
clearly becomes more directive in the axial direction as both
the beamwidth and backward radiation decrease substantially.
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Fig. 3 Radiation patterns of a dielectric resonator (same data as in Fig.
2) placed on (a) an infinite ground plane and on (b) a ground plane of
diameter dg = d
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Fig. 4 Radiation patterns of a dielectric resonator (same data as in Fig.
2) placed inside a topless cylindrical cavity of diameter dc = 2-94 cm and
height hc = 118 cm
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Conclusions: The radiation characteristics of the cylindrical
dielectric resonator antenna are predicted more accurately
using a numerical method. It is found that this antenna is
characterised by high backward radiation and asymmetrical
radiation patterns. The symmetry of the radiation patterns
can be improved by decreasing the ground plane diameter,
while the backlobe level is reduced by placing the dielectric
resonator inside a topless cylindrical cavity.

A. A. KISHK 26th October 1987
H. A. AUDA
B. C. AHN
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University of Mississippi
University, MS 38677, USA
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RELATIONSHIP BETWEEN LINE WIDTH AND
CHIRP REDUCTIONS IN GAIN-DETUNED
COMPOSITE-CAVITY SEMICONDUCTOR
LASERS

Indexing term: Semiconductor lasers

Detuned gain and composite cavity frequency response are
two structural sources of amplitude-phase coupling which
both need to be considered in addition to the material Henry
factor. The spontaneous emission rate dependence on the
composite cavity bandwidth is also taken into account to
calculate the linewidth and chirp reduction factors.

Introduction: Coherent optical communication systems or
those with high data rates require semiconductor laser trans-
mitters with dynamic single longitudinal mode operation and
chirp reduced modulation. The use of semiconductor lasers as
local oscillators induces low linewidth and tuning require-
ments. Line narrowing, chirp reduction and frequency tuning
have been widely investigated by the use of an hybrid or
monolithic composite cavity. In such a laser structure the
active region is loaded by a separate passive region, with
higher Q than a simple Fabry-Perot resonator, whose phase
and/or frequency is electrically or mechanically controlled.
The composite cavity frequency response is a structural source
of amplitude-phase coupling whose effect on linewidth and
chirp has been previously investigated1"2 and observed.3

However, the effect of the gain detuning also needs to be
considered4 as well as the composite cavity bandwidth which
determines the spontaneous emission rate in the lasing mode.

Complex composite cavity frequency change: The composite
structure can be described as a Fabry-Perot cavity in which
the external passive resonator is taken into account by a
complex, frequency-dependent equivalent facet reflectivity
req(w) = r(co) exp [—j<j)r((oj].2'5 Denot ing by L the active
region length, N the carrier density, k the wave number and r t

the second facet reflectivity, the standard laser equation is

f(co, N) = exp [-;7c(<u, N)L~\ - 1 = 0 (1)

where k(co, N) is related to the refractive index n(co, N), the
optical gain g(co, N) and the dielectric loss per unit length OLA

by

CO
k{oi, N) = - n((o,

c
, N) - a (2)

Because eqn. 1 is not an analytical function of the two vari-
ables co and N, the general solution co(N) = co'(N) + jco"(N) is
complex and its imaginary part vanishes at the lasing fre-
quency. With the Henry factor denoted by a = — 2(co/c)
dN n/dN g (where dN is d/dN), differentiating of eqn. 1 leads to
the real and imaginary part of the complex cavity frequency
change:

(3)

Aco" = —
(do 9) +(2dl0kY

AN (4)
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where g = g + (1/L) In r(co) is the optical gain per unit length
after distribution of the mirror losses, and £ = con/c
+ </>r(co)/2L the real part of the wave number after distribu-

tion of the facet phase shift.

Acknowledgment: The authors express their thanks to J.
Benoit, P. Brosson and J. Jacquet for helpful discussions, and
to the CGE Laboratoires de Marcoussis for collaboration in
and support of this work.

Chirp and linewidth reduction factors: Eqn. 3 expresses the
frequency chirping of the carrier-density-modulated laser. By
denoting Aco'0 the frequency chirp at the maximum of the gain
curve and without frequency dependence of the equivalent
facet reflectivity (i.e. dag = 0 and dm& = ng/c, where ng is the
group index), the chirp reduction factor of the gain-detuned
composite-cavity laser is

Aco'

Aco'n c (dwg)2 + (2
(5)

As shown by Arnaud, the relevant amplitude-phase coupling
factor is the ratio a' = — Aco'/Aco" between the real and ima-
ginary parts of the complex cavity frequency.6 The linewidth
enhancement factor (1 -I- a2) introduced by Henry7 is here
replaced by

= (1 -I- a
(adwg + 2

(6)

Eqn. 6 expresses the correction of material linewidth enhance-
ment factor (1 + a2) by a multiplicative factor with a structur-
al origin. This corrective factor is found formally identical to
those introduced by Arnaud and Furuya to take into account
the transverse waveguide structure.68

In the linear gain approximation, the cold composite cavity
bandwidth Acoc is twice the change of the imaginary part of
the complex cavity frequency, given by eqn. 4, with a gain
change g equal to the loss :9

P. GALLION 23rd October 1987
G. DEBARGE

Ecole Nationale Superieure des Telecommunications
46, rue Barrault
75634 Paris Cedex 13, France
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ACCURACY OF STANDARD PATCH
ANTENNA MODELS

(7)

By considering the proportionality of the adiabatic expression
of the static laser linewidth Av to the square of the cold cavity
bandwidth the linewidth reduction factor can be written as

Av

Av0

(2mg/c)2

(8)

By adding the usual rate equation for the carrier density JV to
the system eqns. 1 and 2 and by using standard Fourier
analysis, the relaxation oscillation frequency a>R is found to be

2mg
= COz

+ (2 dj)2 (9)

where coRO is the relaxation oscillation frequency at the gain
maximum, with no frequency dependence of the facet reflec-
tivity. This result is in agreement with the work of Vahala and
Yariv.1-4 The damping time constant of the relaxation remains
unchanged. A more detailed analysis of dynamics in such a
laser will be published elsewhere.

Discussion and conclusion: Strong chirp reduction and line
narrowing are obtained when g(or k) is a rapidly varying func-
tion of the frequency. This occurs on the edge of the resonance
frequency curve of a high-Q external resonator such as a dis-
tributed Bragg reflector. However, just at the maximum of the
external resonator reflectivity and near the maximum of the
gain curve, dmg is close to zero and the linewidth and chirp
reduction are only dependent on /c(a>). It is easy to show that,
in this case, the linewidth reduction factor is the square of the
chirp reduction factor.2 This effect has been recently observed
by Olsson.3 It appears also from eqn. 8 that the linewidth
reduction factor of the composite cavity is dependent on its
gain detuning. This effect needs to be considered in addition
to the Henry factor dependence on the lasing frequency and
the linewidth change observed for tunable lasers.10

Indexing terms: Antennas, Microstrip antennas, Antenna
theory

The validity of the leaky cavity and transmission-line models
to predict the far zone fields from a microstrip patch antenna
is investigated. The prediction of this radiation requires a
knowledge of the total current on the antenna. Since the
approximate techniques utilise only the current on the
bottom surface of the antenna, the relative importance of top
and bottom surface currents are examined.

Introduction: Leaky cavity and transmission-line models are
commonly used1"3 to analyse the performance of microstrip
patch antennas. These models use only the current on the
underside of the patch and not the total current. At the fre-
quencies of interest, the skin depth of the patch being usually
much smaller than its thickness, different current distributions
will be excited on both sides of the patch. To accurately
predict the radiated fields of the antenna a knowledge of the
total current is necessary. The relative importance of the top
current, and hence the validity of the conventional models
have been examined by numerically solving a two-
dimensional problem.

Formulation: Consider the two-dimensional antenna structure
shown in Fig. 1. An infinite sheet current flows in the z direc-
tion from the ground plane to the metallic strip at a position
x = x0, where — L/2 < x0 < + L/2, exciting the structure. The

patch

ground p lane

Fig. 1 Two-dimensional microstrip antenna
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