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Influence of Carrier Nonuniformity on the Phase
Relationship Between Frequency and Intensity
- Modulation in Semiconductor Lasers

OWEN DOYLE, PHILIPPE B. GALLION, MEMBER, IEEE, AND GUY DEBARGE

Abstract—The chirp to modulated power ratio is an important char-
acteristic of semiconductor laser dynamics and is closely related to the
linewidth enhancement factor «. We have measured the modulus and
phase of the CPR for a 1.5 pm buried heterostructure laser and a 0.85
pm channeled-substrate planar (CSP) laser. The results for the phase
are inconsistent with previously published expressions including spon-
taneous emission and spectral hole burning. In particular the CSP laser
exhibits an abrupt phase shift in the CPR. We present an explanation
of this behavior in terms of the influence of a nonuniform carrier den-
sity on the phase-amplitude coupling, as expressed by an integral
expression for the mode parameter o. Using a simple model for lateral
behavior which analytically incorporates diffusion and a nonuniform
material o parameter, we obtain qualitative agreement with the CSP
data. Thus we demonstrate the importance of the lateral laser struc-
ture on the phase-amplitude pling in index-guided iconduct
lasers, and the usefulness of CPR phase measurements for laser char-
acterization.

I. INTRODUCTION

"JTHE coupling between the phase and amplitude of the

optical field in a semiconductor laser is manifest in a
wide variety of laser characteristics such as linewidth,
phase noise, injection locking bandwidth, and the extent
of chirp. In many practical cases, in particular at high
frequencies, the dominant source of this coupling is the
joint carrier density dependence of the real and imaginary
parts of the refractive index, a relationship commonly
parameterized by the linewidth broadening factor, « [1],
[2].

The chirp to modulated power ratio, or CPR, is a very
simple way to measure the phase-amplitude coupling for
a single-mode laser [3]. In the sinusoidal steady state, the
CPR is the ratio of the complex amplitudes of optical fre-
quency and power variations, generally expressed in
GHz /mW. Its modulus measures the extent of chirp for
a given power variation, and its phase equals the phase
angle between the simultaneous intensity and frequency
modulations. In addition to being a very useful parameter
for the study of phase-amplitude coupling by canceling
the parasitic electrical response of the laser and drive cir-
cuit, as well as relaxation resonance effects, the CPR is
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directly pertinent to the design of single-mode optical
communications systems.

Recent theoretical calculations of the linear, small-sig-
nal CPR, including the effects of spontaneous emission
and gain suppression (due to spectral hole burning) can
be summarized by the following expression [3], [4]:

a

CPR =
2P,

(jfmod + CP, + 9) (1)

P,

where P, is the output power per facet in mW and f,.q is
the modulation frequency in GHz. The parameters C; and
C, are given by

el - nPspon

C = ——
! hy « mqV

- 4n7,

in which h» is the photon energy, n the external effi-
ciency, V the active region volume, I’ the confinement
factor, and 7, the photon lifetime. Py, is the spontaneous
power in the laser mode, and e is the gain suppression
factor (in m®).

The extreme simplicity of (1) at high modulation fre-
quencies, for which the first term dominates, suggests a
straightforward technique for measuring «. More gener-
ally, if (1) accurately describes laser behavior, precise
measurements may lead to values for parameters such as
the gain suppression factor [5].

The measurements described in Section II yield results
consistent with (1) with respect to the CPR modulus, but
strikingly different in its phase. An explanation of the ob-
served behavior for the CSP laser is presented in Section
III, based on an analytical model of lateral mode and car-
rier nonuniformity in the laser cavity.

II. CPR MEASUREMENT

Determining the CPR requires knowledge of the inten-
sity modulation (IM) and frequency modulation (FM)
characteristics of a laser. The spectrum under direct si-
nusoidal modulation is predominantly FM, with an asym-
metry introduced by intensity modulation. Thus it is pos-
sible, given the IM index, to extract both the frequency
modulation depth and CPR phase angle from the analysis
of dynamic spectra under weak modulation. This simple
technique has been discussed previously [6].
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The intensity modulation index for a given bias current,
as a function of the nominal RF power of the sinusoidal
modulating current and the modulation frequency, was
determined by observing the optical output with increas-
ing sinusoidal excitation at 100 MHz. At low excitation
levels, corresponding to low IM indexes, the optical
waveform is sinusoidal, its amplitude increases propor-
tionally to the excitation (square root of RF power), and
the average optical power is constant. As the excitation is
increased, the onset of clipping in the optical waveform,
the rolloff in relative optical response and the rise in dc
optical power all indicate the point at which the IM index
equals unity. Independently, the IM response was mea-
sured as a function of frequency, remaining in the sinu-
soidal regime. Assuming a linear relationship between the
sinusoidal current and intensity amplitudes, these two
measurements allow one to determine the IM index at a
given bias current for ainy excitation power or frequency.
This value is used in the analysis of the corresponding
spectrum, yielding the FM index and IM/FM phase de-
lay. The power was generally chosen to give first-order
FM sidebands with intensities roughly 0.2 to 0.3 relative
to the main peak. The corresponding IM indexes were on
the order of 0.1 to 0.2.

This technique has been applied to two very different
lasers: 1) a Hitachi HLP1400 AIGaAs channeled-sub-
strate planar laser (A = 0.83 um) and 2) a CNET distrib-
uted-feedback; InGaAsP, buried heterostructure laser (A
= 1.52 pm). The results for each laser at several output
powers are shown in Figs. 1 and 2.

The dynamic spectrum tends toward symmetry at high
frequencies, corresponding to a CPR phase angle of ¥ =
+x/2. (This ambiguity is inherent in the simple tech-
nique, as described previously.) The value was chosen in
accordance with the high frequency value of (1), i.e., ¥
= 7 /2. This choice lifted the ambivalence for the CNET
BH laser. However, for the Hitachi CSP laser, the asym-
metry attains a maximum, corresponding unambiguously
to ¥ = x, at a frequency which depends on the power;
as the frequency is lowered below this point, the spectrum
again tends toward symmetry, and no assumptions can be
made about the low-frequency asymptote. At every dc
power level, the spectrum reaches this critical asymme-
try, and we have consequently chosen the CPR phase such
that its slope is continuous at this point. The flat regions
near this value result from slight errors in the IM index,
precluding a real solution to the analytical equations at the
extrema of spectral asymmetry.

The modulus of the CPR for both lasers can be approx-
imately described by (1). Despite the dispersion in the
data at high frequencies, due to the difficulties in obtain-
ing precise values for the IM indexes, values of @ = 6.2
for the Hitachi laser and o = 7.9 for the CNET laser
provided reasonable fits to the slopes of the CPR modulus
at all powers for each laser. For comparison, the values
deduced from the linewidth versus inverse power curves
(using for the CNET laser the expression for DFB lasers
neglecting facet reflectivity [7]) are & = 5.7 for the Hi-
tachi laser and o« = 6.4 for the CNET laser. We note that
the CPR measurements provide a more direct, and hence
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Fig. 1. Modulus and phase of the CPR for a Hitachi HLP1400 laser mea-
sured at several output powers.
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Fig. 2. Modulus and phase of the CPR for a 1.5 pm buried heterostructure
DFB laser (CNET).

potentially mote accurate measure of « than does the line-
width. In principle the gain suppression factor can be de-
rived by fitting the nonlinear CPR modulus to (1), but
more accurate measurements are necessary to obtain a
good estimate. Without sufficient precision to make a de-
tailed comparison, we can nonetheless conclude that (1)
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is entirely sufficient to describe qualitatively the modulus
of the CPR.

In contrast, it can be seen that the phase of the CPR,
which according to (1) should vary slowly between 0 and
7 /2, is not correctly described. We conclude that the
phase is more sensitive than the modulus to certain device
characteristics which are not taken into account in the
models leading to (1). For the CNET BH laser, the phase
at high output powers is qualitatively in agreement with
(1), while a significant deviation occurs at low power.
The Hitachi CSP laser shows even greater divergence
from the prediction, with an abrupt phase shift passing
through ¥ = . This divergence corroborates the obser-
vation of Harder er al. [8], who found a frequency-sen-
sitive linewidth enhancement factor for CSP lasers. Pre-
vious measurements of the FM response, such as those of
Jacobsen et al. [9], have given the current-to-FM phase,
which exhibits a 180° phase shift at the relaxation oscil-
lation frequency. Such a phase shift is hot related to the
shift observed here (the relaxation oscillation effects are
canceled in the CPR). However, Sudbg [10] measured the
phase relationship between the intensity and frequency
modulations for the same type of laser several years ago,
and his results show a similar phase shift, although the
asymptotes differ from ours. We will focus on the results
for the CSP laser, proposing an analysis in which lateral
nonuniformity is used to explain the observed phase be-
havior qualitatively, with rough quantitative agreement.
The approach is very similar to those of Nilsson and Ya-
mamoto [11] and Kikuchi et al. [12], [13], who applied
simple nonuniform models to explain anomalies in the FM
response. Our measurements of the CPR allow a thorough
analysis along the lines of these works.

III. LATERAL ANALYSIS

To study the nonuniform case, we must distinguish be-
tween local, constitutive parameters, and overall mode
parameters. We will consider a local material definition
of the coupling parameter, denoted oy, a function of the
cartier density n and optical frequency  [14] (with change
of notation):

de'(w, n)/dn

de"(w, n)/dn 2)

ar(w, n) = —
where € = ¢’ + je” is the complex optical dielectric con-
stant. The modal phase-amplitude coupling can be de-
scribed by the general expression [1]

®=31 (3)
which relates the variations in phase and intensity of a
single-mode laser field via a general coupling parameter
a. For a uniform cavity, considering only carrier-induced
changes in optical response, & = oy, a constant. In the
general case, including for example, gain suppression, the
coupling is more complex and cannot be described by a
time-independent coefficient in (3). However, (3) may still

be useful as a concise expression of the coupling, with a
generalized parameter o (t).

It is recognized that a large number of factors contrib-
ute to the « of (3) [2], [15]. In order to focus our attention
on the influence of the carrier and optical mode profiles
within the cavity, we will neglect spontaneous emission
and spectral hole burning (which can be expressed through
a(t) in (3), although such is not the clearest way to in-
clude them). The latter neglect may significantly weaken
the agreement of our model with the measured data, as
we shall see, but the inclusion of gain suppression at this
point would make it virtually impossible to evaluate the
direct influence of lateral structure, which is our goal. In

"index-guided lasers, perturbation analysis of the wave-

guide equation leads then to the expression [8], [15], [16]

S |E, ()| + awlx) - Ae(x, 1) dx

a(t) = (4)

S ‘E,,(x)‘2 - Ae”(x, t) dx

where E,(x) is the normalized steady-state field profile,
and Ae" (x, t) is the carrier-induced variation in the imag-
inary part of the dielectric constant. This expression is
equivalent to that given by Harder ez al. [8] and is de-
scribed in detail by Sudbg [15], [16], who gives the more
general expression including wavefront curvature along
with the corresponding field normalization conditions. As
an approximation, we can apply (4) independently in the
two coordinates perpendicular to the axis of propagation.
In the transverse direction, perpendicular to the junction
plane, the relative uniformity of the field and cartiers
through the thin active layer and the absence of excitation
outside this region (Ae” = 0 while E, # 0) simplifies
the equation, with no consequence for . Very thin active
layers may lead to gain-guiding effects and wavefront cur-
vature, significantly modifying « [17], [18], but these are
neglected in (4).,We limit our study to lateral behavior
across the active layer, denoted by the coordinate x.

Two special cases of (4) are worth note. First, if o is
uniform, then o = «; regardless of the field and excita-
tion profiles. However, it is known that at a fixed fre-
quency, oy (n) increases with carrier density {14], [2],
and will therefore be spatially dependent if the steady-
state carrier profile is nonuniform. Second, if the time de-
pendence and spatial dependence of the excitation are
separable, i.e., Ae"(x, t) = Ae"(x) * f(t), then « is
reduced to a time-independent, space-averaged value. A
nonuniform steady-state carrier distribution leads to spa-
tially-deperident modulation via the operating point for the
local rate equations. To the extent that the experimental
results for the CPR phase are inconsistent with a constant
« [1], these two special cases should be critically exam-
ined.

To test the hypothesis that the CPR phase anomaly for
the Hitachi laser is a result of the lack of lateral carrier
confinement in the CSP structure, a simple model of lat-
eral behavior was developed. We have incorporated an
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analytical treatment of carrier diffusion, and have the sig-
nificant advantage of the elimination of electrical re-
sponse and relaxation oscillation effects inherent to the
definition of the CPR.

The optical mode profile in the cold cavity is assumed
known, given the mode and guide widths. (It is taken as
the solution to the one-dimensional wave equation with a
real index step.) The region of analysis was limited such
that the neglected power, in the wings of the optical mode,
is one one-tenth of the total power. The configuration is
symmetric, and each half is divided into two zones, de-
fined by x, and x,, containing equal energy (or power since
the group index is nearly constant laterally), as shown in
Fig. 3. The parameters of the model are the average pho-
ton density S in the combined regions, the phase ¢ of the
mode, and the average carrier densities n; and n, in each
region. The average photon densities in each region are
given by £,§ and &,S, where &, and £, depend on the re-
spective volumes and hence on the form of the optical
mode: in particular £; = 0.45 - x,/x; and £, = 0.45 -
X3/ (x, — x;) (10 percent of power neglected).

The standard rate equations describing this laser model
are

§ =[Tg(n — n,) + Tg(n, = n,) = 1/5,] - §
- na)Els
np=J, - ”2/Tn - g("z - no)EZS

n=J - "1/Tn - g("l

)

3Tg(a; * 8y + oy - 8ny) (5)
where g is the linear gain coefficient, n, is the local trans-
parency density, 7, the photon lifetime, and 7, the carrier
lifetime. T is an equivalent confinement factor, equal by
construction to 0.45 - T', where T', is the standard trans-
verse confinement factor. J; is the density of carrier injec-
tion in the ith region, and «; the local «; parameter, func-
tion of the steady-state value of n;. The phase variation
(ignoring a constant frequency shift) is expressed in terms
of the carrier density excursions én; from their steady-state
values. This coupled system of equations is solved in the
steady state and then linearized to analyze small-signal
modulation behavior.

The incorporation of diffusion is given special atten-
tion. We wished to avoid both a fully numerical treat-
ment, in which diffusion is part of the original equations
and solution proceeds by a finite element method, and an-
alytical approximations which begin with nonphysical
carrier and mode profiles. In our treatment, diffusion in-
troduces explicit relationships between the carrier densi-
ties of each region, as described below.

We assume a uniform carrier injection of density J, on
—d < x < d, and we begin by calculating the carrier
distribution in the absence of an optical field. The solution
to this simple steady-state diffusion problem yields a pro-
portionality between J, and the average carrier density ;
in each zone:

n; = (JoTn) - Dy, 1, 2. (6)

i =
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Fig. 3. Schematic of the partition of the active layer used to model lateral
behavior. The optical mode is deduced from the guide width and mode
width (2b) using the symmetric dielectric waveguide equations without
gain.

The coefficients designated D,, are functions of x,, x,, and
d. These relations are valid for all J, less than the thresh-
old density J;, at which the carrier densities are n}| and
n5. Above threshold, the carrier density distribution is
modified by the field, while the overall average density
remains constant as in the uniform case (with the approx-
imations of this model). Writing n; = n} + An;,, the steady-
state equivalent of (5) can be written

ny + An; — n, + ny + Any - n, = 1/(7,T'g)
D\,(J, — J;) — g(ni + Any — n,)

- £8 - Any /1, =0
Dy, (J, = J5) — g(ny + Any — n,)

* £8 — Any/7, = 0. (7)

Here we have approximated the effective carrier density
injection in each region by (6), although the carrier dis-
tribution is slightly modified.

At threshold, An; = An, = 0, and above threshold,
from the first term in (7), An; = —An,. From these equa-
tions then, the threshold values can be calculated. Above
threshold, the steady-state carrier densities n,, and n,, and
the average photon density S, can be given as functions
of J,. )

The incorporation of diffusion into the dynamic behav-
ior is based on the classical diffusion equation for n(x,
t):

dn n d’n

E= —T—H+DF+J(.X,€)
where D is the diffusion coefficient. A single spontaneous
lifetime 7, is used, neglecting stimulated emission at this
step. This approach, while very approximate, is consist-
ent with commonly accepted diffusion lengths on the or-
der of a few microns, for D roughly 100 cm?/s (see pa-
rameter list below). The Green’s function solution to this
equation is

(8)

—t/Tn
€ —x?
e " /4Dt.

(4‘;rDt)1/2 ,

Therefore, the response at all x and ¢ to a uniform injec-
tion in the region i at ¢t = O is

n(x,t) =

(9)
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where V is the one-dimensional volume of the region. We
take diffusion into account by considering dn;/dt as a
source whose solution is (10). That is, any variation in
the average carrier density of the region i modifies the
densities everywhere at later times. Hence

dn(x, t)/dt = dh;(x, t)/dt  dn;/dt (11)

where ® represents temporal convolution. The final step
is an integration over each region j to obtain the averages
appropriate for the model:

dn; 1 S dh;(x, 1)
7R

a

h,-(x, t) = S e—(xvx')2/4Dt dx' (10)
Vi

o

at dt &

dn;
=D; ® @ (12)
These diffusion-related sources are added to the external
injection sources, leading to the following substitutions

in (5):
(13)

The calculation of D;; is shown in the Appendix. Note that
D;<Oandfori #j,D; >0andV;  D; =V, Dj, as
one should expect.

In order to calculate the CPR, the system of equations
must be linearized, given the steady-state solution, and
transformed into the frequency domain (S = S, + Se/¥,
etc.). This straightforward procedure leads to the follow-
ing system of equations:

jQ8 — IgS,i, — TgS,fi, =0
£.8(m, — n,)8 — [jﬂ(l -Dy) +1/7, + 51850]
© fiy — jQDyA, = J)

J,-—’J,-+D,~,-®n,-+D,-j®nj.

£28(nz — n,)S — jQDyA
- []Q(l bl D~22) + 1/7'" + ElgSo]ﬁz = .72. (14)

J, and J, are simply the averages over each region, given
X\, X, and d, of the sinusoidally-varying injected carrier
densities. Dynamic diffusion is expressed by the 15,-1», rather
than as coefficients for the sources, in contrast to the
steady-state solution. The coefficients D;; represent the dif-
fusion of cirriers out of the region i, naturally including
diffusion away from the optical mode.
The phase equation is simply

Q¢ = taTgn, + ia,T'gh, (15)
and the CPR is by definition
jaé
CPR = —
27P (16)

in which P is the sinusoidal power variation per facet

P = h(yn/1,) VS (17)
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where V,, is the modal volume. In the present case, given
the active region thickness L,, the laser length L,, and the
lateral partition described above, the modal volume is V,,
=2x, - L, L,/(0.9T)).

The third-order system of (14) is solved as a function
of modulation frequency for @ /27 between 100 MHz and
2 GHz, and the expressions (15)-(17) are used to calcu-
late the model CPR in this frequency range, over which
the experimental observations were made.

The following parameters were used in the model: n =
0.5,7,=2.0ns,7,=17ps,n, = 1.3 x 10¥em™>, T,
= 0.2. The physical dimensions are L, = 300 um, L, =
0.15 pm, a guide width of 4.0 um and a mode width of

5.0 pm, yielding x; = 1.0 pm and x, = 2.7 pm. The gain

coefficient was g = 3.7 x 107%s™! cm’, determined from
the relaxation oscillation freugencies, whose squares in-
crease linearly with power with a slope of 2.19 GHz /mW.
Given a diffusion coefficient of D = 100 cm?/s, the re-
sultant damping of relaxation oscillations reduced the res-
onance peaks in the IM response of the model from the
undamped case, fitting quite well the observed IM re-
sponses between 0.5 and 3 mW. The value of o = 5.7
was determined from the linewidth of the laser, measured
by the self-heterodyne technique [19] as 150 MHz - mW.
This is an approximation for the sake of obtaining a rea-
sonable numerical value, since the actual linewidth de-
pends on the full carrier and mode profiles just as the CPR
does. The ratio o, /cr; was varied between 0 and 2, with
the relationship between «; and n;, being considered a
posteriori.

Fig. 4 shows the calculated CPR for «, /o, = 0.5 and
d = 1 um. Despite the crudeness of the numerical appli-
cation (only two zones), the results provide clear evidence
of the effects of lateral structure. The high-frequency
slopes of the modulus for different powers agree well with
the measured values. Most importantly, the CPR phase
shows an abrupt transition in qualitative agreement with
the measured phase [in contrast with Eq. (1)]. Moreover,
this transition ha$‘the proper power dependence. Two dis-
crepancies are clear however: the direction of the phase
shift and the precise transition frequencies.

While graphically striking, the first discrepancy can be
readily explained and is in fact minor. It is clear that the
imaginary part of the CPR dominates everywhere above
100 MHz, and that it is a change in sign of this imaginary
part which yields the transition. This dominance of the
imaginary part is consistent with a uniform model in which
spontaneous emission and gain suppression are neglected:
in that case the CPR is purely imaginary, while the inclu-
sion of gain suppression introduces a real part. In our
model, the real part is too small (the modulus approaches
zero when the imaginary part changes sign). In addition,
this real part has the wrong sign (the phase passes through
0 rather than 7, as observed), but being so close to 0, its
sign cannot be considered significant. The real part of the
CPR in our model appears therefore to be primarily a nu-
merical artifact, and hence the direction of variation in the
phase should not be taken as significant. It seems quite
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Fig. 4. Modulus and phase of the CPR for the model presented, calculated
for the same optical powers as in Fig. 1.

plausible that the inclusion of gain suppression in the non-
uniform model would generate a real part consistent with
the measured phase values.

The frequency at which the phase shifts depends
strongly on the stripe width, on the ratio o /a;, and in
certain cases on the diffusion coefficient. The principle
effect of the latter is through the steady-state carrier dis-
tribution. The ratio o, /c; should be consistent with the
carrier densities (i.e., a; < q for ny, < my, which is the
case here). However, only a narrow stripe width in the
model gave transition frequencies reasonably close to
those observed. This may be related to the crudeness of
the two-zone partition, calling for an increase in the num-
ber of zones. _

Nonetheless, several important conclusions concerning
lateral behavior in a semiconductor laser cani be drawn
from the present simple analysis. First; for &; = o, the
CPR phase for the model is /2 at all frequencies, as can
be seeni immediately by combining (15) with the top term
in (14). The phase is thus strongly influenced by nonun-
iformity in the material c; parameter. Sécond, a dephas-
ing (i.e., different time dependence) between the carrier
density moduiations in the two zones is responsible for
the CPR phase shift. This is seen by observing the phases
of Ay, Ay, & and § with respect to the excitation. All of
them exhibit the expected phase shift at the relaxation os-
cillation frequency, which cancels out in the CPR. An
additional shift in @, qualitatively arising from different
phase behavior in 7, and #A,, is the direct source of the

shift in the CPR phase. Both of these conditions, that oy
be nonuniform and that the carrier modulation be of spa-
tially-variable phase, are in fact consequences of the gen-
eral conclusions concerning the origins of time depen-
dence in « described above. Moreover, both of thesé can
be traced to a nonuniform carrier density.

IV. CONCLUSION

By measuring the phase, as well as the modulus, of the
chirp to modulated power ratio for two different laser
types, we have observed discrepancies with previously
published theoretical expressions. We have provided a
qualitative explanation for a Hitachi HLP1400 laser in
terms of lateral nonuniformity in the laser cavity. In par-
ticular, the model developed incorporates carrier diffusion
and a nonuniform material ‘‘linewidth enhancement fac-
tor,”’ a;. The observed variations in the CPR phase are -
seen to be consequences of the time dependence of the
general phase-amplitude coupling factor . Complete
measurement of the CPR is thus shown to be a useful tool
in laser characterization. In particular, the phase is very
sensitive to the carrier distribution and may be used to
study the latter. Conversely, the conditions of carrier con-
finement must be recognized as important in determining
the relationship between the frequency and intensity mod-
ulation characteristics of a semiconductor laser.

APPENDIX

We evaluate the coefficient D;;, defined by (9)-(12),
and give the result for the other coefficients. The D;; for i
= 1 coricerns a source assumed uniform over |x| < x;
(see Fig. 3). The normalized response to such a source,
at all points of the model, is

etm 1

hx, 1) = ———
’ (4xDr)'* 2,

X

—(x—x")?
S e (x—x')2 /4Dt dx’'.
—x1

The time derivative is

diy _ =
d: Ty

e—t/'r,.
8x1t(1rDt)1/2
. [()C _ xl)e—(x—11)2/4Dr

_ (x + xl) e~(x+x1)2/4Dt]

from which we calculate the coefficient Dy(?)

; —t/mpy1/2
[_'11_] + € ‘./ D / e—n/Dt

- 1].
T xy(dar)

Dy(t) = -

The term [n,] simply represents the integral on ¥ of the
response to the source in ¥;. Convolved with this source,
the term leads to a contribution n;/7, which expresses
carrier recombination in the region. This contribution ap-
pears in all the Dj;, but it is already explicitly included in
the rate equations, and is dropped from the coefficients of
diffusion. The three other coefficients are calculated sim-
ilarly. They are transformed into the frequency domain
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using the integral

*® =t/
~igr € )
S e /M —e "/ dt

0 1/
- L) 2 /21,2
= (1/1 +jﬂ> exp [-2(1/7 +jQ) 7" /).
The dynamic diffusion length Ly is defined by

D 1/2
e (2 )"
1/7 +jQ
The coefficients of dynamic diffiision are finally

Bu(@®) = ~52 (1 - exp (~20/1a))
Bu(®) = - 52 (1 = exp (~2x/Lo)
—exp (= (x2 — x1)/Lg)
+ exp (“(xz + xl)/Lﬂ))
Dy (0) = ﬁ ﬁlz(ﬂ)
Bal®) =~ (1~ fowp (20 /L)

=} exp (—2x;/Lg)
— €Xp (_(xz - xl)/Lﬂ)
+exp (= (x2 + x1)/La)).
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