TQe"
- F(yL) (A.18)
where F(~L) gives the threshold condition [31, [32]:
F(yL) = (1 — Pe™™)(1 — Qert)e®
A\ 2 2
- [1 - <—F—> Pe"L}[l - <L> Qe"L:l.
Jk Jjk

(A.19)

W(w, N) = 4B,e’"
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