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Invited paper 

ABSTRACT   

Optical direct detection usually operates far above the quantum limit, due to the high thermal noise level of PIN 

photodiodes. For signal energy at the quantum level, the thermal effects in photon counters are also a strong limitation. 

The optical amplification or the heterodyne detection of the 2 quadratures of the field, widely used in high bit rate and 

long haul optical systems, overcome this limitation at the expense of a minimum 3db noise figure. By allowing a noise 

free mixing gain, as well as single quadrature measurements, the balanced homodyne receiver is allowed to reach 

quantum noise limited operation. 

The aim of this paper is to review the different quantum receiver implementations and to compare the minimum signal 

energy required to achieve a given bit error rate, or a given bit erasure rate, in high bit rate communications and quantum 

communications. Application to quantum cryptography will be also addressed. 

Keywords: Quantum receiver, Quantum noise, Homodyne detection, Quadrature measurements, Signal to noise ratio, 

Bit error rate, Quantum cryptography. 

1. INTRODUCTION 

Optical communications with low photon number signals constitutes an expanding field in a diversity of applications. In 

quantum cryptography applications, either in optical fibers
1,2,3,4,5,6

, in free space
7
, in aeronautic applications

8
 and even in 

satellite systems
9
, the information signals are, in general, prepared deliberately in low photon number for each 

transmitted symbol. 

Furthermore, other non cryptographic applications requiring power economy frequently deal with these quantum level 

signals, such as quantum communications for airborne, space to ground and inter satellite scenarios. Diverse feasibility 

studies have been reported
1011,12

 as well as proof of concept experiments have also been proposed
13,14,15,16

.
 

Future optical communications systems beyond Earth orbits will have to operate very close to the ultimate quantum 

limits, and will rely not only on sensitive detectors but also on efficient modulation formats. Suppressed carrier 

constellations will be in general mandatory and (phase sensitive) receivers will be required for not only signal 

demodulation but also optical phase synchronization from the quantum level signals themselves These issues will be 

addressed in this work, and phase synchronization will be an important task especially in the section devoted to  the 

experimental setups. 

Other applications of low photon number detection are intensively researched at the telecommunications wavelengths, 

highly sensitive sensors
17

, homodyne tomography
18

, lidar systems and other instrumentation and scientific applications
19

. 

Preparation of quantum states for the different applications has been pursued since the first reports on the understanding 

of the fundamental limits, i.e. the Helström limit
20

, and several proposals using non-classical states have been reported. 
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However, quantum coherent states are the easiest to produce and receiver structures for optimal detection have been 

extensively studied and more recently implemented with photon counters and even photon number resolving detectors. 

Our approach in this paper is to put in relevance the homodyne detection of weak coherent states signals, as an 

interesting alternative to the poor performances of photon counting techniques, given their characteristics inherited from 

the well developed optical networks field, related to their performances in speed and ease of integration with the existing 

fiber optic infrastructure and economics. For sake of simplicity we will avoid to use quantum mechanics formalism for 

which a description may be found in reference
21

. In the second part of the paper we first precise the notations used for 

the signal description and to the presentation of the various detection schemes using one, two or four detectors. The 

section 3 is devoted to On Off Keying (OOK) and polarization modulated signal receivers. The idealistic Kennedy and 

Dolinar single detector optical receivers for Binary Phase Shift Keyed (BPSK) signals are reviewed in section 4, after the 

recall of the PSK-modulated coherent states overlap and the Helström bound for their discrimination. In section 5, the 2-

detectors balanced detection arrangement performances are presented. The double detector Kennedy receiver or double 

detector super homodyne receiver, based on the interference of the signal to be detected with a reference one of similar 

amplitude, requires the use of single photon counters. Emphasis is put on the double detector strong local oscillator 

homodyne receiver for BPSK signal, which can operate with low cost and high performance PIN photodiodes. In section 

6 we report two experiments with balanced homodyne detection. A short conclusion ends the paper. 

2. OPTICAL SIGNAL AND RECEIVER STRUCTURES 

2.1 Signal normalization 

In optical communication it is usual to deal with a quasi-monochromatic optical field E t( )  in a single spatial  and 

polarization mode and with an angular central carrier frequency 0 = 2 , described by its complex slowly time-varying 

envelope  written as
21

 

 E t( ) Re
h

T
a t( )exp j 0t

 

 
 

 

 
  (1) 

where Re[ ]stands for the real part [ ] . The time duration T refers to the observation time, which is the symbol duration 

in digital communication. T is simultaneously assumed to be as far longer than the optical period and as far smaller than 

the coherence duration of the optical source. The field envelope is so normalized that the short-time-average optical 

power P is given by 

 P = h a t( )
2
= E t( )

2
 (2) 

where h  is the photon energy and  h = 6.63.10
-34

 J.s is the Planck’s constant. 

In these conditions a t( )  is expressed as (number of photons)
1/2

 and a t( )
2
 is the signal energy, expressed as a number 

of photons, and a(t) will considered as the optical signal in the following. 

2.2 Single detector direct detection receiver  

In direct, or so-called incoherent detection, the photo detector device converts the photon flow into an electron flow as 

shown on Fig 1. The photo detector device is usually a PIN photodiode. The quantum efficiency of the detectors is 

assumed to be close the unity so that the output electron flow has the same value N = aa* than the input photon flow and 

also the same statistics. 

 
Figure 1: Basic direct detection arrangement 

 

Expanding the detected field as in the sum of its 2 quadratures a = aI + jaQ , the output electron number is written as 
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 N = aI
2 +aQ

2     (3) 

2.3 Balanced dual detector coherent receiver 

- Receiver structure 

The basic structure of a coherent receiver, displayed on Fig 2, is obtained by connection of 2 detectors D1 and D2 to 

each outputs of a balanced four-port optical coupler. The quantum efficiency of the 2 detectors is again assumed to be 

close the unity. The 2 detector outputs are therefore subtracted with a differential amplifier to produce the output electron 

number N. 

 
Figure 2: Balanced coherent receiver structure 

 

Using the standard input to output relationship for the balanced optical coupler we have the output signals 

 
b1
b2

 

 
 

 

 
 =

1

2

a1 ja2
a2 ja1

 

 
 

 

 
  (4) 

According to the square law of the photo detectors their outputs are expressed as 

 N1 = b1b1 =
1

2
a1a1 + a2a2 + j(a1a2 a2a1 )[ ] and N2 = b2b2 =

1

2
a1a1 + a2a2 j(a1a2 a2a1 )[ ]  (5) 

Assuming an unit-gain electrical amplifier with a gain equal to 1, the 2-output subtraction leads to the amplifier output  

 N = N1 N2 = j(a1a2 a2a1 ) = 2Im(a1a2)  (6) 

Expanding the 2 input signals a1 and  a2 as the sum of their 2 quadratures 

 a1 = a1I + ja1Q     and    a2 = a2I + ja2Q  (7) 

The electron number at output of the amplifier may be written as 

 N = N1 N2 = 2(a1I a2Q a1Qa2I )  (8) 

In a coherent receiver configuration the optical signal s to be detected is sent on one input and the local oscillator (LO) l 

is sent on the other in the form 

 a1 = s   and    a2 = jl  (9) 

The additional phase shift expressed by the j factor in Eq. 9 is used to cancel the phase shift of the coupler for the LO on 

the detector D1. We have in this case a phase referencing on this detector for both the local and the signal and no more at 

the input of the coupler. Expanding the signal and the local fields may as the sum of their 2 quadratures, we finally 

obtain 

 N = 2 sI lI + sQlQ( )  (10) 

The electron number appears as twice the scalar product of the signal and the local oscillator vectors. The coherent 

detection arrangement is a projection of the signal on the local field. 
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2.4 IQ four detector receiver 

A more sophisticated receiver is the homodyne In-phase Quadrature receiver (IQ) using an eight-port hybrid coupler. As 

depicted by the Fig 3, it is the association of 4 2X2 couplers, a 2  phase shifter and two balanced detection 

arrangements. Only the 2 input ports 1 and 2 are used for a mixing operation and it is easy to show that the scattering 

matrix of eight-port hybrid coupler my be written, in this case, as 

 

b1
b2
b3
b4

 

 

 
 
 
 

 

 

 
 
 
 

=
1

2

1 1

j j

j 1

1 j

 

 

 
 
 
 

 

 

 
 
 
 

a1
a2

 

 
 

 

 
 =
1

2

a1 a2
ja1 ja2
ja1 a2
a1 ja2

 

 

 
 
 
 

 

 

 
 
 
 

 (11) 

The 4 detectors outputs are  then given by 

 

N1 = b1b1 =
1

4
a1a1 + a2a2 (a1a2 + a2a1 )[ ]          N2 = b2b2 =

1

4
a1a1 + a2a2 + (a1a2 + a2a1 )[ ]

N3 = b3b3 =
1
4
a1a1 + a2a2 + j(a1a2 a2a1 )[ ]           N4 = b4b4 =

1
4
a1a1 + a2a2 j(a1a2 a2a1 )[ ]

 (12) 

 
Figure 3: IQ 4-detector receiver 

 

After 2 by 2 output subtractions we finally obtain 

 N2 N1 = Re(a1a2)    and     N3 N4 = Im(a1a2)  (13) 

The real and imaginary parts of a1 are obtained, a2 acting as a phase reference. As for a heterodyne detection, the 2 

quadratures of the field are simultaneously measured at the expense of a minimum 3db noise figure
22

. 

3. OOK AND POLARIZATION MODULATED SIGNAL RECEIVERS 

3.1 Direct detection OOK receiver 

Assuming that the average photon number during the bit “1” is N1 , and that the average photon number for the bit “0” is 

N0 = 0, in an ideal on off keying (OOK) modulation situation with perfect extinction ratio, the average photon number 

per bit is NS = N1 + N0( ) /2 = N1 2 . Assuming also no thermal noise and other noises impairments, no noise at all is 

present when the symbol “0” is transmitted. The decision threshold is to set close to 0 and the probability P(1/0) to detect 

1, when 0 is transmitted, is equal to zero. Errors only occur when the symbol “1” is transmitted and the corresponding 

probability of error P(0/1) is derived using the well-known conditional Poisson process at the detector. The probability 

p(n) to observe n photons when n are expected
23

 is 

Proc. of SPIE Vol. 8065  80650F-4



Polarization beam splitter

10>
Detector 0

Ii>
V

Detector 1

 
 

 

 

 p(n) =
n

n

n!
exp n  (14) 

Errors occuring only when n = 0 is observed while n = N1 = 2NS  is expected, and we have P(0 /1) = exp 2NS( ) . 

A binary message more informative for which the symbols “1” and “0” have the same probability to occur is assumed, so 

we have p(1) = p(0) = 1/2. The Bit Error Rate (BER) is thus given by 

 BErrorR =1 2 P(0 /1) + P(1/0)( ) (15) 

and the bit error rate of the direct detection receiver is 

 BErrorR =1 2exp 2NS( )  (16) 

This detection situation is a degenerated since no errors are considered for the transmitted “0”. It is not of great practical 

interest since this shot noise limited situation can unfortunately be only obtained for a high signal level or under low 

temperature operation when the associated shot noise overcomes the thermal noise. In this situation the average photon 

number per bit, required for a bit error rate equal to 10
-9

, is 

 NS =10 photons/bit  (17) 

An equivalent situation is the detection of a signal switched between 2 orthogonal polarization states with a single 

detector following a polarizer. However, in this case, the useful average energy of the signal is divided by a 2 factor. 

Due to the unavoidable thermal noise the number of required photons is usually dramatically larger, making direct 

detection inappropriate for low photon number signal detection. Due to its minimum noise factor F = 2, the utilization of 

an optical preamplifier to overcome the thermal noise leads to quantum limit of 38 photons/bit for OOK signals under 

matched filtering condition
23

. 

3.2 Two detector receiver for polarization modulated signal 

Let us assume a polarization modulation encoding using 2 orthogonal eigenstates, using for instance the binary signal 

representations
  

= 0   and = 1 . Since orthogonal polarization circular states refer to different quantum states 

they can, in principle, be error free discriminated. 

 

Figure 4: Linearly polarization switched signal receiver 

 

As shown on Fig 4, the perfectly linearly polarized signal energy is not spread on the 2 detectors and the average photon 

number NS = N1 = N0  is totally received by one of them. However, in the same way as for an OOK signal detection, 

no photon may be received when NS  are expected. In this case the probability of erasure of the receiver is derived using 

the well-known conditional Poisson process at the photon counter and the well-known probability p(n) to observe n = 0 

photons while NS  is expected 

 BErassureR = exp NS( ) (18) 

In quantum cryptography applications this arrangement may by use for quantum key distribution, the erasure rate is not 

usually a major drawback since the corresponding information may be discarded during the reconciliation process, at the 

expense of a reduction of the key rate generation. 
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In digital communication the erasures, which are localized, may be corrected by using a forward error-coding (FEC) 

overhead. When no coding is used the erasure rate turns to a BErrorRate equal to the half of the erasure rate 

 BErrorR =1 2exp NS( )  (19) 

According to Eq. 19, the average photon number NS = 20 is required to achieve a bit error rate equal to 10
-9

. 

4. SINGLE DETECTOR OPTICAL RECEIVERS FOR PSK SIGNAL 

4.1 PSK modulated coherent state overlap 

Coherent states are the more classical-like signals and, up to now, the more widely used in optical communication and 

cryptography. They are easily produced by reliable and inexpensive semiconductor laser sources covering the larger part 

of the today’s application fields. Furthermore, the excess noise of a nearly coherent state source disappears through 

attenuation, turning it into a coherent state. 

However the error free discrimination of 2 coherent states is impossible since they are not orthogonal. The state overlap 

of 2 different coherent states is easily derived by using the non-orthogonal coherent states expansion as a sum of 

orthogonal number of photon number states 

 = exp(
1

2
2
)

n

n!n= 0

n  (20) 

The square of the components in this expansion is the well-known Poisson distribution. 

 1 2

2
= exp

1

2
(

1

2
+

2

2
)

 

  
 

  
n= 0

*n

n!

m

m!m= 0

n m

2

= exp(
1 2

2
)  (21) 

For binary phase-shift keying (BPSK) modulated coherent state signal, the two antipodal coherent states are 

  and  are used to minimize their overlap for a given average signal photon number Ns =
2

. The signal 

overlap is in this case 

 = exp( 2
2
) = exp( 4NS ) (22) 

In the same way, for OOK signal, the overlap of the coherent state with the vacuum state is to be considered  

 = 0 = exp(
2
) = exp( NS )  (23) 

4.2 Helström Bound 

Since a complete differentiation of the transmitted BPSK states is not possible, an inherently finite error rate is obtained. 

For non-orthogonal signal states, using the maximum likelihood criterion, Helström found the minimum attainable 

probability of error as a function of the signal state overlap 1 2 . Assuming an identical probability of transmission 

it is expresses in terms of the two states overlap 

 BErrorR =1 2 1 1 1 2( )  (24) 

Using the 2 coherent states overlap of a BPSK signal, the BErrorRate finally is expressed as 

 BErrorR =1 2 1 1 exp 4NS( )( ) 1 4exp 4NS( )  (25) 

4.3 Single detector Kennedy receiver or single detector super homodyne receiver 

The Kennedy receiver performs the detection of BPSK signals using a single photo detector by adding a phase 

referenced local oscillator with the same amplitude, supposed already known, on the receiver
24,25

. The added local 

oscillator corresponds to one of the 2 possible realizations for the signal, which is then doubled, and cancels for the 
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other. As depicted on Fig 5, to avoid the splitting of the signal energy, a strongly asymmetrical coupler is used with a 

transmission coefficient close to 1 for one of the 2 signal paths and close zero for the corresponding local path. The 

second coupler output is discarded. A strong local oscillator input is required to counter act the weak coupler 

transmission on the local path. 

As shown on Fig 5 the Kennedy receiver performs a displacement on the signal constellation in order to null one of the 2 

hypotheses on the signal, while doubling the other one. This called an “unconditional nulling receiver”. The use of a 

single photon counter is mandatory when a signal at quantum level is concerned. 

Assuming a perfect receiver with a unit quantum efficiency, free of thermal noise and spurious background radiation, no 

errors occur for the symbol for which the signal field is cancelled by the local oscillator, since no electron may emitted 

by the vacuum state. When the signal field is doubled by the local oscillator addition, there is a probability lower than 

unity of emitted photoelectrons since all coherent states overlap with the vacuum state. An error occurs when no 

photoelectron is emitted when 4Ns are expected. Using again the well-known conditional Poisson process at the photon 

counter and assuming the same probability for the 2 transmitted symbols, the bit error rate of the Kennedy receiver is 

obtained 

 BErrorR =1 2exp( 4Ns)  (26) 

This is usually referred as the Super Quantum Limit
26,27

 

 
Figure 5: Single detector Kennedy receiver and its Constellation displacement. 

 

The Kennedy receiver does not allow reaching the Helström bound. However this near optimum receiver has a better 

probability of error for large signal photon number than the “Standard Quantum Limit” (SQL) discussed in Section 5. 

The photon number required for the probability of error for the Kennedy receiver is twice the photon number that 

appears in the asymptotic limit BER = 1 2( )exp( 2Ns)  of the SQL. This can be understood by considering that, for 

the  2 detector arrangement achieving the SQL discussed in Section 5, the power of the incoming signal is spread on two 

detectors and that the 2 detector outputs, proportional to the signal amplitude, are subtracted, recovering a factor 2, while 

for the Kennedy receiver, the spread signal amplitude is doubled on one detector, and the power therefore squared. In 

this last case, the signal contribution on the other detector is cancelled. 

4.4 Dolinar receiver 

Dolinar, also proposed another receiver structure for the binary channel with coherent states using photon counter, in the 

absence of thermal noise
28,29

. This structure is a “conditional nulling receiver” and is able in principle to reach the 

Helström bound. 

The Dolinar receiver is based on the Kennedy receiver, also with ideal couplers but incorporating an adaptive strategy to 

implement a feedback whose amplitude can be controlled and its phase switched over the bit duration, in order to 

dynamically null one hypothesis depending on the observed count process, in a real time feedback scheme. This 

constitutes a “conditionally nulling” receiver that progressively annuls the more probable signal according to the 

measured counts. As time goes on the phase is switched less frequently, until a final count after which the input field is 

almost cancelled. In Dolinar receiver, decision is carried out by the parity of the number of counts at the end of the 
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symbol: hypothesis 1 for odd count and hypothesis 0 for even count. As for the Kennedy receiver the use of a single 

photon counter is mandatory when signal at quantum level is concerned. 

5. DOUBLE DETECTOR OPTICAL RECEIVERS 

5.1 Double detector interferometric Kennedy, receiver or double detector super homodyne receiver 

The double detector Kennedy receiver or double detector super homodyne receiver is based on the interference of the 

signal to be detected with a reference one of similar amplitude. The BPSK signal demodulation may be achieved by 

using a double detector Kennedy receiver so-called double detector super homodyne receiver. A 50% x 50% coupler is 

used to split the incoming signal on the 2 detectors. The use of photon counters is mandatory when signal at quantum 

level is concerned. According to its phase, the signal field is cancelled or doubled by the subtraction or the addition of a 

local field with the same amplitude. This situation is equivalent to an interferometer with a contrast equal to the unity in 

which a dark fringe occurs on one of the 2 detectors and a bright fringe on the other one. 

 

 
Figure 6: Double detector interferometric Kennedy receiver or double detector super homodyne receiver. 

 

The general double detector super homodyne receiver configuration is depicted on Fig 6. The signal is S, when the 

symbol 0 is transmitted, and - S, when the symbol 1 is transmitted. So we have 

 a1 = a1I = sI = ±S      and    a2 = ja2Q = jlI = jS  where S is real (27) 

In this case Eq.5 is reduced to 

 N1 =
1

2
S ± S( )

2
=

2S2 = 2NS  when 0 is transmitted

0     when 0 is transmitted

 
 
 

 (28) 

 

  

N2 =
1

2
S S( )

2
=

0     when 0 is transmitted

2S2 = 2NS  when 0 is transmitted

 
 
 

 (29) 

where NS is the average received signal photon number. This receiver performs an unconditional signal nulling on one 

of the detectors. In ideal conditions, this receiver produces erasures whatever is the transmitted symbol. An erasure 

occurs if no photon is received when the expected number is 2NS . Using again the well-known probability, for n = 0 

and n = 2NS  as an expected value, we have the theoretical erasure rate 
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 BErasureR = exp 2NS( )  (30) 

In quantum cryptography applications this arrangement may by used for quantum key distribution. The erasure rate is not 

usually a major drawback since the corresponding information may be discarded during the reconciliation process at the 

expense of a reduction of the key rate generation
30,31

. 

In digital communication the erasures, which are localized, may be easily corrected by using a coding overhead. When 

no coding is used the erasure rate turns to a BErrorRate equal again to the half of the erasure rate 

 BErrorR =1 2exp 2NS( )  (31) 

According to Eq. 3, the average photon number NS = 10 is required to achieve a bit error rate equal to 10
-9

. Since the 

signal optical power is split on the 2 detectors and since only a single detector is used at a given time this receiver is 

equivalent to the Kennedy receiver with only half of the signal energy. 

This receiver does not allow to reach the Kennedy receiver sensitivity, because of the prior division to the received field 

strength signal which is afterward doubled (or cancelled) by the addition of local fields, leading to a signal 3db lower 

than obtained by doubling the total amplitude of the signal on the single detector Kennedy receiver. 

The sensitivity is also obtained by a balanced homodyne detection with a local oscillator of very high amplitude for 

which a single quadrature of the field is measured. The  BER is in this case BErrorR =1 2erfc 2N S( )  with the same 

value asymptote (Standard Quantum Limit). 

In a balanced dual detector arrangement the total average bit energy is collected leading to 3db theoretic improvement as 

compared to the OOK quantum limit. Furthermore input excess noise, as compared to the quantum limit, preserve a 

strong correlation on the 2 detectors, thanks to the low value of the 2 arm delay and are rejected by the balanced 

electrical arrangement. 

However, as for the Kennedy and the Dolinar receivers, the use of a single photon counter is mandatory when signal at 

quantum level is concerned. 

5.2 Double detector strong local oscillator homodyne receiver for PSK signal 

 

Classical theory of strong local oscillator homodyne detection 

 

The general two-detector PSK coherent receiver configuration is depicted on Fig. 7. The signal is injected in the first port 

and is S when the symbol 0 is transmitted and –S when 1 the symbol is transmitted. On the second port, a strong local 

oscillator is assumed to be injected with an amplitude L>>S. In this situation we have 

 a1 = sI ± S      and    a2 = jlI = jL  where S  and L are real (32) 

In this case Eq.10 is reduced to 

 N = 2sI lI = 2SL  (33) 

The detector on which the signal is maximum when the symbol 0 is transmitted is denoted D1 and the detector on which 

the signal is maximum when the symbol 1 is transmitted is denoted D2. Assuming again unit quantum efficiency, the 2 

electron counts express as 

 N1 =
S2 + L2

2
± SL =

NS + NL

2
± NSNL  (34) 

 
  

N2 =
S2 + L2

2
SL =

NS + NL

2
NSNL  (35) 

where NS and NL are the average signal and local photon number defined as NS = S
2  and NL = L

2
. By subtraction of 

the two photo detector counts, the final output signal of the receiver is  
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 N2 N1 = 2 NSNL  (36) 

while the output fluctuations are obtained by adding the variances of uncorrelated photon number fluctuations 

 N( )
2
= N0( )

2
+ N1( )

2
= NL + NS NL  (37) 

 

Figure 7:  The general two-detector BPSK coherent receiver configuration. 

 

The Poisonian fluctuations of the photon flow from the local oscillator appear here as the dominant noise source. The 

homodyne detection description is usually done in terms of beating and is therefore closely related to the wave 

description of light. However, when the output noise is concerned, it is common to switch, as we have done above, to a 

corpuscular description of the light, leading to the usual conclusion that local-oscillator shot noise, some times thought of 

as only occurring in photo detection, is the fundamental noise. 

The signal to noise ratio is  

 
S

N
=

N 2

N( )
2
=
4NSNL

NL

= 4NS  (38) 

And the bit error rate is 

 BErrorR =1 2erfc 2N S( ) (39) 

which is referred as the “Standard Quantum Limit”, with the asymptotic value 

 BErrorR =1 2exp 2NS( )  (40) 

According to Eq.40 an average photon number NS = 9 is required to achieve a bit error rate equal to 10
-9

. In this case, 

only a single quadrature of the signal field is observed. This result is the same as for the double detector Kennedy 

receiver, but, thanks to the noise free mixing gain, this receiver allows the utilization of standard PIN photodiode and 

avoids the photon counters impairments. 

It is to be noticed that for a PSK signal demodulation with an heterodyne arrangement, an average photon number NS = 

18 photons would be required to achieve a bit error rate equal to 10
-9

, due to the 3dB penalty of the simultaneous 

measurement of the 2 quadratures of the local field. Homodyne detection of an OOK modulated signal would require 

also NS = 18 photons since no signal would be transmitted half of the time. Heterodyne of an OOK modulated signal 

would require NS = 36 photons, due to the 3dB penalty of the simultaneous measurement 2 quadratures. 
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Quantum theory of strong local oscillator homodyne detection 

The quantum theory of the homodyne detection has already been widely discussed
32,33,34,35

. In homodyne detection only 

one quadrature is measured and no noise addition is required. The input signal quantum noise is therefore the only noise 

limitation. The local oscillator has no influence and the output noise is only governed by vacuum fluctuation entering at 

the signal port. The coherent subtraction of the 2 photocurrents outputs allows also homodyne detection to reject the 

classical and the quantum fluctuations of the oscillator local as well. As a consequence, homodyne detection is only 

limited by the quantum fluctuation of the signal, i.e. the vacuum fluctuation entering through the signal port. 

The local oscillator shot noise is produced by the vacuum fluctuation, entering through the local port. It has no influence 

on the output noise. However it may be considered in a naïve description of the classical theory, with valid numerical 

results. 

5.3 Comparison of strong local oscillator and super homodyne receiver for PSK signal 

The Table 1 compares the super homodyne receiver using the photon counters strong reference balanced homodyne 

receiver using PIN photodiodes. 

Super Homodyne Receiver 

with Photon Counters 

Strong Reference Balanced Homodyne Receiver 

with PIN Photodiodes 

Photon counter (gated Geiger APD) 

- Low speed (MHz) 

- Low quantum efficiency (10%) 

- Dark count limit (QBER) 

- Cooling required 

- Quenching required 

Standard PIN photodiode 

- High speed (GHz) 

- High quantum efficiency (90%) 

- Room Temperature 

- Low cost 

 

No strong reference (local oscillator) requirement 

Interferometric arrangement may be use 

Strong reference (local oscillator) requirement 

Noise free mixing gain 

Decision threshold 

- At the counter level 

- Trade-off between efficiency and dark count 

Decision threshold 

- Post detection at high signal level 

- Multi level decision possible 

Erasure rate at twice the Standard Quantum Limit (SQL) 

BER 

Standard Quantum Limit (SQL) BER 

 

 

Table 1: Comparison of the 2 double detector receivers for PSK signal 

 

5.4 Comparison of the different coherent PSK receivers implementation and performances 

 

Figure 8: Bit error rate obtained with the strong oscillator homodyne detection arrangement, at the Helström limit and 

with the single detector Kennedy receiver, in terms of the signal energy. 
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The Fig.8 compares, in terms of the signal energies, the bit error rate of the strong oscillator homodyne detection 

arrangement to the Helström limit and to the single detector Kennedy receiver performances  

The Table 2 summarizes the different receiver implementations and their performances expressed in term of bit error 

rate. 

 

Quantum 

receiver 
Bit Error Rate 

Asymptotic 

approximation 

Implementation 

requirement 
Comments 

Helström 

limit Dolinar 

receiver 

1 2 1 1 exp 4NS( )( )  1 4exp 4NS( )  
Idealist combiner 

Single Photon 

Counter 

Conditional nulling 

Phase et amplitude feed-

back control 

Super 

homodyne 

Kennedy 

receiver 

1 2exp 4NS( )  
1 2exp 4NS( ) 
Super Quantum 

Limit 

Realistic Balance 

Mixer 

Single Photon 

Counter 

Unconditional nulling 

receiver 

Thermal noise limitation  

Homodyne 

detection 
1 2erfc 2N S( )  

1 2exp( 2NS )  

Standard 

Quantum Limit 

2 PIN 

photodiodes 

Quantum Limit 

Mixing gain 

overcoming thermal noise 

 

Heterodyne 

detection 
1 2erfc N S( ) 1 2exp( NS )  

2 PIN 

photodiodes 
Free running local oscillator 

Direct 

detection 

of OOK 

signals 

1 2exp( 2NS )  

Standard Quantum Limit 

1 2exp( 2NS )  

Standard 

Quantum Limit 

Single PIN 

thermal noise free 

photodiode 

Usually impaired 

 by thermal noise 

 

Table 2: Comparison of the different receivers implementations and performances expressed in term of bit error rate 

6. TWO EXPERIMENTS WITH BALANCED HOMODYNE DETECTION 

Up to now we have elaborated on the balanced homodyne detection technique for applications employing phase shift 

keying, we obtained its performances in terms of signal to noise ratio and bit error rate and compared both with the 

fundamental bounds and with the performance of heuristic receivers based on photon counting. We will finally illustrate 

experimentally the operation and measured performance of this type of detection, for the PSK-modulated optical 

channel.  

In this section we present two experimental set ups for the balanced homodyne detection of weak coherent state fields, 

both operating at the telecommunications wavelength 1550 nm: one in continuous wave and the other in pulsed regime. 

They are intended for quantum key distribution applications, comprising also conjugated base switching at transmitter 

and receiver ends, however for our present task we will concentrate only on the production of the weak coherent PSK 

signal and the local oscillator, as well as the field mixing and balanced homodyne detection. 

Both set ups are based on interferometric self-homodyne configurations, which substantially relaxes the postdetection 

processing, since the strong cross-correlation between the signal and the local oscillator fields yields a very narrowband 

post detection process at baseband, and only slow interferometric drifts need to be compensated. 

6.1 Continuous wave balanced homodyne detection 

Our first experiment uses both signal and local oscillator in continuous wave regime. In fact they travel in separate fibers 

are recombined at the receiver end. Even in the self-homodyne configuration the interferometer must be precisely 

stabilized in the presence of perturbations, which we perform by applying phase synchronization techniques. 
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For power economy we employ suppressed carrier PSK, i.e. no residual carrier to lock to. Therefore we need to access 

both field quadratures in order to provide the phase error for the synchronization; however balanced homodyne detectors 

measure only one signal quadrature, i.e. that orthogonal to the local oscillator phasor. Diverse synchronization 

techniques have been proposed using time-switching phase diversity both for the classical channel
3637,38

 as well as the 

quantum channel
39

; in this work we propose a detection structure based on sequential I-Q detection, using a switched-

phase local oscillator. 

We have implemented an experimental system with a balanced homodyne scheme employing a continuous wave light 

source at 1550 nm wavelength. Fig 9 is a simplified scheme of our experimental set up (polarization control elements are 

not shown).  

 

Figure 9: Continuous wave experimental set up with separated fibers for signal and local oscillator 

 

In order to separate problems related to finite laser line width when using a separate local oscillator our set up uses the 

same laser source for the signal and local oscillator, which is obtained by splitting the laser source. The transmitted 

signal is phase modulated and strongly attenuated in order to produce a weak coherent state field and sent through a 

standard telecommunications fiber. The local oscillator travels in a separate fiber. 

At the receiver end the weak signal and the strong local oscillator are detected in a balanced homodyne configuration. In 

order to generate the phase error, i.e. remove the modulation we need to process non-linearly the in-phase and quadrature 

components. This is performed with a scheme that alternatively switches the local oscillator phase between 0  and 90 to 

sequentially beat with the signal. Phase error is finally feedback into an optoelectronic loop acting on a fiber stretcher to 

precisely equalize the path lengths. 

 

 

Figure 10: Measured uncertainty product for the continuous wave balanced homodyne experiment. 
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Fig. 10 shows our experimental results on for the uncertainty product as a function of signal photon number, our 

measurements are close to the uncertainty limit
40,41

, especially for small values of the photon number. These results are 

interpreted as that the attenuation of optical signal power smoothes out the excess noise and the strongly attenuated 

signal approaches the coherent states model. 

6.2 Pulsed source balanced homodyne detection 

Our second experimental set up is based also on a balanced homodyne scheme, but employing a pulsed light source at 

1550 nm wavelength, in a multiplexed scheme that has the advantage of requiring only one fiber for the communication 

channel. Fig.11 is a simplified scheme of our experimental set up (polarization control elements are not shown). 

In order to isolate the above mentioned problems related to finite laser line width when using a separate local oscillator, 

this time our set up uses time multiplexed signal and local oscillator in the optical channel, which is obtained by splitting 

the laser field in an interferometric scheme, with a delay in one arm for the (strong) local oscillator laser pulse. 

In the other arm the transmitted signal is phase modulated either by the information or by training frames (see below) for 

phase lock purposes at the receiver end. We strongly attenuate the transmitted signal in order to produce a weak coherent 

state field and send it through a standard telecommunications fiber. 

 

Figure 11: Set up for the balanced homodyne detection experiment with pulsed source: upper part: transmitter; lower part: 

receiver. 

At the receiver end the weak signal and the strong local oscillator pulses are superimposed in a similar interferometric 

scheme using the same delay, and a balanced homodyne configuration is used for detection. Even in this multiplexed 

scheme we still have to deal with the optical phase synchronization problem due to the effects of both interferometers at 

the transmitter and the receiver. Diverse synchronization techniques have been proposed using synchronization bits both 

for classical telecommunications channels
42

, low photon-number interferometry
43

, as well as in quantum cryptography
44

. 

In this work the phase drift is compensated with an optoelectronic feedback using training frames inserted at regular 

intervals at the transmitter as shown on Fig 11. At the receiver we extract this information from the postdetection signal 

to generate an error signal that is used for acting on a fiber stretcher. 

Fig.12 shows our experimental results for the BER as a function of signal photon number, compared to the standard 

quantum limit. 
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Figure 12: Experimental results for the BER as a function of signal photon number 

 

7. CONCLUSION 

We have presented basic concepts related to optical signals and quantum noise and its repercussion on the transmission 

of information: quantum noise becomes the ultimate limitation when thermal noise is surmounted by employing suitable 

detection systems, such as cooled photon counters or room temperature heterodyne and homodyne detectors with strong 

reference fields. The manifestation of quantum phenomena sets the fundamental bounds in the minimum energy per bit, 

which are of great interest in present and new applications that operate with few photons per observation time such as 

quantum communications and cryptography, either for power economy or for quantum state preparation requirements. 

We focused on the quantum coherent state model of the radiation field, as they most closely resemble the classical 

description, and many concepts are understandable from this representation, as a result of commutation and uncertainty 

relations. However, they are non-orthogonal and a finite error rate is unavoidable: we presented the fundamental 

detection bounds and some receiver structures that approach those bounds.  

In this work we emphasized on the homodyne detection, which has been extensively developed for classical systems, due 

to its interesting characteristics concerning noise free conversion gain to approach the standard quantum limit, using 

standard PIN photodetectors. These characteristics are also attractive in other applications such as free space 

communications, lidar, radio over fiber, optical sensors, and other sensitive to power economy. 

Traditional models for homodyne detection interpreted noise as produced by the local oscillator shot noise. However in 

recent applications a more detailed description is necessary, we therefore presented a quantum treatment explaining the 

fact that the noise in balanced homodyne detection (as well as in heterodyne) is due to quantum fluctuations at the signal 

port. Since a single quadrature is measured, this detection is limited by the uncertainty principle with no additional noise 

required. 

We thus elaborate on this detection technique for applications employing phase shift keying, obtaining the performances 

in terms of signal to noise ratio and bit error rate and comparing both with the fundamental bounds and with the 

performance of heuristic receivers based on photon counting. 

Finally we experimentally illustrated the operation and performance of balanced homodyne detection, at the 

telecommunications wavelength, employing weak coherent states, presenting two experimental set ups: continuous wave 

and pulsed PSK-modulated; we measured their performances in uncertainty product and bit error rate and compared with 

the standard quantum limits. 
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