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Homodyne In-Phase and Quadrature Detection of
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Abstract—We present a homodyne receiver structure for the de-
tection of weak coherent states that uses sequential in-phase and
quadrature measurements on the received optical signal. This re-
ceiver performs the optical carrier phase tracking requiring only
a single balanced homodyne detector, by including a postdetec-
tion Costas-loop-type feedback, which additionally allows the use
of suppressed carrier modulations in the received field, for ef-
ficient transmission. We report an experimental interferometric
self-homodyne setup for the sequential detection of low photon
number, binary phase-modulated optical signals that consist of
strongly attenuated laser pulses by using a reference field as the
local oscillator with an alternatively switched phase. A Costas loop
postdetection subsystem is implemented in discrete time to perform
fast real-time optical phase tracking. We also present the experi-
mental results of the homodyne postdetection statistics for received
BPSK signals with very low photon numbers, and compare them
with the theoretical uncertainty limit. Finally, we conduct bit error
rate measurements over a wide range of signal level, as well as a
comparison with the standard quantum limit.

Index Terms—Balanced homodyne detection (BHD), coherent
detection, in-phase and quadrature measurements, optical Costas
loop, optical phase-shift keying (PSK), optical phase synchroniza-
tion, quantum communications, weak coherent states (WCSs).

I. INTRODUCTION

HOMODYNE optical communications are currently re-
ceiving renewed interest due to their unique character-

istics of sensitivity to complex amplitude modulations that re-
quire substantially lower optical SNR for a given postdetection
bit error rate (BER) [1] than the traditional intensity-modulated
(IM) ON–OFF keying (OOK) incoherent systems with direct de-
tection. Coherent technologies offer the advantages of a much
better spectral efficiency [2], [3], and, when constant envelope
modulations are used, they are much more tolerant to nonlinear-
ities in the fiber optic channel [4], [5]. Additionally, for densely
multiplexed systems, their highly selective spectral transposition
into baseband constitutes an efficient demultiplexing scheme.
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Balanced homodyne detection (BHD) using standard p-i-n
photodiodes and a strong local oscillator (LO), whose noise has
only negligible influence, measures only one quadrature since
there is no additional noise other than the zero-point fluctuation
of the received signal field. Therefore, the output noise is domi-
nated only by vacuum fluctuation entering in the signal port, and
a standard quantum-limited (SQL) reception is attained [7], [8].

With these advantages, homodyne detection is also attractive
in other applications that are presently of high research inter-
est, such as coherent sensors, coherent reflectometry, coherent
spectral analysis, and multiport optical networks. Additionally,
the characteristics of highly selective spatial filtering for back-
ground radiation rejection are essential in free-space communi-
cations and lidar applications.

However, since homodyne detection is sensitive to the in-
stantaneous field complex amplitude, the reception relies on
the accurate synchronization of the optical carrier phase with
respect to the LO, in the presence of fluctuations due to the
inherent linewidth of the signal and LO, as well as the fluc-
tuations in the thermomechanical state of the fiber and other
in-line components. For pilot carrier systems, a diversity of
feedback tracking configurations have been reported in the con-
ventional configuration of optical phase-locked loops in current-
controlled oscillator configurations, and even in injection lock-
ing schemes [9], [10].

Efficient transmission requires constellations with suppressed
carrier, and the extraction of the phase error constitutes a difficult
task that frequently requires nonlinear operations on the post-
detection signal(s) and diverse demodulation/tracking schemes
such as Costas loops and directed decision loops. The feedback
or feedforward (intradyne) configurations [11], [12] have been
reported for the reception of classical light fields, carrying high
photon number per bit.

Now, carrier phase tracking in homodyne reception imposes
further challenges in new applications that operate with very few
average photons per observation time such as quantum cryp-
tography [13], long-distance free-space communications and
lidar [14], and the other instrumentation and scientific applica-
tions that work with photon numbers substantially lower than
those used in classical transmission, such as weak coherent
states (WCSs).

In this paper, after briefly reviewing the principles of the four-
port BHD for single-quadrature measurements and of the eight-
port optical hybrid detection for two-quadrature measurements,
we present a receiver for the sequential detection of the in-phase
(I) and the quadrature (Q) components of a WCS signal that
is modulated in a suppressed carrier format, for applications in
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Fig. 1. BHD for two possible phase states of the LO: 90◦ (solid line) and 0◦

(dotted line).

the optical communications and cryptography. It uses a single
balanced homodyne detector with an LO, whose phase is peri-
odically switched between 0 and π/2 to alternatively beat with
the incoming signal. This constitutes a sequential Costas-loop-
type demodulation/synchronization scheme, and we present the
postdetection feedback subsystem that is designed for the op-
tical phase carrier tracking. We implement this structure in an
experimental homodyne setup for the sequential detection of low
photon number and binary phase-modulated optical signals, by
applying a signal phase-tracking algorithm. Finally, we present
the measurements on its optical phase-tracking characteristics,
its postdetection statistics with respect to the uncertainty limits,
and its BER performance with respect to the SQL.

II. FOUR-PORT BHD

Fig. 1 shows a general BHD scheme for an incoming signal
(red phasor) with a LO (blue phasor), both in a single spatial
mode, described by the photon annihilation operators âS and
âL , respectively, such as the Hermitian field operators with the
central carrier frequencies νS and νL . The instantaneous phases
φS (t) and φL (t) are described, respectively, by

ÊS (t) =

√
hνS

T

[
âS (t) exp[j(2πνS t + φS (t))]

+â+
S (t) exp[−j(2πνS t + φS (t))

]
(1)

ÊL (t) =

√
hνL

T

[
âL (t) exp[j(2πνLt + φL (t))]

+â+
L (t) exp[−j(2πνLt + φL (t))

]
(2)

where â+
S and â+

L are the corresponding adjoint operators, the
time duration T is the observation time that is much longer than
the optical period but much smaller than the coherence time of
the optical source, and h is the Planck’s constant.

For the derivation of the number operators resulting from the
BHD, a priori assumptions on the phase noise processes φS and
φL are not necessary. They can be considered as usual Wiener
process in which the time constant T is much longer than the
modulation period. They may be totally uncorrelated if they are
issued from different laser sources, or partially correlated if only
one source is used in a delayed interferometer configuration, i.e.,
self-homodyne.

In a scalar analysis, the annihilation operators are expressed in
terms of their in-phase (I) and quadrature (Q) Hermitian compo-

nents: âS = âS I + jâSQ and âL = âLI + jâLQ . Assume that
the signal and the LO are in Glauber’s coherent states, and are
denoted by |αS 〉 and |αL 〉, respectively. For a signal with con-
stant envelope modulation, we can separate the classical and the
quantum contributions for the two quadratures in the following
form:

aSI/SQ = 〈âS I/SQ 〉 + ∆âS I/SQ (3)

âLI/LQ = 〈âLI/LQ 〉 + ∆âLI/LQ (4)

corresponding to the average signal and LO photon numbers as

NS = 〈â+
S âS 〉 = |αS |2 = 〈âS I 〉2 + 〈âSQ 〉2 (5)

NL = 〈â+
L âL 〉 = |αL |2 = 〈âLI 〉2 + 〈âLQ 〉2 . (6)

Furthermore, the variances are

〈∆â2
SI 〉 = 〈(âS I − 〈âS I 〉)2〉 (7)

〈∆â2
SQ 〉 = 〈(âSQ − 〈âSQ 〉)2〉. (8)

Also, the two noncommutating observables are subject to the
Heisenberg uncertainty relation given by

〈∆â2
SI 〉〈∆â2

SQ 〉 ≥
1
16

. (9)

In our case, a coherent state is a minimum uncertainty state for
which the standard deviations are 〈∆â2

SI 〉1/2 = 〈∆â2
SQ 〉1/2 =

1/2, bounded by the zero-point fluctuation energy [15].
In this four-port homodyne detector, the LO is in a coher-

ent state with a large number of photons, then the measured
count difference is related to the field strength probability of
the signal [16]: for coherent states, the probability density func-
tions (PDFs) of the outcomes of the independent measurements
on the in-phase and quadrature components are both Gaussian
functions with standard deviation 1/2, which is given by

p(âS I/SQ ) =

√
2
π

exp[−2(âS I/SQ − 〈âS I/SQ 〉)2 ]. (10)

Assuming a lossless and a perfectly balanced coupler, and
that the photodetectors are of unit quantum efficiency, due to
the coherent subtraction of the two photocurrents, the electron
number operator at the output is given by the projection of the
signal operator on the quadrature local field operator [17].

As in Fig. 1, to detect 〈âS I 〉 (or 〈âSQ 〉), we set 〈âLI 〉 (or
〈âLQ 〉) to zero, as shown in solid (dotted) line in Fig. 1. For
example, in the detection of 〈âS I 〉 with a strong LO of which
NL = 〈âLQ 〉2 � NS , the dominant term at the BHD output is

N̂ = 2〈âLQ 〉(〈âS I 〉 + ∆âS I ). (11)

The quadrature 〈âS I 〉 and its additional quantum noise ∆âS I

are amplified by the deterministic part of the quadrature LO
component, as a noise-free mixing gain. In this case, only one
quadrature is measured, and the input signal quantum noise is
the only noise limitation; furthermore, both the LO quantum
noise and the excess noises are cancelled.
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Then, assuming a perfectly phase-matched LO, the photon
number operator can be cast in the form

N̂ = 〈N̂〉 + ∆N̂ . (12)

We also assume that the signal and the LO are coherent states,
denoted |αS 〉 and |αL 〉, respectively, and that a constant enve-
lope modulation is used for the signal, and thus, we can obtain
the averaged square of the signal photon number, corresponding
to the average post-detection electric power as

〈N̂〉2 = 4NLNS (13)

and the averaged square of the photon number fluctuations as

〈(∆N̂L )2〉 = NL. (14)

This term corresponds to the postdetection electric noise
power, which is the well-known Poisson fluctuation relation-
ship.

And the SNR is, therefore, given by

SNR = 4NS . (15)

Although the analysis is readily applicable to higher order
modulations, without loss of generality, we consider here the
case of optical BPSK in which two equally probable modulated
binary symbols (0 and 1) are represented by two antipodal phase
states in the signal field (0 and π) that maximize the signal dis-
tance, and a constant envelope modulation is used to minimize
the signal overlap. When a strong LO field is used with perfect
phase alignment, in the absence of thermal noise, the BER is
given by [18], [19]

BER(NS ) =
1
2
erfc(

√
2Ns) (16)

where erfc[x] = (2/
√

π)
∫ ∞

x exp(−t2)dt is the complementary
error function.

III. EIGHT-PORT IN-PHASE AND QUADRATURE DETECTION

Efficient modulation formats require a suppressed-carrier op-
tical signal, e.g., BPSK, QPSK, or higher order constellations
with equally probable symbols; therefore, the conventional op-
tical phase-tracking schemes such as pilot carrier phase-locked
loops (PLLs) are not applicable. Several heuristic strategies for
phase synchronization have been proposed and experimentally
implemented, such as the use of imperfect modulation [20],
phase dithering [21], or the use of synchronization bits [22]. All
these schemes, however, cause a reduction of the effective bit
rate [23].

For a fully suppressed carrier, the detection of the in-phase (I)
and quadrature (Q) components of the signal field is required,
and should be performed with diverse coherent schemes, such
as Costas loops, directed decision loops, or higher order loops,
for QPSK or higher order constellations. Fig. 2 shows a general
Costas loop I–Q receiver structure, based on the splitting of one
of the interacting fields (in this case, the LO) into its in-phase
I and quadrature Q components, as well as on their separate

Fig. 2. Optical Costas loop based on a 90◦ optical hybrid with two BHD
receivers. The LO is split and shifted by 90◦ in the upper branch to beat simulta-
neously with the in-phase and quadrature components of the signal phasor. The
error signal is fed back into the LO for frequency control.

beating with the other optical fields. The purpose of the nonlinear
multiplying block is to suppress the modulation [24], leaving
only a function of the phase error φe(t) = φS (t) − φL (t) with
additive noise to be fed back into the LO frequency, i.e., an
optical current-controlled oscillator.

These eight-port structures are extensively used in classical
communications for the reception of multilevel phase-shift key-
ing (PSK): QPSK, 8PSK, and also BPSK signals, with tradeoffs
related to the power splitting fractions used for data detection
and phase lock [25], [26]. Even in the reception of differentially
modulated fields, such as DPSK or DQPSK, where demod-
ulation is performed using delayed interferometric configura-
tions [27], they are used to track the relative phase fluctuations
due to interferometric drifts, or the source phase noise accumu-
lated during the delay time, etc. [28], [29].

Assuming perfect couplers and detectors characteristics, we
use a strong LO with a relative phase θ with respect to the
signal field; hence, the number operators at the in-phase (X)
and quadrature (Y ) outputs can be found as

N̂X = 〈|âL |〉[âS I cos(φS − φL ) + âSQ sin(φS − φL )] (17)

N̂Y = |〈âL 〉|[âS I sin(φS − φL ) − âSQ cos(φS − φL )]. (18)

These operators, corresponding to the SQL, are found to com-
mute, allowing the simultaneous measurement of I and Q sig-
nal quadratures for the determination of the optical phase, at
the price of introducing vacuum noise through the unused ports.
Also, the outcome is in agreement with the uncertainty princi-
ple [30], [31].

For coherent states fields, we can separate the classical and
quantum contributions for the two photon-number operators as

N̂X = 〈N̂X 〉 + ∆N̂X (19)
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with 〈N̂X 〉2 = NLNS cos2(φS − φL ) and 〈(∆N̂X )2〉 = NL/2

N̂Y = 〈N̂Y 〉 + ∆N̂Y (20)

with 〈N̂Y 〉2 = NLNS sin2(φS − φL ) and 〈(∆N̂Y )2〉 = NL/2.
Consequently, we can obtain

SNRX = SNRY = 2NS . (21)

For the design of the Costas loop, we first express the electri-
cal postdetection signals at the output of the I and Q channels
as: X(t) = 〈X(t)〉 + ∆X(t) and Y (t) = 〈Y (t)〉 + ∆Y (t).

For pulses of duration TP , the average signals can be ex-
pressed, respectively, as

〈X(t)〉 = R
hν

TP

√
NLNS cos(φS − φL ) (22)

and

〈Y (t)〉 = R
hν

TP

√
NLNS sin(φS − φL ). (23)

Also, the square root fluctuations are

√
〈∆X2(t)〉 =

√
〈∆Y 2(t)〉 = R

hν

TP

√
NL

2
(24)

where R is the photodetector responsivity.
With regard to the statistics of the phase noise processes

φS and φL , for independent signal and LO fields, the in-phase
and quadrature photocurrents exhibit the well-known Lorentzian
line shape with a full-width half maximum (FWHM) equal to the
sum of those of the two lasers; on the other hand, for completely
correlated fields, the photocurrent spectrum consists ideally of
a Dirac’s delta function. As we will describe later, this latter
case corresponds to our experiments, using a self-homodyne
setup with a relative time delay much smaller than the source
coherence time, and the only differential effects consist of the
interferometer drifts and technical noises.

For a multiplier gain factor Km , its output is expressed as a
function of the phase error φe(t) = φS (t) − φL (t) [32] as

Vm (t) = X(t)Y (t) =
Km

2

(
R

hν

TP

)2

sin[2φe(t)] + nT (t)

(25)
where nT (t) is the resultant noise after multiplication. Now,
for the small phase errors, a linear analysis of the Costas loop
receiver allows to obtain the phase error statistics, as detailed in
Appendix, in which we model the signal and LO phase noises
as resulting from finite-lasers linewidth ∆ν. When a first-order
feedback loop with frequency fn is used, the phase error vari-
ance can be obtained, as indicated in Appendix (A14), as

σ2
e =

∆ν√
2fn

+
3πTP fn

2
√

2NS

. (26)

This represents a tradeoff between the phase noise and quan-
tum noise effects [33]. The larger the loop bandwidth, the faster

the system tracks the signal phase, but the noisier the feedback.
Thus, an optimum bandwidth can be easily found from this
equation, as indicated in Appendix (A15) also, as

fno p t =
√

2∆νNs

3πTP
. (27)

IV. SEQUENTIAL IN-PHASE AND QUADRATURE DETECTION

Coherent detection, in general, requires very low “linewidth-
times-bit period” products in high bit rate systems, i.e., in Gbps
range, in order to remain far beyond the noise floor induced by
laser phase noise. As well, for the mixing of the LO with the
suppressed carrier signal in coherent receivers, diverse optical
structures can be used for the optical hybrids [34], for example,
the 3-dB couplers and phase delay, the multimode interference
filters, or the 3-dB couplers and the polarization components.
However, their stabilization is a difficult task, in that the elec-
trooptic phase delay includes several dc control points that must
operate in a feedback loop, sharing resources with the mod-
ulated data, especially for those applications where the signal
average photon number is very low, such as coherent sensing
and reflectometry, long-distance space transmission, as well as
quantum cryptography.In these applications, the bit rate is of-
ten at 1–100 Mbps range; hence, the low “linewidth-times-bit
period” product is not relaxed.

Therefore, alternative schemes that do not require the optical
90◦ hybrid but only one BHD receiver have been proposed, such
as the use of deterministic time-switching phase diversity at the
receiver end [35] or at the transmitter end [36]. In these schemes,
each information bit is replicated, and the incoming signal is al-
ternatively beaten with the in-phase and quadrature components
of the LO. For this task, the LO phase is periodically switched
between 0◦ and 90◦, in synchronization with the received sym-
bol train. These schemes are simpler to implement, employing
only one BHD; however, two transmitted symbols per bit are
required, producing a bit rate penalty of 1/2. A more favorable
tradeoff in bit rate penalty can be obtained if synchronization
bits are inserted at longer intervals [22], [23], as in many cases,
the phase process to be tracked is slowly varying.

Applications in quantum communications and cryptography
can afford the tradeoff in bit rate, since carrier phase tracking
must be performed from low photon number fields with sup-
pressed carrier modulations [37], [38]. For example, for the
quantum channel, a sequential measurement based on a couple
of independent homodyne measurements of commuting quadra-
tures has been proposed: every measurement is prepared in the
same input state before the detection step, within the source’s
coherence time [39].

Fig. 3 shows a BHD receiver structure for WCSs detection
with suppressed carrier: the phase of the LO field is alternatively
switched with an electrooptical modulator to sequentially beat
with the corresponding received signal symbol [40]. This con-
stitutes a “synthetic Costas loop” that requires only one BHD
receiver.

The signal processor block that is detailed in Fig. 4 performs
the data sampling and acquisition, sequential I/Q sampling, loop
filtering and gain, and digital-to-analog conversion stage (DAC)
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Fig. 3. Costas loop employing an LO with alternate quadratures. The received
signal symbols are replicated to beat sequentially with the LO whose phase
is switched between 0◦ and 90◦ at the symbol rate. Two symbols per bit are
required, but only one BHD receiver is needed.

Fig. 4. Elements of the signal processor block as indicated in Fig. 3. LPF:
low-pass filter, G: gain.

to generate the error signal to be fed back onto the LO phase
using a phase shifter (PS), i.e., a piezoelectric actuator for wide
dynamic range and slow phase tracking [41], or a superimposed
voltage on the electrooptical modulator for faster phase tracking,
but with much narrower dynamic range.

In Appendix, we show the design of the digital Costas loop.
We use the equations (A4), (A6), (A7), and a damping factor
ς = 1/

√
2 to determine the time constants of the low-pass filter

transfer function in the analog domain. Then, by using the Tustin
transform, we obtain the corresponding function in the z-domain
with the sampling period TS as

FLPF(z) =
B + Cz−1

1 − z−1 (28)

where the filter constants are B = (TS + 2δ2)/2δ1 and C =
(TS − 2δ2)/2δ1 , also δ1 and δ2 are δ1 = 3TS G

8π∆ν R(hν/TP )2NL

and δ2 = (4π∆νNS /3TP )−1/2 .
We similarly proceed for the loop integrator as

FINT(z) =
TS

2
1 + z−1

1 − z−1 . (29)

In order to implement our digital Costas loop, we use the
inverse Z transform to obtain the corresponding recursive dif-
ference equations, which we program in our signal processing
block.

V. EXPERIMENTAL SETUP AND RESULTS

We present in Fig. 5 the experimental setup at the telecom-
munications wavelength 1550 nm. In this experiment, we use
an interferometric arrangement in order to avoid the problem of

Fig. 5. Experimental setup: at the transmitter, the laser pulses are BPSK-
modulated with symbol replication, and strongly attenuated to produce WCS.
The signal processor block generates the error signal to track the LO phase with
a piezoelectric PS. (PC: polarization controller).

automatic frequency control. This self-homodyne scheme also
helps us to generate a baseband signal with narrow spectral
spread, even though our laser intrinsic linewidth is of the order
of several megahertz, since a conventional DFB telecommuni-
cations laser is used.

At the transmitter end, we use a 1550-nm integrated laser
electroabsorption modulator (ILM) to generate pulses of 5 ns at
16 MHz repetition rates, which is then split by a polarization
splitting coupler. The lower fiber arm provides the continuous
wave (CW) LO as the reference, and the upper arm consti-
tutes the information signal that is modulated in BPSK format
with an electrooptical modulator, on which we replicate each
information bit, and the separation of two consecutive pulses
is thus 57.5 ns. The WCS pulses are then generated by strong
attenuation on the inline attenuator.

As for a prototype system experiment, our interferometer,
including the signal fiber link and the reference fiber link, is
constructed with polarization maintaining components to avoid
polarization-related impairments. Also, the fiber nonlinearity,
dispersion, and amplified spontaneous emission (ASE) noise
are considered minor effects since our premier objective is to
investigate the phenomena due to the quantum noise. The sig-
nal transmission distance is 10 m, and the relative time delay
between the signal and the LO is carefully adjusted to around
zero by balancing the interferometer, only with some residual
time delay that is much smaller than the source coherence time.

At the receiver end, the LO phase is switched alternatively
between 0 and π/2 with another electrooptical modulator, in
order to beat sequentially with the I and Q components of the
incoming BPSK signal in a BHD receiver that uses InGaAs
p-i-n photodiodes followed by an electronic preamplification.
The receiver’s effective passband is determined by the balanced
photoreceiver’s bandwidth, i.e., 150 MHz.

At the signal processing block, after A/D converter, only the
I signals are retained as data, while both the I and Q signals
are used for the digital synthetic Costas loop processing. As
the I and Q optical signals are sampled sequentially in an al-
ternate way, a time delay is required in order to perform the
multiplication. This block and the subsequent operations, as de-
scribed in Fig. 4, are implemented in discrete time, with our
computer-based algorithm written in C language.
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This Costas loop is a simplified version of the maximum a
posteriori probability (MAP) suppressed carrier BPSK phase
estimator for the classical channel [42]. Now, in a conventional
Costas loop, an error signal is generated to control the phase of
an optical voltage-controlled oscillator (VCO), but in our self-
homodyne configuration, we use an optical PS to continuously
synchronize the phase of the LO arm. In this synthetic loop,
we incorporate an equivalent integration function of the optical
VCO using an additional discrete time integrator.

Finally, the resultant phase error signal is fed back via a
piezodriver on the PS to force the relative phase to zero. The
piezodriver delivers a wide voltage range [−10, 150 V] required
for the optical PS whose half-wavelength voltage Vπ is 9.95 V,
to obtain an operational range of [−8π, 8π] without reset. The
feedback loop bandwidth is 1 kHz that is limited by the processor
speed and the piezodriver response time.

We also note that for a long-distance transmission system in
which constructing a separate reference fiber link is impracti-
cal, an injection-locked laser would be necessary [9], [10]. If an
external LO is used, we could redesign our Costas loop with the
new parameters, with the tradeoffs as indicated in Appendix.
In order to implement a loop to track these broadband fluctua-
tions, we would have to use a faster processor, but the algorithm
would not be significantly different. Furthermore, polarization
control is mandatory for a coherent optical system, and can be
conducted by a polarization diversity receiver scheme. In a sin-
gle BHD scheme, a polarization stabilizer should be used at the
transmitter’s side, together with a polarization-tracking loop at
the receiver’s side.

In the experiments, we first characterized the long-term be-
havior of the phase error due to the interferometer phase drift
induced by the environmental variations, and we have measured
a maximal phase drift of 10π per hour under normal laboratory
environment. In Fig. 6, we show the error signal in open loop
(upper curve) and closed loop (lower curve), obtaining a good
stability over several hours.

Next, we performed the measurements on the statistics of
the postdetection signal resulting from the received BPSK-
modulated signal field for different average photon numbers
per pulse, i.e., between 0.1 and 10, beating with strong LO
pulses of 4 × 106 photons. In Fig. 7, we show the histograms
corresponding to the measured in-phase and quadrature signals
for photon numbers of NS = 0.5 (upper curve) and NS = 1.5
(lower curve), in which (I0 and Q0) correspond to the fields of
phase “0,” and (Iπ and Qπ ) correspond to the fields of phase
“π.”

Fig. 8 shows the normalized standard deviations for the I and
Q component measurements as a function of the signal photon
number.

The normalized standard deviations are bounded by the
Heisenberg uncertainty principle [43], [44]; however, they in-
crease with NS , probably due to the excess noise compared to
the vacuum fluctuations [45], [46]. In the Q component, our
measurements are closer to the zero-point fluctuations, and in
the I field, there is more additional noise, especially at high NS .
These impairments are probably caused by the imperfect laser
source used in our experiments that does not generate perfect co-

Fig. 6. Long-term behavior of the phase error, in an open loop and in a closed
loop.

Fig. 7. Histograms of the received I and Q signals for two average photon
numbers: NS = 0.5 (upper curves) and NS = 1.5 (lower curves).
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Fig. 8. Standard deviations of the measured I and Q fields.

Fig. 9. BER as a function of the signal photon number: experimental mea-
surement (points) and theoretical result (dotted line).

herent states, as well as the residual polarization mismatch and
the uneven photodiodes quantum efficiency used in the BHD
receiver. Other possible impairments consist of the circuits and
amplifier noise, the slow filter response time, and the quantifi-
cation errors of the analog-to-digital conversion (ADC) stage.

Finally, we performed the BER measurements, using the pro-
gramming capabilities of our signal processor.

Fig. 9 is a plot of the experimental BER measurements
(points) and the theoretical BER (dotted line), as described by
the theoretical result equation (16). As in the standard deviation
measurements, the weaker the quantum state, the closer is the
measurement to the SQL.

VI. CONCLUSION

Access to the optical carrier phase is important in a diversity of
applications, not only in coherent telecommunications but also
in other fields such a coherent optical sensor and instrumenta-
tion, coherent lidar, etc., that require the measurement of the two
field quadratures. In general, this task is performed by Costas
loops or decision driven loops that detect both field quadra-
tures simultaneously, requiring two BHD receivers. In these

schemes, additional measurement uncertainty is introduced due
to the vacuum fields that leak through the unused ports.

The optical receiver implemented in this paper requires only
one balanced homodyne detector: it possesses the advantage of
noise-free conversion gain, bounded only by the vacuum fluctu-
ations entering at the signal port, and no additional uncertainty
is produced.

However, since only one quadrature is measured, we imple-
mented a receiver structure in which a sequential measurement
scheme alternatively switches the LO phase between 0◦ and 90◦

to sequentially beat with the signal. The signal is prepared in
a format that a given bit is replicated, producing, of course, a
bit rate penalty of 1/2. But there are diverse applications that
are tolerant to this tradeoff, rather than to the noise tradeoff in
the simultaneous measurements, i.e., a 3-dB penalty in received
optical average photon number.

Our application was in the detection of WCS signals with
modulation formats that do not provide an explicit component
at the carrier frequency; therefore, phase information must be
extracted from the WCS itself, in order to provide an error signal
for the phase tracking.

The structure can be applied to the binary format as well
as higher order phase modulations. In this paper, we imple-
mented an experimental setup using BPSK modulation, which,
for symmetrical constellation, generates a suppressed carrier.
We implemented our digital Costas loop in the signal processor
block, and obtained good long-term stability.

The measurements on the postdetection statistics were close
to the uncertainty limit, especially for small values of the photon
number. Similarly, our measurements of BER were close to the
SQL for low photon numbers. These results are interpreted as
that the attenuation of optical signal power smoothes out the
excess noise and the strongly attenuated pulses approach to the
coherent states model.

Our system setup is based on an interferometric self-
homodyne configuration, which substantially relaxes the speed
in the signal processor block, since the strong cross-correlation
between the signal and the LO fields yields a very narrow-band
postdetection process at baseband. Using an external LO would
require, accordingly, a faster processor due to the increasing
Costas loop bandwidth for phase locking and the more complex
polarization-tracking scheme. This constitutes an interesting re-
search subject for low photon number signals, since the study
of the “linewidth-times-bit period” has not been investigated
as deeply as in the high-speed, low-BER systems. Finally, the
present advances in processor speed will surely allow the im-
plementation of this kind of receivers for uncorrelated fields,
providing additional capabilities for the mitigation of the opti-
cal channel impairments.

APPENDIX

Following [47] and [48], we show in Fig. 10 the linear model
using a small signal approximation.

We express the equation of the voltage gain V as

Vm (t) = AP Lφe(t) + nT (t) (A1)
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Fig. 10. Small signal model of the optical Costas loop. AP L : multiplication
factor, f (t): low-pass filter, Gφ : PS gain conversion, Gd : driver voltage gain,
and V : voltage gain.

with AP L = Km (R(hν/TP ))2NLNS .
Using this model, we obtain the phase error in the frequency

domain as

φe(f) = [1 − HPLL(f)]φi(f) + nT (f)
HPLL(f)

AP L
(A2)

where

HPLL(f) =
AP LV GφGdF (f)

j2πf + AP LV GφGdF (f)
. (A3)

We use a low-pass filter with the time constants τ1 and τ2 ,
and the transfer function to obtain

F (f) = �{f(t)} =
1 + j2πfτ2

j2πfτ1
(A4)

with s = j2πf and ωn = 2πfn , we obtain

HPLL(s) =
2ζωns + ω2

n

s2 + 2ζωns + ω2
n

(A5)

where the natural frequency is

fn =
1
2π

√
AP LV GφGd

τ1
. (A6)

And the damping factor is

ζ = πfnτ2 . (A7)

Our main objective is to minimize the phase error variance
σ2

e , expressed with the help of the (A2) as follows:

σ2
e = σ2

PN + σ2
nT . (A8)

The first term in the right-hand side (RHS) is due to the lasers
phase noise and the second term corresponds to the quantum
noise.

The phase noise contribution due to the laser linewidth ∆ν is

σ2
PN(f) =

∫ ∞

−∞
G .

φN
(f)[1 − HPLL(f)]2df. (A9)

Using the integration in Fourier domain, we can have

G .

φN
(f)

j2πf
= GPN(f) =

∆ν

πf 2 . (A10)

Resulting in

σ2
PN(f) =

∆ν

2ςfn
. (A11)

While the quantum noise contribution is

σ2
nT (f) =

1
A2

P L

∫ ∞

−∞
GnT

(f)[HPLL(f)]2df. (A12)

If we assume that the total additive noise is Gaussian with
white power spectral density, we can obtain

σ2
nT (f) =

TP πfn

NS

(
1 + 4ς2

4ς

)
. (A13)

Finally, by choosing ς = 1/
√

2. we obtain the total phase
error variance as

σ2
e =

∆ν√
2fn

+
3πTP fn

2
√

2NS

. (A14)

We find that the optimal value of the natural frequency that
minimizes σ2

e can be expressed as

fno p t =
√

2∆νNS

3πTP
. (A15)
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In 2005, he joined the Département Communications et Electronique, ENST. He
is also with the “Laboratoire de Traitement et Communication de l’Information,
LTCI,” joint research laboratories between ENST and the “Centre National de
la Recherche Scientifique” (CNRS). He is now an engineer scientist in ENST
engaged in the research on the experimental phase-encoding quantum key distri-
bution system and the coherent detection technologies with the Group of Optical
Communications.

Arturo Arvizu Mondragón was born in Mexico City
in 1961. He received the B.S.E.E. and M.Eng. de-
grees in electronics from the Universidad Nacional
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