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Power Spectrum Measurement of a Modulated
Semiconductor Laser Using an Interferometric
Self-Homodyne Technique: Influence of
Quantum Phase Noise and Field
Correlation

DOUGLAS M. BANEY anp PHILIPPE B. GALLION, MEMBER, IEEE

Abstract—The amplitude-phase coupling effect introduces important
dynamic line broadening in modulated semiconductor laser systems.
The theory of a new technique allowing measurement of the broadened
spectrum using a single laser is presented. The guantum phase fluctua-
tions of the lasing field are shown to be of great importance on the
photocurrent spectrum of the mixed fields. Expressions are derived for
the photocurrent spectrum which is shown to measure the optical field
modulation power spectrum. Measurement results illustrating the the-
ory are also presented.

I. INTRODUCTION

HE power spectrum of a modulated laser is an im-

portant parameter in high-performance optical com-
munications systems; its knowledge is required in order
to predict channel densities as limited by crosstalk and
maximum transmission rates in dispersive systems. The
trend towards the use of single-frequency lasers, such as
DFB and injection-locked lasers, has resulted in substan-
tial improvements in transmission data rates [1]-[4]. Even
with these quasi-single-frequency lasers, there are ampli-
tude-phase coupling effects which contribute to substan-
tial dynamic line broadening (chirp), imposing limits on
the distance bit-rate product [1], [5]-[9]. However, co-
herent systems can use the amplitude-phase coupling ef-
fects advantageously to perform FSK [10]-[12]. In these
systems, it is desirable to have flat FM performance with
modulation frequency and much effort is directed toward
improving or compensating the laser FM frequency re-
sponse [13], [14]. The origins of chirp are in the depen-
dency of the refractive index on carrier concentrations
[15], the structural and gain detuning design of the laser
[16]-[22], and the temperature dependence of the mate-
rial energy gap and refractive index. The latter effect, re-
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ferred to as the thermal effect, is particularly important at
low modulation frequencies. The modulated lasing field
can be modeled by including the amplitude-phase cou-
pling factor (), introduced by Henry, in the describing
equation for the field [9], [15].

E(1) = exp (juor)| £(1)] 7. (1)

Several authors have made power spectrum calculations
of modulated single-frequency lasers [23], [24]. Direct
observation of the modulated power spectrum is possible
using several different techniques. Measurements of laser
chirp are sometimes made with grating spectrometers, but
these measurements are limited to a minimum resolution
of the order of one angstrom, which is usually greater than
the maximum wavelength chirp to be measured [25], [26].
The possibility of improved resolution is offered by the
scanning Fabry-Perot technique, which requires mirrors
with very high reflectance to obtain sufficient resolution
to measure the modulated power spectrum. High mirror
reflectance translates to narrow spectral bandwidth, which
requires different mirrors for various operating wave-
lengths. The heterodyne technique, using two lasers, one
as a local oscillator and the other as the signal laser, has
performed chirp measurement with the requirement of
tunability and precise wavelength matching (less than [
A) between the lasers [27], [28]. Recently, the gated de-
layed self-homodyne (GDSH) technique was proposed al-
lowing direct measurement of the homodyne power spec-
trum of a modulated single-frequency laser [29]. By gating
the laser into two sequential states, an unmodulated state
(LO) and a modulated state (signal), and then processing
the waveform with an interferometer, the two states can
then be mixed on a photodetector, yielding the power
spectrum of the electric field modulation,

In Section II of this paper, starting with an expression
for the modulated field, we derive the power spectrum of
the modulated laser. Section III proceeds with the deri-
vation of the GDSH photocurrent spectrum, which is valid
for any interferometric delay and degree of field correla-
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tion. A brief discussion explaining experimentally ob-
served periodic fine structure on the intensity modulation
spectrum is presented in Section IV. Section V includes
theoretical curves for the line shape function for varying
degrees of field correlation and a discussion of this effect
on the observed spectrum. In addition, calculated curves
are presented for the case of FM modulation. Section VI
is the experimental section, with data plotted for small
and large index intensity modulation of a DFB laser diode.
Conclusions are discussed in Section VII.

II. POWER SPECTRUM OF THE MODULATED SINGLE-
FREQUENCY LASER

The complex field emission for the modulated laser with
a stochastic phase process is written as

E(t) = m(t) exp j(wor + ¢(1)) (2)

where m(t) is a stationary process with zero mean rep-
resenting the modulation envelope in (1). While the form
of (1) is beneficial in describing the influence of the «
factor on the lasing field, it is more convenient analyti-
cally to use the exponential notation for m(¢):

m(1) = exp j(N(1) + vo). (3)

A(t) is a complex deterministic modulation process and
¢o is a random variable, with uniform probability distri-
bution from —7 to 7, representing the starting phase un-
certainty of the modulation process with respect to the
carrier phase. It is understood that the above process is
ergodic, allowing the necessary equivalence between sta-
tistical averaging (used in mathematics) and time aver-
aging (as performed in any experiment). The quantum
phase fluctuations due to spontaneous emission are taken
into account with ¢ (¢). In the following analysis, the sto-
chastic phase process ¢ (¢) is assumed to be independent
of m(t); extension of the theory to include a statistical
dependency of ¢ (z) on m(¢) is possible in principle, but
is beyond the scope of this paper. It has been shown that
for (VPR-BH 1.3 um) lasers under small-signal modu-
lation this assumption is reasonable [30]. The laser op-
erating point is assumed to be well-above threshold with
an average lasing frequency of wy. In this case, the in-
stantaneous frequency fluctuation spectrum is usually as-
sumed flat {15], [31]-[33], leading to a linear time de-
pendence of the mean-square phase jitter. This results in
a Lorentzian line shape approximation. A modification
accounting for the relaxation resonance effect has been
reported elsewhere [15], [34]-[36].

(A¢*(1)) = 2v|7]. (4)

Using the standard procedure for derivation of the
power spectrum [37], we calculate the autocorrelation
function of the field in (2).

Ge(7) = Gu(7) exp jwgr{exp jAd(r, 7)). (5)

G,, (1) is the autocorrelation function of the electric field
modulation. The ensemble average remaining can be re-
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written using the well-known relation [38]:

(expjAe(r, 7)) = exp [—1(Ae*(7))].  (6)

The power spectrum of the lasing field is then calculated
using the Wiener-Khintchine theorem. Fourier transform
of the electric field autocorrelation function results in

v/
v+ (0 = @)

Se(w) = 7 @ Su(w). (7)
The power spectrum of the modulated electric field is
therefore the convolution of the well-known Lorentzian
linewidth function with the power spectrum S,,(w), of the
electric field modulation. The full width at half maximum
of the Lorentzian part in (7) is 2y, which is given by the
Schawlow-Townes formula including the « broadening
factor [15].

III. Tueory oF THE GDSH TECHNIQUE

The gated delayed self-homodyne technique permits the
measurement of the electric field spectrum of a modulated
laser using the laser in its free running state as the local
oscillator [29]. As shown in Fig. 1, the single-frequency
laser is operated in two states of equal temporal duration
7o, an unmodulated state which serves as the local oscil-
lator, and a modulated state which is the electric field
spectrum (including chirp) we wish to measure. The gated
modulation is usually accomplished by ac coupling the
modulation source to the laser and then gating the mod-
ulation source with a separate low-frequency square-wave
generator. After passing through the interferometer with
delay 7,, the two laser states are combined and continu-
ously mixed in the photodetector. The resulting spectrum
of the photocurrent is then amplified and displayed on a
microwave spectrum analyzer. To obtain reasonable mea-
surement resolution, a delay (7y) of the order of micro-
seconds is necessary, requiring a fiber implementation of
the interferometer. In this section, we derive the power
spectrum of the detector photocurrent for various degrees
of field correlation.

The electric field, with gated modulation, entering the
interferometer is written as

E(1) = [m(2) g(r) + g(t = 70)] exp j(wor + ¢(1))
(8)

where m(t), ¢(t) and w, are the same as in (2) and the
cyclostationary gate function g (¢) is defined by

g(t) =11 {i} & i 8(t —2n1y — 1,) (9)
0 n=—o

where 7, is a random variable with uniform probability
distribution over a period 27, of the gate function. 7, al-
lows for the statistical independence of the gate function
g(t) with respect to the modulation and optical carrier
phases and provides for the stationarity of g(#). II{z/7,}
is the square-pulse function with width 7,. We will as-
sume that the interferometer has perfect loss balance. The
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Fig. 1. Experimental setup for power spectrum measurement of an injec-
tion current modulated single-frequency semiconductor laser.

GATE INPUT
PERIOD = 2T,

effect of amplitude misbalances are easily included, but
are left out here to reduce the number of multiplicative
factors in the theoretical development. In addition, the
polarization state is considered constant throughout so that
the combining fields have the same state of polarization.
Inclusion of polarization dependence into the calculations
is straightforward. In practice, polarization state match-
ing with a polarization state converter is performed to
maximize the signal-to-noise ratio in the chirp measure-
ment. The simplified interferometer impulse response is
then

h(t) = 6(r) + 6(r — 79) (10)

where we have excluded the interferometric insertion
losses; these losses can be included in a normalization
constant for the field (8) entering the interferometer. The
total electric field incident at the photodetector in Fig. 1
is found by convolution of the incident field with the im-
pulse response of the interferometer. The photodetector
current is then found by squaring the total incident electric
field where the detector quantum efficiency is set to unity.

i(1) = Tid S [\5(:)\2 + |E(t - TO)|2

+ E*(1) E(t — 7o) + E*(t — 10) E(1)] at.
(11)

The integral expresses the low-pass filtering of the pho-
todetector. The integration time 7, is assumed sufficiently
rapid to respond to all the temporal fluctuations of interest
inm(t).

By using (8) in (11), the periodicity of g(t), and fac-
toring in terms of the gate function we obtain

i) = i(r) g(2) + ix(2) g(1 £ 70). (12)

From (12), we observe that the photocurrent is composed
of sequential time records which join every 7, s. The au-
tocorrelation of i (¢), written as G;(7), is composed of the
photocurrents G;(7) and G,(7) and the crosscorrelations
G, 5(7) and G, process of i;(t) and i,(¢). The cross cor-
relations are important in describing the connectivity ef-
fects of the modulated field as it passes through the inter-
ferometer.
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Gi(7) = [GI(T) + Gz(T)]Gg(T)
+ [Gia(7) + G i(7)]G (7 — 79). (13)

G, (7) represents the autocorrelation of the gate function
in (9). Proceeding with (13) and using (6), (8), (9), (11),
and (12), we obtain (14) where 8 = wg7,.

Gi(7) = [Gi41(7) Go(7)] ® [8(r — 70) + 25()
+ 8(7 + 7)]
+ 2u(7) Gy(1 ~ 70) Re {[Gou(r = 70)
+ GH(1 + 19)] expj20}
+ 4v(7) G,(7) Re {G,.(7)} (14a)

G, +1(7) and G,,(7) are the autocorrelations of the direct
detection and electric field modulations respectively and
&(7) is the Dirac delta function. The functions u(r) and

v(T1) are
<exp [——27(210 - |T|)] 0<1< T0>
u(r) =
exp (—2y7o) O< <17
(14b)
-2 0
v(r) = <exp( virl) sTs T0>. (14c)
exp (—2')/70) 0< To < T

In (14), the calculation of #(7) and v (7), which represent
the effects of partial correlation proceeded as in [37].
Next, the Fourier transform of (14) is performed yielding
the power spectrum S;(w) of the photocurrent:

Si(w) = 2(8111(w) ® §,(w))(1 + cos wry)
+2U(w) ® [[Sn(w) ® S,(w)]
©cos (wry — 28) + [Sp(—w) ® S,(w)]
- cos (wry + 20)]
+ 2V (@) ® [Sp(w) + Sp(~w)] ® S, (w)
(15a)

U(w) = [w&(w) — 7 sinc wrg

w sin w7y + 27y cos wry — 2y exp — 2y7Tg
+ 3 >
2y) +w

©exp — 2y7g (15b)

V(iw) = |:7r5(w) — 7o sinc wry

L sin wty — 2y cos wTg + 27y exp 27y
(2y) + o

- exp — 2v7 (15¢)
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S,(w) (15d)

=7rSin<:zﬂ 2 6<w—m>
2 m=—oo To

where S;(w), U(w), V(w), S,(w), and S,(w) are the
Fourier transforms of G;(7), u(7), v(r), G,(7), and
G, (1), respectively.

The first term in (15a) is the intensity spectrum denoted
by Sp(w):

Sp(w) = 2(S;+ (@) ® S (w))(1 + cos wrg). (16)

IV. INTENSITY SPECTRUM

The direct detection spectrum, Sp(w) has no depen-
dence on the field correlation or polarization states of the
mixed fields. Also, it is easily identified, since it is not
broadened by quantum phase noise effects. Sy, ,(w) is
composed of a dc component as well as an RF compo-
nent. Obviously, in the absence of amplitude modulation,
the RF component would be zero. Further examination
reveals that the spectral spread about the dc component of
Sp(w) by convolution with the gate spectrum §,(w) in
(15d) is nulled by the (1 + cos wry) factor, and that the
convolution with the RF detection will be cyclic with
modulation frequency for periodic signals. Therefore,
when the modulation frequency satisfies

_ 2nm

@ =
To

n integer (17)
there is perfect connectivity (i.e., in-phase modulation
joining through the two interferometer paths) and the con-
volution with the gate spectrum is no longer observed. We
note that in an interferometer with unequal path loss, the
convolution with the gate will not be completely nulled
and will have a magnitude increasing with mismatch.

V. ELectriCc FIELD POWER SPECTRUM

The photocurrent spectrum of the mixed fields (15a) is
dependent on the relative optical phase and correlation of
the mixed fields. As in the case of the intensity spectrum,
the fine structure of the power spectrum due to the con-
volution with the gate spectrum will vary with modulation
frequency. In addition, for the electric field power spec-
trum in (15a), the dependency on relative optical phase of
the mixed fields is expressed by the 20 (i.e., 2wy 7g) in
the cosine term. This dependency on phase affects the
negative frequency fold-over of the homodyne mixing
process. The phase must be controlled to make a reliable
measurement of S,,(w), either by slightly adjusting the
optical frequency with a small change of laser bias, or by
using a low-frequency phase modulator. The convolution
with U(w) and V(w) has important consequences on the
measurement. From (15b) and (15¢) the importance of the
remaining amount of field correlation of the combined
fields is observed. This field correlation is expressed by
the parameters vy and 7y. Fig. 2 plots these functions for
various angular linewidths and an interferometer delay 7,
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Fig. 2. Calculated line shape functions V(w) and U(w) for different de-
grees of field correlation: 74 is 3.5 us.

of 3.5 us, as used in the experiments of Section VI. When
the mixed fields are completely correlated, U(w) and
V{(w) reduce to Dirac delta function form. When there is
a high degree of correlation, U(w) and V' (w) have strong
delta function components, but also exhibit some spectral
spreading due to interferometric effects. Fig. 2 plots these
functions, excluding the delta function at zero frequency.
The ratio of the delta function to the skirt of V(w) was
64 dB for the v /7 = 25 KHz case, decreasing to 47 dB
for the v /7 = 0.2 MHz case. With increasing laser line-
width, the delta function component diminishes, being
—78 dB at v /7 = 1.6 MHz, which results in predomi-
nantly incoherent mixing. With further field decorrelation
(increasing linewidth), V(w) becomes a rigorously Lor-
entzian line shape and U(w) vanishes to zero.

For the linewidths typically encountered with DFB la-
sers (10-100 MHz), and considering the low propagation
losses in single-mode optical fiber, the incoherent regime,
vTo >> 1, is easily satisfied. In this case, the photocur-
rent spectrum (15) has a simple form:

4
T ® {S(w) + Su(—w)}.

Si(w) = Sp(w
(@) ()+(27)+w

(18)
The convolution of §, (w) with S,(w) in (18) is not
shown, since in this case it is masked by the convolution
with the Lorentzian. We note also that S;(w) is no longer
dependent on the phase matching of the mixed fields. Fig.
3 illustrates the theory with a calculation of the GDSH
power spectrum assuming low FM index modulation, 8
= 2.4 [see Fig. 3(a)] and large FM index modulation,
= 189 [see Fig. 3(b)]. In Fig. 3(a), the spectrum is cal-
culated for three different laser linewidths [2y /27 in
V(w)]. It is apparent that the measurement resolution is
dependent on the spectral width of V(w), but also the rel-
ative heights of the Bessel function components change
due to the additive effects of the Lorentzian tails of the
neighboring sidebands. The effect is more pronounced on
the smaller sidebands J,( ), J4( 8), and J5s( 8). This sug-
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Fig. 3. Simulation of sinusoidal FM power spectrum for various laser line-
widths Ar and modulation frequencies f,,. (a) 8 = 2.46, Ay = 35, 55,
and 75 MHz, f,, = 500 MHz. (b) 8 = 189, Ay = 75 MHz, and f,, = 50
MHz.

gests that when making FM index measurements, as is
often done in computations of the « broadening factor,
the additive effects of the Lorentzian tails must be taken
into account for accurate determination of «. In the large
FM index case of Fig. 3(b), the power spectrum ap-
proaches the shape of the probability distribution of the
modulation, except here, there is an addition of a tail at
the base of the power spectrum pedestal close to 11 GHz.
In this case, due to the large number of sidebands, the
data was averaged over each two sidebands allowing use
of half the number of Bessel coefficients. Noise has been
added to the simulation to include the noise floor effects
which occur in actual measurements.

VI. POWER SPECTRUM MEASUREMENT

The power spectrum of a modulated 1.3 um DFB laser
was measured using the GDSH technique described in the
preceding sections. The laser was followed by two isola-
tors, resulting in greater than 60 dB return isolation. No
temperature or special current stabilization was used since
the technique is self-tracking (within the time constant of
the interferometer). The gated signal, shown in Fig. 1,
was then processed by the interferometer and sent to a 22
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Fig. 4. Power spectrum measurement of an injection current modulated
1.3 um DFB laser at two modulation frequencies f,, and two values of
current modulation index m;. (a) I/l = 2.8, f,, = 500 MHz, and m; =
12 percent. (b) I/1, = 2.1, f,, = 50 MHz, and m; = 86 percent.

GHz optical detection system [39]. The power spectrum
of the photodetector current was then observed. In the first
measurement, shown in Fig. 4(a), the 500 MHz gated sin-
usoidal injection current modulation was increased from
an intensity modulation index of zero until the first zero
of the J,( ) sideband was observed. The dominance of
the FM sidebands being due to the well-known amplitude-
phase coupling effect in semiconductor lasers. This spec-
trum compares favorably to Fig. 3(a) for a linewidth of
55 MHz. The difference in the measurement and calcu-
lated spectrum at frequencies near zero can be explained
by noting that the first zero of the J,( 8) sideband is very
sensitive to the value of the FM index 3, and that the
calculated spectrum is for a value of 8 slightly different
than the experimental one. A measurement of the power
spectrum of the laser with large injection current modu-
lation (m; = 85 percent) is shown in Fig. 4(b). The in-
duced FM index was approximately 189 for a 50 MHz
sinusoidal modulation rate. The shape corresponds to the
B = 189 simulation of Fig. 3(b). The rising noise floor of
the measurement system appears near 15 GHz.

There is always an asymmetry in the AM/FM power
spectrum of the modulated semiconductor laser. The
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Fig. 5. Asymmetric injection current pulse modulation of a DFB laser:
I/1y, = 3.5, f,, = 100 MHz, and m; = 63 percent.

asymmetries induced under small-signal injection current
modulation have been previously studied [22]. Large
asymmetric injection current modulation, induced by ac
coupled pulse or PRBS modulation, results in an asym-
metric power spectrum which may be measured using the
GDSH technique. The resulting photocurrent spectrum
clearly illustrates the fold-over characteristic of homo-
dyne detection. S,,( —w) in (18) expresses this fold-over
effect. If S,,(w) is not an even function of frequency then
the possibility of observing a double peaked photocurrent
spectrum exists. This is shown in Fig. 5 where the laser,
biased at 50 mA, was current modulated (m; = 63 per-
cent) by a pulse train with a 20 percent duty cycle at a
100 MHz rate. A double peaked response is clearly ob-
served in this case. At a 100 MHz modulation rate, fre-
quency chirping due to the carrier effect should dominate
over the thermal effect, in this case, if we assume the in-
dex varies inversely with carrier concentration, the peak
at 9.3 GHz represents a positive chirp and the peak at 3.7
GHz is the fold-over due to negative chirp. The discrete
spectrum near zero frequency is the direct intensity detec-
tion described by S, (w) in (16).

VII. CONCLUSIONS

The power spectrum of the detector photocurrent was
derived for the gated delayed self-homodyne technique.
The theory and measurements show that useful power
spectrum measurements can be performed using this tech-
nique. The formulation is valid for any degree of field
correlation between the mixed fields. We have shown that
in the case of coherent mixing, the resulting photocurrent
spectrum will be a measure of the actual modulated spec-
trum provided the phase of the combining fields is ade-
quately controlled and that the measurement resolution is
governed by the gate duration. For periodic modulation,
there are certain modulation rates that provide perfect
connectivity of the modulation waveform through the in-
terferometer; under this condition, it was found that the
gate process no longer limits the resolution of the mea-
surement. In the partially coherent regime, the modula-
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tion spectrum is convolved with a quasi-Lorentzian func-
tion and the importance of phase control over the mixed
fields diminishes. For the case of a laser linewidth suffi-
ciently large, so that the fields are completely decorre-
lated after passing through the interferometer, it was
shown that the interferometric resolution did not limit the
measurement resolution. Measurements were presented
for small and large index modulation illustrating the the-
ory for the power spectrum of the electric field modula-
tion.
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