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Abstract. We describe a homodyne optical Costas loop receiver intended
to detect weak coherent states with diffused phase and suppressed carrier
phase modulation. In order to get the information contained in the quad-
rature components of the optical field, we implement an 8-port receiver
operating at 1550 nm, based on the manipulation of the state of polariza-
tion of both the local oscillator and the data signal. Employing binary
phase-shift keying, we make measurements in the time and frequency
domain of the quantum noise and bit error rate using an optimum loop
filter, and compare the performance of our receiver against the standard
quantum limit for the simultaneous quadrature detection, considering both
ideal conditions and the overall efficiency of our set up.© 2012Society of Photo-
Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.OE.51.10.105002]
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1 Introduction
In modern optical communications systems working at low
photon number levels, spectrally efficient optical modula-
tions are necessary to obtain good bit error rate (BER)
performances. Sensitive applications, either in quantum
communication or in quantum cryptography, require the use
of suppressed carrier modulation; however, at the receiver
stage a phase/frequency synchronization subsystem1–4 is
usually required.

In order to implement synchronization structures in the
optical domain, there exists an optical phase locked loop
(OPLL) for residual carrier modulations or Costas-type loops
for suppressed carrier. The Costas loop has the advantage
of simultaneously getting the data and the carrier but with
additional noise observable due to quantum effects,2,5 arising
from the simultaneous detection of the in-phase and quadra-
ture components of the carrier field.

With the OPLL approach, in order to obtain the in-phase
and quadrature components of the carrier signal, switched
detection techniques have been proposed6–8; however, the
transmitted bit rate must be twice that of the modulated sig-
nal. In this work, to avoid this problem, we use simultaneous
quadrature detection techniques, at the cost of increasing the
quantum noise, because we have to consider the effect of
unused ports in the system.2,9,10

To obtain a simultaneous detection of the quadrature com-
ponents of the optical field, we may use devices such as:
1. 90-deg optical hybrids with 2 × 4 ports (implemented
either on free-space or optical fiber),11 2. schemes withN × N
ports using multimodal interference devices and beam split-
ters,12,13 and 3. schemes with 4 × 4 ports using polarizing and
nonpolarizing beam splitters,14 among others.15–17

Of course, all the above mentioned devices have practical
trade-offs (with reference to the phase error) on their imple-
mentation, use, and performance because of delays and
power imbalances; besides, they usually require several
control points to reach their optimum performance.18 It is
possible to implement, with discrete optical components, a
free-space experimental setup, to simultaneously detect the
two quadrature components of an optical field using the state
of polarization (SOP) of the impinging signals. The use of a
free-space set up allows us to operate with high SOP stability
without the requirement of an automatic SOP control or
polarization preserving optical fiber.19

In this paper, we present an experimental optical Costas
loop setup capable of simultaneously measuring the quadra-
ture components of a low photon number optical field issued
from a strongly attenuated, coherent-state laser at 1550 nm
with a suppressed carrier binary phase shift keying (BPSK)
modulated signal. As an alternative to the conventional
photon counting receivers used in low photon number field
detection, we use homodyne detection techniques with a
coherent conversion gain (without trading-off the noise0091-3286/2012/$25.00 © 2012 SPIE
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figure) capable of operating at higher bit rates, as well as
being highly wavelength-selective. This last feature leads
to very good rejection of out-of-band parasitic radiation (a
very attractive feature for free-space optics applications).
We make use of the SOP of both the optical data signal
and the optical local oscillator, in an experimental 8-port
scheme implemented with discrete optical devices in free
space. In order to provide optical carrier synchronization
from the suppressed carrier optical signal, we present the
design and experimental realization of a Costas loop opti-
mized to operate close to the simultaneous measurement
quantum limit.

2 Theory
The optical sources more commonly used in telecommuni-
cations have optical coherent states with diffused phase (that
may be described by a Wiener process),9,20 having an impor-
tant effect on the performance of the optical synchronizer
structures.21

Using an optical Costas loop scheme as shown in Fig. 1, it
is possible to simultaneously measure the quadrature compo-
nents of the received optical field; it consists of a 90-deg opti-
cal hybrid (8-port), an electronic processing block to provide
a phase error (feedback) signal, and a block to modify, in a
controlled way, the phase of the reference signal (the local
oscillator).

The operation of the above mentioned structure is based
on the mixing of the data (EST) and local oscillator (ELOT)
signals:

EST ¼ ½ES þ δIS þ δQS�eiθS (1)

ELOT ¼ ½ELO þ δ ILO þ δQLO�eiθLO ; (2)

where δIS, δQS, δILO, and δQLO are the canonical uncertain-
ties of the quadrature components defined by the Heisenberg
principle for the coherent states ELOT and EST. The phase
components are θS ¼ ωS þ φSðtÞ þ φdðtÞ and θLO ¼ ωLOþ
φLOðtÞ, where φLOðtÞ and φSðtÞ are the temporal phases
(described by a Wiener process), ω is the optical angular fre-
quency, φdðtÞ is the modulated phase, and ES, ELO are the
optical fields amplitudes.

In our scheme, the SOP of the signals ELOT(circular) and
EST (linear at 45 deg) are very important because they allow
the simultaneous measurement of the quadrature compo-
nents of the optical field. Because of a π∕2-lag between

the orthogonal polarization components of ELOT and the
linear 45 deg SOP of EST, we produce the necessary relation-
ship between the horizontal and vertical components of
both fields to get the simultaneity characteristic. A half
wave plate (HWP) and a quarter wave plate (QWP) are
used to get a linear 45 deg SOP for the data beam and a cir-
cular polarization state for the local oscillator, in order to
maintain a balanced power distribution for the quadrature
components.22

Using the transmission matrices of the above mentioned
HWP and QWP devices [described by the Jones vectors
ðcos ρ
sin ρÞ and ð cos ε

sin εei
π
2
Þ, respectively], and the transmission matrix

of the beam splitter at the input of the 8-port hybrid, we get
E1 and E2 as:

E1 ¼
1ffiffiffi
2

p
��

cos ε
sin εei

π
2

�
ELOeiθLO þ

�
cos ρ
sin ρ

�
ESe

iθS

�
; (3)

E2 ¼
1ffiffiffi
2

p
��

cos ε
sin εei

π
2

�
ELOeiθLO −

�
cos ρ
sin ρ

�
ESe

iθS

�
; (4)

where ε and ρ are the parameters required by the HWP and
QWP to get the needed SOP in our system.

If we only take into account the canonical uncertainties of
the optical fields, the proposed scheme (with a strong local
oscillator) is able to measure the Wigner function of
the quantum state of EST just before the polarized beam
splitters (PBS) affect the observables.23 When we take
into account the separation of the polarization components of
Eqs. (3) and (4) on the PBS, and also the respective horizon-
tal and vertical states of polarization on each balanced homo-
dyne detector (BHD) (see Fig. 2), the observed signals
carrying the I and Q information of the optical field are repre-
sented as:

iIα

����ELO

2
eiθLO þ ES

2
eiθS þ EVeiθV

����2

−
����ELO

2
eiθLO −

ES

2
eiθS þ EVeiθV

����2 (5)

iQα

����ELO

2
eiθLOþ

π
2 þ ES

2
eiθS þ EVeiθV

����2

−
����ELO

2
eiθLOþπ

2 −
ES

2
eiθS þ EVeiθV

����2: (6)

As shown in Eqs. (5) and (6), there are three different sig-
nals on the observables (in the classical theory, it should be a
quadratic binomial) for each field impinging on the respec-
tive photodetectors of the BHD. The variable EV is added to
represent the vacuum fluctuations that enter through the
unused ports of the PBS with an orthogonal SOP with
respect to that of the polarization components E1 and E2

(i.e., E1x is mixed with EVy and E2y is mixed with EVx).
24.

Manipulating Eqs. (5) and (6), and taking into account
only the terms that have a conversion gain by the local oscil-
lator, we get the current signals at the output of the BHDs as:

Fig. 1 Block diagram of an optical Costas loop as a simultaneous
quadratures measurement system. I, Q: in-phase and quadrature
components, φLO: local oscillator optical phase. Dashed line: optical
signal, Solid line: electrical signal.
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iIαELOðES þ δIS þ δQS þ δIV þ δQVÞ cos½φLO − φS − φd�
(7)

iQαELOðESþ δISþ δQSþ δIV þ δQVÞ sin½φLO −φS −φd�:
(8)

In order to get the signal-to-noise-ratio (SNR) of our
scheme (when the receiver performance is shot-noise lim-
ited), we first obtain the expected values and variances of
the observed signals using; hðX − hXiÞ2i ¼ hX2i − hXi2,
with:

hXi2 ¼ ðELOESÞ2 ≈ NLONS; (9)

In Eq. (9) several products are negligible because they
don·t have the conversion gain by the local oscillator signal.
Using the relationship for the canonical uncertainty for the
coherent states:6 hΔI2ihΔQ2i ≥ 1∕16, we get:

hX2i ¼ NLO½δ I2S þ δQ2
S þ δI2V þ δQ2

V � (10)

hX2i ¼ NLO

�
1

4
þ 1

4

�
¼ NLO

2
: (11)

Finally, the SNR is:

SNR ¼ hXi2
hX2i ¼ 2NS; (12)

As shown in the above equation, the SNR is related only to
photon number (number of photons in the bit interval of the

phase modulated data signal),2,25 therefore, for Gaussian
fluctuations are:

BER ¼ 1

2
erfc

� ffiffiffiffiffiffiffiffiffiffi
SNR

2

r �
: (13)

Equation (13) corresponds to an ideal 8-port receiver; how-
ever, for more realistic receivers:

BER ¼ 1

2
erfc

� ffiffiffiffiffiffiffiffi
ηNS

p
cosðθeÞ sin

π

M

�
; (14)

where η is the general efficiency in an experimental imple-
mentation, NS is the number of received photons in the data
signal, M is the number of symbols, and θe is the residual
phase error between the signal and the LO for an imperfect
phase-locking.

The experimental efficiency is η ¼ ηmmηpηloss, where ηmm

is the efficiency of the mixing of the temporal and spatial
modes of the beams, ηp is the photodetector’s quantum effi-
ciency and ηloss are the optical powers loss. The SNR of the
homodyne scheme that simultaneously measures the quad-
rature components of a BPSK modulated signal, similarly
to the detection scheme using heterodyne reception with
switched quadratures (the noise contribution consists of
the vacuum fluctuations and the image signal in the fre-
quency domain, respectively).

The value of the parameter θe is highly dependent on the
design of the Costas loop; the design must take into account
the phase diffusion of the coherent states ELOT and EST with
probability function Qqs:

Fig. 2 Optical 8-port hybrid scheme. ECL: external cavity laser, PC: polarization controller, BS: beam splitter, ND: neutral density attenuators, PBS:
polarized beam splitter, L: lens, M: mirror, PM: phase modulator, BHD: balanced homodyne detector. The thin line means optical paths and dashed
line means electrical path.
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QqsðI;QÞ ¼ 1

2π
e

h
−
ðr2þr2nÞ

2

i
I0ðrrnÞ; (15)

When this equation is obtained, the asymptotic behavior of
the Bessel’s function for a large number of photons is not
taken into account, and I0 is the first type, order zero mod-
ified Bessel’s function Bessel, r is the vector value that repre-
sents the instantaneous phase described by r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 þQ2

p
,

and rn is the Bohr-Somerfield’s radius described by
rn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
for a given photon number n.9 It is important

to note, that the Poissonian statistics in the detection process
do not change, even when the laser has a phase diffusion
behavior.

The feedback loop takes into account the phase noise θn
and the amplitude noise nðtÞ to get the phase error variance,
σ2e ¼ θnðtÞ ⊗ ½1 − hðtÞ� þ 1

A nðtÞ ⊗ hðtÞ, where ⊗ is the
convolution function, and hðtÞ is the impulse response of
the linearized Costas loop.26,27

An important issue for the Costas loop implementation
that must be theoretically taken into account is the total
delay of the feedback signal. According to Keang Po-Ho,21

the delay affects hðtÞ because of the e−sT factor (where s
represents the Laplace domain, and T is the delay time in
seconds). Using the spectral density functions of the
above-mentioned noises, as well as the transfer function of
a first order active filter, and knowing that the delay time of
the feedback signal is negligible, we have σ2e ¼ Δv∕

ffiffiffi
2

p
fnþ

3πTpfn∕2
ffiffiffi
2

p
NS. In this equation, there is a trade-off among

the several noises and their contribution to the variance of the
phase error. The natural frequency that optimizes the perfor-
mance of the feedback loop may be expressed as:8,21

fn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ΔvNS

3πTp

s
; (16)

where Tp is the bit duration, NS is the number of photons of
the data signal for an observation time, and Δv is the line-
width of the lasers. The structure described in this paper is
able to get a minimum value of the phase error variance ðσ2eÞ
between ELOT and EST.

3 Experimental Setup
Figure 2 shows a block diagram of our experimental setup,
consisting of a laser transmitter operating at 1550.1 nm
(external cavity laser), a phase modulator, and pseudoran-
dom bit sequence generator that provides the data signal at
a rate of 350 Kbps. For convenience, we use an interfero-
metric system to relax the automatic frequency control for
large optical frequency departures, and a nonsymmetrical,
nonpolarizing beam splitter produces the signal to be modu-
lated, and the local oscillator with few mWof optical power.
Obviously, in a practical system, the local oscillator must be
an independent optical source with a linewidth small enough
to assure a good performance at the receiver stage. This inter-
ferometric scheme allows us to work at a low bit rate for
preliminary demonstration purposes; we need large gain
amplifiers at the electrical post-detection stages since we are
working with faint low photon number fields.

In our setup, the precise knowledge of the SOP of ELOT

and EST is very important, as a inadequate SOP in one optical
signal may affect the development of the Eqs. (3)–(8), so we

evaluate the performance of the HWP and QWP with the fol-
lowing results: a) the HWP has a standard deviation of
0.113 deg for the vertical linear SOP (required to minimize
the residual amplitude modulation of the phase modulator)
and a linear SOP at 45 deg, both SOPs with a 99.9% degree
of polarization (DOP) and an extinction ratio of 60 dB, while
b) the QWP has a standard deviation of 0.046 deg and a
91.9% DOP. For these measurements, we use a free-space
SOP analyzer with 200 samples for each measurement. In
agreement with the results obtained in the measurement of
the quadrature components, the experimental setup exhibits
a total efficiency of approximately 0.7. This is due to the
losses of optical power in the implementation as well as the
imperfect mixing between the temporal and spatial modes of
ELOT and EST.

The electronic diagram of our Costas loop is shown in
Fig. 3. We used an analog multiplier to remove the modula-
tion from the data signal and to obtain the phase error signal,
φe; in addition, we used a filtering and integration stage to
eliminate the higher order harmonics. An inverter circuit was
implemented to match the feedback signal and filtering and
integration stages with the additional advantage of a better
performance in the feedback stage. The gains of the diverse
devices within the loop are important in the design of an opti-
mum loop filter; the value we used for the integrator gain was
0.3 V∕V, the gain of the phase modulators was (operating at
1550.1 nm), and the gain of the equivalent oscillator was
20.655 × 10−3 rad∕ðV × secÞ. There is also a gain related
with the driver of the phase modulator located in the path
of the local oscillator and the total attenuation of the feed-
back electrical circuit. We designed the filter of our loop
using the above-mentioned gains as well as the gains of the
balanced homodyne detectors (BHD) (from 1 V∕V until
30; 000 V∕V); the designed filter is a first order, low-pass
active filter with a natural frequency of 360.97 × 103 Hz,
and a phase detector gain of 5.8 × 10−6 V∕rad, optimized
for 5 photons per bit, according to Eq. (16).

4 Results
We measure the shot noise for different values of the local
oscillator optical power and with different gains of the BHDs
with a spectrum analyzer, with the purpose of assuring the
standard quantum limit and the SNR obtained using
Eqs. (9)–(12). In order to measure the shot noise, we
block the data signal at the input of the 90-deg optical hybrid,
so a vacuum noise signal is introduced by the unused port of
the beam splitter (BS). Figure 4 shows the measured shot
noise is well above the electronic noise in the frequency
region of interest. The nonlinearity of the curves for high

Fig. 3 Block diagram of the electronic control to generate the error
and feedback signals for the phase lock, this is the electronic part
of the Costas loop. LO: optical local oscillator signal. BHD: balanced
homodyne detector.
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gains of the BHDs is to a large extent caused by the instabil-
ity of the detector.

The linear behavior of the shot noise with reference to an
increase in the local oscillator optical power is shown in
Fig. 5 (results were reported with acquired data from an
oscilloscope with 50,000 points at 4 G samples per second).
The above-mentioned linear behavior may be modeled as
y ¼ axþ b, with y being the total noise (Volts), x is the
local oscillator optical power (Watts), a is related with a
conversion factor of the photodetectors (in our case

a ¼ 0.66 V∕mW), and b ¼ 0.8 mV is related with the elec-
tronic noise without data signal present (Volts). Therefore,
for a local oscillator optical power of 2 mW, the root mean
square (rms) voltage is 2.154 mV.

The measurement of the shot noise (shown in Figs. 4
and 5) is important to validate the performance of the experi-
ment described by Eqs. (13) and (14). In the electronic stage
implemented for the Costas loop, we have a total delay of
approximately 700 ns in the feedback loop (negligible in
comparison with the bit duration of 2.85 μs). For a higher

Fig. 4 Spectra of the shot-noise for different gains of the balanced homodyne detectors (BHDs) at 2 mW of local oscillator power, considering
the maximum gain for loop filter design, where the gain (V∕V) of the BHDs is (a) 1000, (b) 3,000, (c) 10,000, and (d) 30,000.

Fig. 5 Shot-noise variance for different optical powers of the LO in the temporal domain.
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bit rate, however, the loop filter must be redesigned to
account for the total delay time of the system and/or by
using optical sources with smaller linewidths.28,29

We obtained (by means of post-processing) the measured
statistics of the quadrature components for several optical
powers (from 225 × 10−15 to 11.25 × 10−15 W, correspond-
ing from 5 to 0.25 photon per pulse, respectively). Figures 6
and 7 show the normalized histograms for 5 and 0.25
photons, and the experimental mean value for each quadra-
ture component. The histogram of the in-phase component
shows a small increment of the variance due to the slightly
nonsymmetrical experimental implementation. As related to
Eq. (15), the phase diffusion effects are minimized when the
optimum Costas loop is used, making it possible to obtain
the histograms shown.

Finally, the theoretical performance at the quantum limit
using coherent states is limited by the Helstrom’s limit,
which has been addressed using different techniques.30–32

In our experiment, the coherent detection at the standard
quantum limit using simultaneous measurements of the
quadrature components (with homodyne detection) led us
to a penalty on the BER in comparison with the Helstrom’s
limit (with photon counting detection).

Figure 8 shows the BER as a function of the photon num-
ber for our experimental setup (using weak coherent states).
In a previous paper,33 we reported the performance of both
open and closed loop operating at 5 photon per pulse. In this
case, all the BER measurements are made in a closed loop
using the optimal feedback loop. From Fig. 8, it is possible to
observe that the experimental performance is very close to

Fig. 6 Normalized histograms of the quadratures components for 5 photon per bit.

Fig. 7 Normalized histograms of the quadratures components for 0.25 photons per bit.
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the theoretical performance, while taking into account the
non idealities and the experimental efficiency.

5 Conclusions
We reported the design, implementation, and performance
evaluation of an optical Costas loop for a low photon number
signal consisting of weak coherent states at 1550 nm using
suppressed carrier modulation, which is required for power
economy. We made an optimum design and implementation
of the Costas loop to improve the performance of the experi-
ment. The shot-noise measurements on the optical power of
the local oscillator are 20 dB above the total electronic noise
in the required frequency region. Using BPSK modulation,
the measured BER from 0.25 to 5 photons per pulse has a
good performance, with potential application in the distribu-
tion of cryptographic keys using continuous variables while
accounting for the relationship between speed and transmis-
sion distance. The measured mean electrical delay (because
of optical and electronic processing time in the diverse
devices used) was 700 ns (negligible in comparison with
the operating speeds); however, an increase in transmission
speed will require an adjustment on the parameters of the
experimental scheme to reduce the total delay. In order to
deal with such a problem, as a future study, we are imple-
menting a digital signal processing stage in combination
with file-programmable gate arrays (FPGAs).

A distinctive feature of our work is that we use the SOP of
the optical signals to get the simultaneity characteristic in the
measurement of the in-phase and quadrature components of
the optical field. In this way, we get very good stability in
comparison with 8-port designs based on an electro-optic
phase shift of the local optical oscillator, generally requiring
several adjusting and control points. This system may be
used in quantum communications systems such as quantum
keys distribution using continuous variables (CV-QKD).
Finally, our detector may be an interesting application as
a generic scheme to measure the quasiprobability Q function

in tomography applications for information-carrying optical
states.
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