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Abstract: In this paper, the coupled mode theory (CMT) is used to derive 
the corresponding stochastic differential equations (SDEs) for the modal 
amplitude evolution inside optical waveguides with random refractive index 
variations. Based on the SDEs, the ordinary differential equations (ODEs) 
are derived to analyze the statistics of the modal amplitudes, such as the 
optical power and power variations as well as the power correlation 
coefficients between the different modal powers. These ODEs can be solved 
analytically and therefore, it greatly simplifies the analysis. It is 
demonstrated that the ODEs for the power evolution of the modes are in 
excellent agreement with the Marcuse' coupled power model. The higher 
order statistics, such as the power variations and power correlation 
coefficients, which are not exactly analyzed in the Marcuse' model, are 
discussed afterwards. Monte-Carlo simulations are performed to 
demonstrate the validity of the analytical model. 
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1. Introduction 

Optical waveguides, including the planar slab optical waveguides, rib-ridge waveguide, 
optical fibers etc. are the fundamental structures in the optical communication systems. The 
waveguides are categorized as single mode optical waveguides and multimode optical 
waveguides. Single mode waveguides have received much attention during the past decades, 
because of the lower modal dispersion, while multimode waveguides have been focused on 
recently due to the emerging mode division multiplexing technique. 

Either single mode waveguides or multimode waveguides suffer from random refractive 
index variations. During the fabrication of the optical waveguides, the imperfect surface 
caused by etching resolution limit [1,2] and the irregularity of the materials inside the 
waveguides, will lead to random index variations either at the edges or within the cores of the 
waveguides. Such random index variations will introduce additional mode loss and mode 
coupling [1,2]. As indicated by the literatures [1,2], functional devices based on optical 
waveguides will have a degraded performance due to the effect. 

The impact of the random index variations inside optical waveguides can be studied by the 
coupled mode theory (CMT) [3]. Marcuse [4–6] derived a set of coupled equations for the 
power evolution of the modes based on the CMT. His pioneering works has opened a gate for 
the analysis of the random index variations inside optical waveguides and has inspired 
abundant subsequent works [1,2,7–11]. 

Despite the ingenious works [1,2,4–12] led by Marcuse, there are a few unanswered 
questions. First of all, there has been no comprehensive theoretical framework, which brings 
difficulties to study the problem in a deeper sense. Although Marcuse has brought the coupled 
power equation, he did not provide the exact coupled equations for the higher order statistics, 
such as the power fluctuations and power correlation coefficients. In his book [12], Marcuse 
derived an approximate coupled power fluctuation equation and solved it by assuming that the 
coupling between the modes does not contribute to the correlation between them (i. e. the 
mode powers are independent variables), and the correlation maintains as 0. As pointed out by 
Marcuse himself [12], this is only an approximate assumption and is obviously not true in a 
lossless two-mode waveguide, where the powers of the two modes are perfectly correlated. 
Therefore, the power deviation calculated by the equation in [12] becomes inaccurate when 
the mode coupling is strong and the propagation distance is long. Furthermore, the correlation 
between the modes are always assumed to be zero and have not been studied in Marcuse' 
book [12]. The lack of study on these important statistical parameters brings difficulties 
during the evaluation of the system performance, such as the power sensitivity and overall 
system capacity. For example, a batch of multimode waveguides are fabricated by the same 
process, and therefore they should have similar edge roughness. However, due to the random 
nature, the mode coupling may induce different output mode power distributions for different 
waveguides when the inputs are the same. A more significant example is from the emerging 

#258124 Received 26 Jan 2016; revised 16 Mar 2016; accepted 16 Mar 2016; published 21 Mar 2016 
© 2016 OSA 4 Apr 2016 | Vol. 24, No. 7 | DOI:10.1364/OE.24.006825 | OPTICS EXPRESS 6826 



mode division multiplexing technology. When the multimode waveguides are used for mode 
division multiplexing, random mode coupling evaluation will be essential to characterize the 
optical multiple input multiple output channel [13–16]. In propagation links, the optical 
waveguide index might be impacted by the temperature and strain variations [17]. For 
example, the temperature sensitivity of SiO2 is 1.6 × 10−5°C [17], while temperature 
sensitivity of Ge, the widely used material doped in the optical communication fibers, is 2 × 
10−3°C [17]. These values will be significant for a fiber link with hundreds of kilometers' 
length. The actual index temperature sensitivity for the optical fibers or waveguides depends 
on the material composition of the optical fibers/waveguides. Just like the case of free space 
optical communication links [18], the random changes of index from time to time will also 
bring power variations for each mode at the output. In free space communication links, such 
random power fluctuation is measured by the scintillation index, and it scales with the 
propagation distance [18] (because it scales with the Rytov variance and the Rytov variance 
scales with the propagation distance). Therefore, it can be expected that in the multimode 
fiber/waveguide transmission systems, the varying output power at each mode will bring more 
stringent sensitivity (defined as minimum input power required to produce the desired signal 
to noise ratio) requirement for the detectors at the receiver side. The degradation of the 
sensitivity can be measured by the standard deviation of the mode power. Furthermore, the 
correlations between different modes due to the random coupling will impact final channel 
covariance matrix, which is related to the channel capacity [16]. Such critical information can 
only be calculated from the higher order statistics such as the variance of the mode power, or 
the covariance between the powers of different modes. 

To tackle these unresolved problems, we have conducted the following works: 1) A set of 
stochastic differential equations (SDEs) is proposed to describe the wave propagation and 
coupling inside the optical waveguides with random index variations; 2) A theoretical 
framework is established to find the ordinary differential equations (ODEs) of the higher 
order statistics of the modal amplitudes; 3) ODEs for the second order statistics (the optical 
power) and the fourth order statistics (the power fluctuations and the power correlation 
coefficients) are derived. It is found that the ODEs for the modal power evolution coincide 
with the coupled power model proposed by Marcuse. Analytical solutions to these ODEs are 
provided; 4) Detailed Mant-Carlo simulations are conducted based on the SDEs. The results 
are compared with the ones predicted by the ODEs and excellent agreement is achieved. 

2. Mathematical model 

2.1 Coupled mode theory inside optical waveguides 

Without loss of generality, we start with the scalar Helmholtz equation [3–6] is to derive the 
coupled mode equation, 

 2 2 0kϕ ϕ∇ + =  (1) 

where k stands for the wave number in the waveguides. The theory will be extended to the 
vector case [3] afterwards. 

Assuming that there is a perturbation in the refractive index, we have 

 

2 2 2

2 2 2

0k k

k k k

ϕ δ ϕ ϕ

δ

∇ + + =

= −
 (2) 

where < > stands for the average value. The field inside optical waveguide can be expanded 
by its orthogonal modes (including the leaky modes) of the unperturbed waveguides as [3] 

 mj z
m ma e βϕ φ −=  (3) 
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where, am stands for the amplitude, βm the propagation constant, and φm the modal field of the 
modes. Here, Σ not only stands for the summation for the guided modes, but also the 
integration for the leaky modes which have continuous varying propagation constants. These 
modes should fulfill 

 ( )2 2 2 0m mkφ β ϕ⊥∇ + − =  (4) 

Substituting Eq. (3-4) into Eq. (2), and neglecting the second order derivative of am with 
respect to z, one has [3] 

 
( ) ( )2

' '2 0m mm j z j z
m m m m

a z
j e k a z e

z
β βφ β δ φ− −∂

− + =
∂   (5) 

Due to the orthogonality between the modes, it can be derived that [3] 

 
( ) ( ) ( ) ( )'

' '
m mj zm

mm m

da z
C z e a z

dz
β β−=  (6) 

where 

 ( )
* 2

'

' 2

1

2

m m

xy
mm

m m

xy

k dS

C z
j dS

φ φ δ

β φ
=




 (7) 

Assuming the modes has been normalized such as [3–6] 

 * 2
m n mn

mxy

dS
ωμφ φ δ
β

=  (8) 

one has 

 

( )
2

* 20
' '

2 2 2
0

2 2 2

4mm m m

xy

k
C z n dS

j

k n k

n n n

φ φ δ
ωμ

δ δ

δ

=

=

= −


 (9) 

where k0 is the wave number in the free space. 

2.2 The Stochastic differential equation model 

Assuming δn2 can be decomposed into two random independent processes in the x-y plane 
and the z direction, we have 

 
( ) ( ) ( ) ( )
( ) ( ) ( )

2 2

*
' ' '

, , ', ', ' ', ' '

' '

xy

mm mm mm

n x y z n x y z R x x y y z z

C z C z z z

δ δ η

κ η

= − − −

= −
 (10) 

where 

 ( ) ( ) ( ) ( ) ( )
4

* *0
' ' '2 2

' '

, ', ' , ', ' ', ' '
16mm m m m m

xy x y

k
x y x y x y x y R x x y y dSdSκ φ φ φ φ

ω μ
= − −  (11) 

In the special case that the randomness only occurs in the z direction while it is 
deterministic on the x-y plane (e.g the rough side wall), the coupling coefficient Cmm'(z) can be 
modeled as a constant multiplies a random process f(z) in the z direction. 
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( ) ( )

( ) ( ) ( )
' '

' '

mm mmC z f z

f z f z z z

ς

η

=

= −
 (12) 

where 'mmς  is determined by the position of the rough surface and the modal distributions of 
mode m and mode m', as indicated by Eq. (9). For example, when the rough surface is at the 
position of x = a, ( ) ( )2n x a f zδ δ= −  it can be calculated as 

 ( ) ( )
2

*0
' ', ,

4mm m m

k
a y a y dy

j
ς φ φ

ωμ

∞

−∞

=   (13) 

With the introduction of the above random variables, Eq. (6) becomes a set of SDEs. The 
coupled mode equation should be regarded as Stratonovich sense, which uses the value in the 
middle of the propagation step during the numerical integration. It should be converted into 
Ito sense in order to take the average on both sides of the equation and let the random variable 
to be averaged to zero. The conversion is accomplished as follows 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
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' ' '
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' ' '
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' ' '* 3/ 2
' ' ' '
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z dz z dz
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m mm mm mm m
m mz z z

da z a z dz a z

da z
a z C e dz C e dz

a z C e dz C e dz C e dz a z O dz

β β β β

β β β β β β

+ +
− −

+ + +
− − − −

= + −

= +

 
= + + 

 

  

   

 (14) 

The detailed derivation of Eq. (14) is provided in the appendix. Equation (14) is quite 
different from the usual coupled mode equation which has been adopted by Marcuse [4–6]. It 
indicates that the changing ratios of the amplitudes are not only related to the amplitudes of 
the modes, but also the changing ratios themselves. The second term on the right hand side 
(RHS) does not vanish because the expectation of this term will not be zero. Equation (14) is 
the SDE which serves as the theoretical basis of the following analysis. 

2.3 Energy conservation 

Firstly, the validity of Eq. (14) can be examined by deriving the energy conservation law. The 
total power of the optical field is the summation of the power of each mode. We denote the 
total power as Pt 

 H
tP = a a  (15) 

where a is the vector whose elements are ai, and H denote Hermitian transpose. Since the 
coupling coefficients Cmm' forms an anti-Hermitian matrix, it can be verified from Eq. (14) 
that 

 0t
d P

dz
=  (16) 

So the total power Pt is a constant along the z axis. However, the mode coupling induced 
energy transfer will take place between the modes and the power fluctuations will continue to 
grow. It should be noted that the power conversion law is only valid when the leaky modes 
are taken into account. If only the guided modes are considered, the total power will be 
attenuated due to the coupling to the leaky modes. 

2.4 Coupled power equation 

The power of each mode is [4] 

 ( ) ( ) ( )*
m m mP z a z a z=  (17) 

Its differential is 
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 ( ) ( )( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )* * * *
m m m m m m m md a z a z d a z a z a z d a z da z da z= + +  (18) 

It can be noticed that the differential from the SDE is different from the one from the 
ODE. The second order product of the differentials is included in Eq. (18), because it will not 
vanish after averaging. It can be assumed that am and δn2 are independent to each other, which 
is reasonable since Ito sense SDE has been adopted. Therefore, substituting Eq. (14) into Eq. 
(18), and using the property that the average of the product of δn2 and am is 0, one has 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

' '

' '

' ''*
' ' '

' ''*
' '

' ''

' ''

m m m m

m m m m

z dz z dz
j z j z

m m mm mm

z z

z dz z dz
j z j z

m mm mm

z z

dP z P z C e dz C e dz

P z C e dz C e dz

β β β β

β β β β

+ +
− − −

+ +
− − −

=

−

  

  
 (19) 

The first term on the RHS in Eq. (19) comes from the second order differential in Eq. (18), 
while the second term on the RHS comes from the first order differentials. The term inside the 
bracket can be further calculated as 

 ( ) ( ) ( ) ( )' ' '' '' '*
' ' '' '' ' 'm m m m m m

z dz z dz dz
j z j z j z

mm mm mm

z z dz

C e dz C e dz dz z e dzβ β β β β βκ η
+ +

− − − −

−

=    (20) 

where 

 ( ) ( ) ( )
4

*0
' '2 2

' '

, ', ' ', ' '
16mm m m

xy x y

k
x y x y R x x y y dSdSκ φ φ

ω μ
= − −    

If the differential dz is much longer than the correlation length of the random index 
variation in the z direction (in this case, the propagation distance should be much longer than 
the correlation length), which is the assumption adopted by Marcuse [4–6] and his followers 
[1], the results in Eq. (20) can be formulated as, 

 ( ) ( ) ( )( )' '
'' 'm m

dz
j z

m m

dz

z e dzβ βη η β β−

−

≈ − FT  (21) 

where FT stands for the Fourier transform. And we have 

 ( )( ) ( ) ( )( )' ' '
m

mm m m m m

dP
P z P z

dz
κ η β β= − − FT  (22) 

When only the surface roughness is considered, the randomness in the x-y plane vanishes, 
and Eq. (22) becomes the coupled power equation proposed by Marcuse [4–6], which is 
derived under another theoretical framework [4–6]. Therefore, the validity of the proposed 
SDE is demonstrated. Furthermore, Eq. (22) considers the randomness in the x-y plane, which 
is not included in the Marcuse' model. Therefore, Eq. (22) cannot only be used for the 
analysis of the surface roughness impact for the optical waveguides, but also used for the 
analysis of the beam propagation inside random media, e. g. beam propagation in the free 
space with the presence of the atmosphere turbulence. 

2.5 Coupled equation for the higher order statistics 

Other than the second order statistics, i. e. the modal powers, higher order statistics of the 
amplitudes becomes more and more important. With the assistance of the SDE proposed in 
this paper, it is possible to derive the coupled ordinary differential equations for the power 
variations as well as the power correlation coefficients. 

The second order statistics of the optical power is 

 ( ) ( ) ( )2 2 *2
m m mP z a z a z=  (23) 

Its differential is 
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( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2 *2 * 2 *

* * *2

2 * *

2 2

2 2

m m m m m m m

m m m m m m m

m m m

dP z a z a z da z a z a z da z

a z a z da z da z a z da z da z

a z da z da z

= +

+ +

+

 (24) 

Substituting Eq. (14) into Eq. (24) and averaging on both sides of the Eq., one has 

 

( )
( ) ( )( )

( ) ( ) ( )( ) ( )( ) ( )

2
2

' '
'

2

' ' '
'

2

4 2 0

m

m mm m m
m

m m mm m m mm m
m

d P z
P z

dz

P z P z P z

κ η β β

κ η β β κ η

= − −

+ − −





FT

FT FT

 (25) 

The self-coupling term (3rd term on the RHS on Eq. (22)) is included in Eq. (22) while the 
Marcuse' approximated coupled power fluctuation equation neglects this term [12]. It can be 
not neglected because it is a random coupling term and cannot be absorbed by the 
deterministic propagation constant. However, this term will automatically vanish when it 
combines with the second term on the RHS. Furthermore, the power correlation term has 
appeared in Eq. (25), since it is not necessary that Pm and Pm' are independent to each other, 
the power correlation term cannot be evaluated by Eq. (22) (In Marcuse' approximated 
solution, Pm and Pm' are assumed to be independent). Therefore, the coupled equation for the 
power correlation term should be derived from the following differential equation. 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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m m n n m m n n

m m n n m m n n

m m n n m m n n
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dP z P z da z a z a z a z a z da z a z a z

a z a z da z a z a z a z a z da z

da z da z a z a z a z a z da z da z

da z a z da z a z a z da z a z da z

da z a z a z da z a z da z da z a z

= +

+ +

+ +

+ +

+ +

 (26) 

The ODE for average value of Pm Pn (m≠n) is 

 

( )( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

( )( )

' ' ' '
' '

' ' ' ' ' '
' '

2 0

m n
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d P P
P P P P
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P P

κ η β β κ η β β

κ η β β κ η β β

κ η

= − − − −

+ − + −

−

 

 

FT FT

FT FT

FT

(27) 

The power standard deviations and the power correlation coefficients can be calculated as 

 
( )

22 2

,

m m m

m n m n m n

P P P

C P P P P P P

δ = −

= −
 (28) 

2.6 Analytical solutions for the ODEs of power and power variations 

Equation (22), Eq. (25) and Eq. (27) are the ODEs with constant coefficients. They can be 
solved analytically. As indicated in [4–6], Eq. (22) can be reformulated as 

 
d

dz
=P

KP  (29) 

where vector P is composed by the average power of each mode, and the coupling matrix K is 
composed by the coupling coefficients indicated in Eq. (22). Equation (29) can be solved 
analytically as 
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 ( ) ( ) ( )exp 0z z=P K P  (30) 

Equation (25) and Eq. (27) can be reformulated as 

 
( ) ( )d z

z
dz

=
Q

MQ  (31) 

where Q is a vector composed by the higher order statistics of the amplitudes, 
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 (32) 

Since M is a matrix with constant elements, Eq. (31) can be solved analytically as 

 ( ) ( ) ( )exp 0z z=Q M Q  (33) 

It should be noted that the above derivations have taken the leaky modes into account. 
When only the guided modes are considered, the impact of the leaky modes can be regarded 
as the radiation loss [4]. And this can be seen from Eq. (22), Eq. (25) and Eq. (27), by 
considering mode m' or mode n' as the radiation modes. Due to the fact that radiation modes 
dissipate rapidly, their power can be regarded as 0 in the coupling equation, and their 
contribution is only reflected in the radiation loss [4]. Not surprisingly, it can be interpreted 
from Eq. (22), Eq. (25) and Eq. (27) that the radiation loss can be replaced by a deterministic 
loss instead of a stochastic parameter. The radiation loss αm of each mode can be evaluated 
according to the modal distribution and the waveguide parameters [4], and can be 
incorporated into Eq. (22), Eq. (25) and Eq. (27) easily. The details of loss evaluation will be 
presented in section 2.8. 

2.7 Extension of formulas in the vector theory 

Although the formulas have been derived based on the scalar Helmholtz equation, the results 
derived here can be easily extended for the vector case. A coupled equation can be derived 
based on the Maxwell's equations. It is in the form of Eq. (6), however, with the coupling 
coefficient modified as [19] 

 ( ) ( ) ( )( )

* 2
0 '

' * *

m m

xy
mm

m m m m

j n dS

C z
zdS

ωε δ− ⋅
=

× + × ⋅





e e

e h e h
  (34) 

where em and hm denote the electric field and the magnetizing field of the mth modes. if we 
define [19] 

 ( ) ( )( )* *1
1

4m m m m mP zdS= × + × ⋅ = e h e h


 (35) 

we have 
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2

* 20
' '

04mm m m

xy

k
C z n dS

j
δ

ωμ
= ⋅e e  (36) 

which is almost in the same form as the scalar case. During the derivation of Eq. (34), the 
orthogonality between the modes is used [20]. The readers can find the derivations in [19] and 
in Marcuse' paper [21]. Obviously, the conclusion derived from the scalar coupled equation 
remains valid since the form of the coupled equation has not changed. 

2.8 Evaluation of the modal losses in slab waveguides and planar waveguides 

As suggested in the previous sections, the radiation modes will contribute to the loss of each 
guided mode. The loss can be evaluated by the coupling between the guided modes and the 
radiation modes. 

For waveguides with high index contrast, e. g. lithographically etched ridge waveguides, 
the guided modes as well as the radiation modes should be studied based on the vector theory. 
While Eq. (10) stands, Eq. (11) should be modified as 

 ( ) ( ) ( ) ( ) ( )
2 2

* *0
' ' '

' '

, , ', ' ', ' ', ' '
16mm m m m m

xy x y

x y x y x y x y R x x y y dSdS
ω εκ = − −  e e e e   (37) 

By replacing em' with the plane waves approximate the radiation modes and integrating over 
kx and ky, one may evaluate the mode loss. 

In lithographically etched ridge waveguides, even in waveguides with high index contrast, 
the modes can be classified as quasi TE and quasi TM modes. For the quasi TE/TM modes, 
the z component of E/H is very small and can be neglected. Without loss of generality, we 
consider the quasi TE modes here, just like D. Lenz did in [9]. In such modes, the principal 
field components will be Ex and Hy [9], and Ex>>Ey. Therefore, Eq. (37) can be simplified as 
by only considering the x components of em and em' [9]. The waveguides usually have four 
different side walls, i.e. the top, the bottom, the left and the right side walls. For simplicity, 
we present the mode loss caused by the wall roughness on the top. The loss caused by other 
three walls can be evaluated similarly. The overall loss will be the summation of the losses 
caused by the roughness on the four walls, because the roughness on the walls can be 
regarded as independent random processes. We assume the top wall is located at the position 
of the y = b. In this case, Eq. (37) should be modified as 

 ( ) ( ) ( ) ( ) ( )
2 2

* *0
' ' '

'

, , ', ', ' '
16mm m m m m x

x x

e x b e x b e x b e x b R x x dxdx
ω εκ = −   (38) 

Here we directly use em and em' to denote the x components of the electrical fields so that the 
symbols do not mix with each other. As suggested above, we can use the plane waves to 
approximate the radiation modes [9], and therefore, em' should be replaced by 
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( ) ( )
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21
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e k k k k jk x jk y

k k
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k k n k k k

ρ

ωμρ
π β

β

= +

=

= − −

 (39) 

where kx and ky are the x and y direction wave vectors of the plane wave, n2 the cladding 
refractive index, βp the propagation constant of the plane wave in the z direction. The plane 
wave in Eq. (39) has been normalized so that [9] 
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p x y p x y x x y y

xy p x y

e k k e k k dxdy k k k k
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ωμ δ δ
β

= − −  (40) 

Substituting Eq. (39) into Eq. (38), one has the loss coefficient of the mth mode as 

 

( )( )

( ) ( ) ( )( ) ( )
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 
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 (41) 

In the case of slab waveguide, we have em remain unchanged with respect to x and R(x-x') will 
be a constant with the value of (n1

2- n2
2) 2, where n1 is the core index. Therefore the 

integration over (x-x') will result in 2πδ(kx). In this case, Eq. (42) is reduced to 

 ( ) ( ) ( ) ( )( )
2 2

22 2 *0 0
1 2 2 2 2

2 0

1

16
y

m m m m p y

k y

n n e b e b dk
n k k

ω ε ωμα η β β
π

= − −
− FT (42) 

Here we use em(b) to stand for the renormalized em(x,b) (It needs to be renormalized because 
the two dimensional field em(x,y) is reduced to the one dimensional field em(y)). By changing 
the variable, 
 2 0 sinyk n k θ=  (43) 

we have the loss as 

 ( ) ( ) ( ) ( )( )
2 2

22 2 *0 0
1 2 2 0

0

cos
16m m m mn n e b e b n k d

πω ε ωμα η β θ θ
π

= − −FT  (44) 

which is in exact agreement with the results derived by [8] if the normalization factor is 
properly chosen. For the waveguides with 3D structure, e. g. the rectangular waveguides, 
random index perturbation in the z direction is usually assumed in the published literatures 
[9]. Under such an assumption, for the top wall of the rectangular waveguide, i. e. the wall 
with the coordinates of y = b, the random index changes remain identical in the x direction 
[9], and therefore we have R(x-x') = (n1

2- n2
2) 2. Substituting this into Eq. (41), we have the 

mode loss as 

 
( ) ( ) ( ) ( )( )

22 22 2 2 2
0 1 2 * , exp

16
x y

p

m m x m p x y

k k x

n n
e x b jk x dx dk dk

ω ε ρ
α η β β

−
= −   FT (45) 

which is exactly the same as the mode loss derived in [9]. For a more general case, i. e. the 
index perturbation changes randomly both in the x and z directions on the top wall, Eq. (41) 
should be used. 

In practical waveguides fabricated by the lithography process, the random variation of the 
side wall should be a two dimensional random process rather than the one dimensional 
random process in the z direction. The correlation length in the x/y direction should be in the 
same order as the correlation length in the z direction. Therefore, for the waveguides with 
short correlation length in the x/y direction, the radiation loss might be overestimated by the 
model in [9]. 

For example, the rectangular waveguide discussed in [9] is with the core index of 1.01 and 
cladding index of 1. The width and the height of the waveguide are both 30μm [9]. The 
autocorrelation function in the z direction is Gaussian function with the correlation length as 
0.75μm [9]. The standard deviation of the roughness σ  is 4 × 10−9 [9]. The signal wavelength 

is 1550nm. Using Eq. (45), the radiation loss for the 11
xE  mode can be evaluated as 0.0006 
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Np/m, or 0.005 dB/m, which is in agreement with the results in [9]. However, if we assume 
that the side wall roughness is a two dimensional process and the autocorrelation function in 
the x/y direction is Gaussian function, the radiation loss will be different. Figure 1 depicts the 
variation of the radiation loss with respect to the change of the correlation length in the x/y 
direction while other parameters are fixed. 

 

Fig. 1. The radiation loss of 
11
xE  mode versus correlation length in the x/y direction, the z 

directional correlation length is 0.75μm. 

 

Fig. 2. The radiation loss of 
11
xE  mode versus correlation length in the x/y direction, the z 

directional correlation length is 50 nm. 

It can be seen from the Fig. 1 that the radiation loss increases as the correlation length 
increases. Comparing the results when the x/y directional correlation length is infinitely long 
with the results when the x/y directional correlation length is the same as the z directional 
correlation length (i. e. 0.75μm), 0.0007 dB/m (15%) discrepancy is observed. However, 
when the z directional correlation length is shorter, e. g. 0.05 μm [10], the discrepancy 
between the two results can be as much as 80% (shown in Fig. 2, comparing the results when 
the correlation length is 0.05 μm with the results when the correlation length is infinity). 
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Therefore, the results in [9] are reliable only when the waveguides have large correlation 
lengths of roughness. For the waveguides fabricated by the advanced lithography process, 
which has the correlation length of roughness as short as 50 nm, Eq. (41) should be used to 
get a better estimation of the radiation loss. 

3. Simulation results and discussion 

Numerical simulations are conducted to verify the derived analytical formulas. Without loss 
generality, a slab waveguide with random surfaces is simulated [4]. The slab waveguide is 
identical to the one in Marcuse' paper [4], which has the core index as 1.5 and the core and 
cladding index ratio as 1.01. The width of the waveguide is 2d and k0d = 82 as indicated in 
[4], with the signal operation wavelength as 1550nm. The optical waveguide is able to hold 
ten modes [4]. The effective index of each mode is calculated and listed in Table 1. 

Table 1. Effective Indexes of the Ten Modes of the Waveguide 

Mode order effective index 

1 1.499891 

2 1.499563 

3 1.499017 

4 1.498254 

5 1.497275 

6 1.496082 

7 1.494678 

8 1.493068 

9 1.49126 

10 1.489269 

The optical waveguide has two random surfaces located at x = d and x = -d. Two 
independent processes f(z) and h(z) with the same correlation lengths are used to model the 
random index variations on the two surfaces [4]. The random index variations are usually 
caused by the fabrication process, but the random change of the temperature or the strain can 
also be a part of the reason. 

According to Eq. (9) and Eq. (13), the coupling coefficient Cmm' can be modeled as [4] 
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 (46) 

where n1 and n2 are the core and cladding indexes, βm the propagation constant of the mth 
mode, φm the modal distribution of the mth mode at the position of x = d. 

The two random processes describing the index variations are assumed to have the 
following Gaussian correlation function [4] 

 ( ) ( ) ( ) ( ) ( )
( )2

2

'

2' ' '
z z

Df z f z h z h z z z eη σ
−

−
= = − =  (47) 

where 2σ is the strength of the roughness, D the correlation length. 
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The Fourier transform of the correlation function is [4] 
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The correlation function of the coupling coefficient is [4] 
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As explained in the previous section, the radiation loss is the result of the random index 
variation, but it is equivalent to a deterministic loss in the SDEs. For each guided mode, its 
radiation loss can be evaluated as by section 2.8. Here, we directly use the expressions 
derived by Marcuse [4] 

 

( )( ) ( )

( ) ( )
( )

( )

2 0

2 0

2 2 3 2 2 2
1 2 0 1

2 2 2 2 2 2 2 2

2 2 2
2 0

2 2 2
1 0

1 0

sin cos sin

2 cos 1 cos sin sin cos

1
sin

2

n k

m m m

n k

m

m
m m

m

I d

n n k n d d
I

d d d d d d

n k

n k

m

n k d

α η β β β β

θ ρ σ ρ σβ
π θ γ ρ σ σ σ ρ σ σ σ

ρ β

σ β
π

θ

−

= −

−  
= + + + + 

= −

= −

+
=

 FT

 (50) 

When the correlation length D >> d or D<<d, the analytical approximation of the radiation 
loss can be obtained. When D<<d, we have [4] 
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When D>>d, we have 

 

( )

( )

( ) ( )

( )

2
2

2 0
3 2

2 1 04

2 0 2 0

2 22
2

0 2 0

2 2
1 2

sin

1
2 1 cos

tan 02
cot tan

cot 0

tan 0

cot 0

m
D

n k
m

m

m m
m

m

n k
e

d n k n k
d

dn
d d and

dk D n k

d
n n or

d

β θα σ
β θ

γ
σ

σ σ
σβ

σ
σ

− −
=

 
− + 

 
≠

+ ≠−

 = −
 =



 (52) 

The analytical model derived in section 2 is used to calculate the power, the power 
variation and the power correlation coefficients. Meanwhile, Monte-Carlo simulation is 
performed based on the SDE in order to provide the comparisons for the analytical model. 

Firstly, the correlation length D is assumed to be 35d [4]. Without loss generality, only the 
fundamental mode is injected into the waveguide with the power of 1. Normalized 
propagation distance and normalized power are used in the simulation. The distance is 
normalized as [4] 

 
2 2

0
2

k
z

d

σ
 (53) 
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while the power at each mode is normalized with respect to the input power of the 
fundamental mode. In order to maintain the accuracy during the numerical integration, the 
propagation step cannot be too large. Therefore, it is quite time-consuming to conduct Monte 
Carlo simulation. In the simulation, the normalized propagation distance is limited to 16000, 
and totally 4000 rounds of simulations on the SDE are conducted to obtain the average values. 

In Fig. 3 and Fig. 4, the evolution of the powers of mode 1 to mode 4 with respect to the 
normalize propagation distance is illustrated. Due to the page limit, not all of the modes are 
illustrated in the Figs.. The output powers of all of the modes at the end the propagation are 
shown in Table 2. The Monte Carlo simulation is accomplished by integrating the SDE (Eq. 
(14), while the analytical results are from the analytical solution of the ODEs (Eq. (29)). The 
curves from the Monte Carlo simulation agree well with the analytical predictions. It can be 
seen from the Figs. that the coupling between the fundamental mode and mode 2 is the 
strongest. With the increase of the mode order, the coupling decreases. This is because the 
coupling coefficients depend on the difference between the propagation constants. It gets 
smaller as the difference becomes larger. Furthermore, it can be seen that with the increase of 
the propagation distance, the average power of each mode tends to have an equal value, and 
this is in agreement with the Marcuse' theory [4]. The accuracy of the analytical coupled 
power model (which is also derived by Marcuse) with respect to the Mont Carlo simulation is 
evaluated. The relative error between the results is below 5%, and this demonstrates the 
validity of the proposed SDEs (i. e. Equation (14)) in this work. 

 

Fig. 3. The power evolution of the fundamental mode (mode 1). 

 

Fig. 4. The power evolution of mode 2 to mode 4. 
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Fig. 5. The power standard deviation evolution of the fundamental mode. 

 

Fig. 6. The power standard deviation evolution of mode 2 to mode 4. 

 

Fig. 7. The power correlation coefficients between mode 1 and mode 2 to mode 4 along the 
propagation distance. 
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Table 2. Output Power and Output Power Standard Deviations at the End of the 
Propagation 

 
power after propagation of 

16000 normalized units 
power standard deviation 

after propagation 
Mode 
order Analytical Monte-Carlo Analytical Monte-Carlo

1 0.8943 0.8907 0.0689 0.0720 

2 0.0588 0.0613 0.0565 0.0593 

3 0.0323 0.0327 0.0326 0.0339 

4 0.0106 0.0110 0.0128 0.0126 

5 0.0032 0.0034 0.0049 0.0052 

6 0.0007 0.0008 0.0013 0.0013 

7 0.0001 0.0001 0.0002 0.0002 

8 0.0000 0.0000 0.0000 0.0000 

9 0.0000 0.0000 0.0000 0.0000 

10 0.0000 0.0000 0.0000 0.0000 

Afterwards, the higher order statistics of the amplitudes is calculated. The power standard 
derivations of mode 1 to mode 4 versus the normalized propagation distance are shown in 
Figs. 5-6. The power standard deviations of each mode at the end of the propagation are 
shown in Table 2. It can be concluded that the analytical solution of the ODEs shown in Eq. 
(33) gives a very accurate prediction for the higher order statistics. The relative error is below 
5%. 

Since the optical signal is deterministic at the beginning of the propagation, i. e. with the 
constant input optical power, the standard deviation of the mode power will be 0. Therefore, it 
is not possible to evaluate the normalized correlation coefficient (i.e. Equation (28) 
normalized by the standard deviations). The un-normalized power correlation coefficients 
between the powers of the fundamental mode and mode 2 to mode 4 are calculated according 
to Eq. (28) and are plotted in Fig. 7. It can be seen from the Fig. that as the propagation 
distance increases, the correlation between the powers of the modes increases (regarding the 
absolution value of the correlation coefficient). 

The information of the higher order statistics of the modal amplitudes, which is not 
studied before, is very useful for the system performance estimation as discussed in the 
previous sections. For example, from Fig. 5-6, it can be seen that the power variation 
increases as the propagation distance increases, which brings sensitivity penalty during the 
receiver design. Also, as shown in Fig. 7, the correlation (indicated by the absolute value of 
the correlation coefficients) increases with respect to the increase of the propagation distance. 
If this correlation coefficient variation is caused by the random index variations induced by 
the temperature or strain in a single waveguide, it will result in the decrease of the system 
capacity. 

The robustness of the analytical results is examined by changing the correlation length D, 
which varies from 0.01d to 100d [4]. The discrepancy between the analytical solution of the 
ODEs and the Monte Carlo simulation remains below 5%. Hence, the model proposed in this 
paper is quite robust to simulate random optical waveguides with different correlation lengths. 

One thing worth mentioning is that the computational efficiency of the analytical model is 
greatly improved in comparison with Monte-Carlo simulation. The computational time has 
been reduced by a factor of 10000. 

4. Conclusion 

Based on the coupled mode theory, a set of SDEs have been proposed to analyze the random 
index variations inside the optical waveguides. ODEs are derived to characterize the power 
evolution as well as the higher order statistics of the modal amplitudes. Analytical solution to 
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these ODEs can be provided because they are ODEs with constant coefficients. These ODEs 
not only save the computational efforts by avoiding the time-consuming Monte-Carlo 
simulations, but also bring a deeper understanding of the impact of the random index 
variations. Detailed Monte-Carlo simulations are provided to verify the derived ODEs. 
Although the simulation has been conducted on a slab waveguide suggested by Marcuse [4], 
the ODEs are expected to be functional for optical waveguides with arbitrary structures. 

Appendix 

In this appendix, we provide the detailed derivation of Eq. (14). 
As discussed before, Eq. (6) should be interpreted in the Stratonovich sense, which 

indicates that the RHS of the Eq. is evaluated in the middle of the integration step, i.e. 

 ( ) ( )' '
' '
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m m mm
m z
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+
− = + 

 
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It is worth noting that Cmm' is actually a filtered Gaussian random process [22–24], i.e. the 
Gaussian process filtered by a linear filter with the impulse response of 

 ( ) ( )( )( )1 *
' ' 'mm mmC z C z−FT FT  (55) 

where FT denotes the Fourier transform with respect to the variable (z-z') and FT−1 denotes 
the inverse Fourier transform. This linear filter can also be described by a linear ordinary 
differential equation (ODE) [22–24]. For example, when 
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the corresponding linear ODE will be 
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According to the SDE theory, the Stratonovich sense SDE should be converted to Ito 
sense, i.e. the RHS of the Eq. should be evaluated at the beginning of the integration step. 
Using the Taylor expansion, we have [25] 

 
( ) ( )

( ) ( )

'
' '

'
'

2 2

2

m
m m

m
m

da zdz dz
a z a z

dz

da z
a z

 + = + + 
 

= + +





 (58) 

Substituting Eq. (47) into Eq. (43), we have 
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which is Eq. (14). It can be further simplified by submitting the expression of dam' into Eq. 
(48), and we have 
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 (60) 

It is shown in Marcuse's book [12] that the second term on the RHS of Eq. (49) can be 
simplified by letting n=m, because only under this condition, will the fast oscillation term in 
the z direction vanish, and will the value of the expression become non zero after averaging 
over z. 

Hence, we have 
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Since Cm'm=Cmm'*, we have 
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It should be noted that in most of the text books, the SDE is usually driven by the 
Brownian motion, which indicates that the correlation function of the driving force is the delta 
function. However, the filtered Brownian motion, such as the Ornstein–Uhlenbeck process, 
can also be regarded as the driving force of the SDE and the results have been verified by the 
Mont Carlo simulations [22,23]. 
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