Decoding algorithm: Let f(x) represent the sum of the trans-
mitted codeword 1(x) and the error polynomial e(x). The affine
transform is applied to f(x), thus generating

S) =oy) + e(y)

(a) Syndrome polynomial $(z) calculation:

where S;=f(¢') 0<i<(d—-2)

a-2

=3y 8,7

i=0
Since f(y) = v(y) + e(y), then it follows that
S; = v(o™") + e(a”) = (o)

because »(a”) = 0. Notice that S;=E;, 0<j<(d—2) and
that E = (E,, E\, E,, ..., E;, ..., E,_,) represents the FFFT
of the error vector.
(b) Error locator polynomial L(z) calculation: Apply the

Euclidean algorithm to the pair of polynomials z* and S(z).
Notice that S(z) is of degree

d—2=2t4+1-2=2t—1

Stop when the degree of the partial-remainder polynomial
becomes less than ¢ (Reference 6). The location of the errors in
the received word is indicated by the exponents of the recipro-
cals of the roots of L(z).

(c) Determine the vector E, associated with the polynomial
E(z), which represents the FFFT of the error vector e, associ-
ated to the polynomial e(x), by recursive extension® using L(z)
and S(z).

(d) Calculate the inverse FFFT of E(z) to find e(y).
4 en— 1)
z Eja i

= (p — 1)/r. Therefore it follows that

e=(eg ey, ey, ...

€ =

n(mod P ;
However n(mod p)

n—1

=2 Eja™™ rf(p—1)
i=o

(e) Apply the inverse affine transform to find e(x).

(f) Perform the correction of the errors by subtracting e(x)
from f(x), i.e.

v(x) = f(x) — e(x)

Conclusion: In this paper it has been shown that multilevel
pseudocyclic codes can be decoded by an algebraic procedure.
The use of the affine transformation was the key step in
extending the applicability of algebraic decoding techniques to
pseudocyclic codes. As a result of the affine transformation, a
cyclic code over GF(q™) was obtained. Once a strictly cyclic
code is obtained, the application of classical algebraic-
decoding methods is immediate. The procedure described
offers an interesting alternative to the decoding of megacyclic
codes,” introduced by Berlekamp. Although other decoding
procedures are known, e.g. exhaustive search, information
sets, error-trapping, etc.,"‘/"8 algebraic decoding techniques for
block codes are less dependent on code parameters when
codes with ¢ > 2 are used.
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ANALYSIS OF SPONTANEOUS EMISSION
RATE OF DISTRIBUTED FEEDBACK
SEMICONDUCTOR LASERS

Indexing term: Semiconductor lasers

The spontaneous emission rate of distributed feedback semi-
conductor lasers with partially reflecting facets is analysed
using the Green function approach. It is found that this rate
depends on both the facet reflectivities and the coupling coef-
ficient. The linewidth of DFB lasers is evaluated by including
this dependence.

Introduction: The linewidth of a semiconductor laser is of
great importance for its application to coherent optical com-
munication systems. Using Henry’s theory, the linewidth of a
semiconductor laser can be written as!

R 2
- 1
Av 1_1(1—{—011.,) 1)

where R is the spontaneous emission rate (s™1), I the total
photon number in the laser cavity and oy the linewidth
enhancement factor. For distributed feedback lasers the line-
width has been expressed in a more practical form by the
relation between the photon number and the output power.?
On the other hand, the spontaneous emission rate determined
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by the bandwidth of the optical resonator has to be calcu-
lated. In a previous letter by Wang et al. this rate was evalu-
ated for DFB lasers without facet reflectivities using the
generalised Petermann factor.>* In this letter the spontaneous
emission rate and linewidth are investigated based on the
Green function approach.® The influence of both the facet
reflectivities and the coupling coefficient on the spontaneous
emission rate is pointed out. The linewidth of the DFB is
evaluated by considering this effect.

Analysis: This is based on the Green function method, which
has been used for Fabry-Perot semiconductor lasers and
external cavity lasers. Suppose that the DFB laser is perfectly
index-guided and that all transverse effects are neglected ; then
the spontaneous emission rate can be written as®

4w0 (Z*gony, Z)(Z"‘non zZ>

cs

@

do

where w, is the lasing frequency, ¢ the velocity of light in a
vacuum, g, the threshold gain in the laser cavity, n, the group
index, n, the refractive index and n,, the spontaneous emis-
sion factor; {. ) denotes the mtegranon over the total longitu-
dinal axis of the laser cavity. Z(z) is the solution of the wave
equation without the spontaneous polarisation term and W is
the Wronskian of two such solutions, satisfying the boundary
conditions at the left and right facets, respectively. In a DFB
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laser having a periodic variation in index or gain, the solution
of the wave equation Z(z) has the form®-’

Z(z) = R(z) exp (—ifoz) + S(z) exp (ifo 2) (€]

where R(z) and S(z) are the forward and backward field ampli-
tudes respectively. Inserting Z(z) in the wave equation and
using the boundary conditions at the left and right facets, the
Wronskian is obtained after substantial calculations (the
detailed analysis will be published elsewhere):

1

= p\NPr—
iK ix

where f, = mn/A is the Bragg wave vector, Q the phase of the
variable index, ! the length of the laser cavity and « the coup-
ling coefficient. p, , are related to the facet reflectivities py, p,
by p, = p, exp (—2ifol + iQ) and p, exp (—2if, ] —iQ). y is
the complex propagation constant: y? = k* + (« — i8)?, where
a is the net amplitude gain and & the detuning from the Bragg
frequency. T and [ are defined as [ =y + a —id and [ = —y
+ o — id. Finally, F(yl) = describes the threshold condition:

T I r r
F= (1 - P ;)(1 - P, ;;) - (px - ;)(p, - ;) exp (2y))

5)
Using eqns. 2-5, one obtains the correction factor for the
spontaneous emission rate of DFB lasers:

r r
P NPr T i
(6)

where R, = goV,n,, is the spontaneous emission rate for the
Fabry—Perot laser with highly reflecting facets. Note that all
the parameters appearing in the above equation are defined at
threshold.

Wi(w) = 4B e
K

2 -2

dF
diyl)

R 1(ZZ*?* «?

R, 4 I o210

100

R/Ro

k1

Fig. 1 Correction factor R/R,, for spontaneous emission rate as function
of coupling coefficient «l for DF B laser with different facet reflectivities
@) p, = p, = 0;(ii) p, = 0, p, = 0:565; (iif) p, = p, = 0-565

Results: The correction factor for the spontaneous emission
rate is plotted in Fig. 1 for three cases: (i) a DFB laser with
two AR-coated facets, p, = p, = 0; (ii) a DFB laser with one
AR-coated facet and one cleaved facet, p, = 0; p, = 0-565; and
(iii) a DFB laser with two cleaved facets, p; = p, = 0-565. For
the first two cases this correction factor is dramatically larger
than unity for small values of kl. In the moderate range of «l,
ie. 1 < kl <2, the correction factor varies between 1-5 and
4-2, which is considerable. For example with k! = 1, this cor-
rection factor is 4-2 and 1-8 for the first two cases, respectively.
For the last case this correction factor is practically negligible.
As k! tends towards zero the spontaneous emission rate tends
to the value for the Fabry—Perot laser with the same facet
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refiectivities. In fact, this can be shown analytically by setting
kl =0 in eqn. 6. In all three cases the correction factor
decreases with the increase of the coupling coefficient except
at one point, which corresponds to the change of the lasing
mode in the DFB laser.

It should be noted that the p, and p, of DFB lasers are
generally complex, and that the spontaneous emission rate
depends not only on their modulus, but also on their phase.
This behaviour will also be discussed elsewhere.

linewidth , MHz

Ki

Fig. 2 Linewidth of DFB laser with AR-coated facets as function of
coupling coefficient xl for two lengths of laser cavity, 1= 300 and
1000 um

@ Kojima’s result A with correction factor

For a DFB laser with two AR-coated facets the correction
factor given by eqn. 6 changes to the form of Wang et al®In
this case the linewidth of the DFB laser, including the correc-
tion of the spontaneous emission rate, is compared with the
results of Kojima et al.? in Fig. 2. The parameters used in the
numerical calculation are v, = ¢/4-33, hv = 1-42¢V, n,, = 2:7,
oy = 54, ag=45cm™! and g, = o + 20. The decrease of
linewidth with the increase in k! is more rapid for small values
of ki than that predicted by Kojima et al.”

Conclusion: We have studied the spontaneous emission rate of
DFB lasers using the Green function approach. An analytical
result is given, which considers simultaneously the influence of
the reflecting facets and the optical gratings. The numerical
example shows that the correction to this rate is significant for
a DFB laser with one or two AR-coated facets, especially for
low coupling coefficient. The linewidth of the DFB laser is
evaluated by taking into account this correction factor.
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