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In this paper, we propose to use the decoy-state technique to improve the security of the quantum key
distribution �QKD� systems based on homodyne detection against the photon number splitting attack. The
decoy-state technique is a powerful tool that can significantly boost the secure transmission range of the QKD
systems. However, it has not yet been applied to the systems that use homodyne detection. After adapting this
theory to the systems based on homodyne detection, we quantify the secure performance and transmission
range of the resulting system.
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I. INTRODUCTION

In 1984, Bennett and Brassard �1� first proposed the quan-
tum key distribution �QKD� to achieve perfect security in
optical communication systems. The security in these sys-
tems does not have the presumption of the eavesdropper’s
limited computational power unlike the conventional crypto-
graphic methods and it only relies on the principles of the
quantum mechanics and the physics of the channel.

However, a series of attack scenarios can be assumed
against QKD systems and needs to be addressed, including
the individual attacks, the third party attacks, and the photon
number splitting �PNS� attack.

Lütkenhaus �2� analyzed the security of the QKD systems
against the individual attacks. However, this security analysis
is only valid for the QKD systems that use the so-called
standard photon counting detection method. Another cat-
egory of the QKD systems uses the homodyne detection in-
stead of photon counting and requires specific security analy-
sis that was first addressed by Namiki and Hirano �3�.

The next step is to consider the third party attacks. These
attacks exploit the basis dependant flaws in the source and
the detectors of the practical QKD setups. The Gottesman-
Lo-Lütkenhaus-Preskill �GLLP� group presented a complete
analysis of the QKD system �4� which had considered both
the individual attacks and the third party attacks and resulted
in a tighter bound on the secure transmission rate compared
to the bound found by Lütkenhaus.

Finally, the most powerful attack that we can assume
against the QKD systems is the PNS attack. The PNS attack
exploits the fact that the usual weak coherent pulse �WCP�
sources may send multiple photon pulses instead of single
photon pulses that was assumed in the theory. The decoy-
state technique has been proposed to overcome this specific
type of attack �5�. The effect of the PNS attack on the QKD
systems using photon counters has already been analyzed
and the decoy-state technique has been applied to them to
improve their security �6,7�. In this paper, we address this
problem for the homodyne detection based systems. Our
practical setup uses optical homodyne detection which is a
special type of the coherent detection allowing a single
quadrature measurement of the optical field and therefore a
limitation by the zero point fluctuation entering in the signal
port. We first measure the impact of the PNS attack on the

security of the system. Then, we apply the decoy-state tech-
nique to improve the secure performance of our QKD system
against this attack.

In Sec. II, we first review some of basics of the homodyne
detection. Next, we recall the mechanism of the PNS attack
and its impact on the security of the system in Sec. III. Then,
in Sec. IV, we present the decoy-state technique and apply it
to our system which is based on homodyne detection. Sec-
tion V is dedicated to our experimental setup and our mea-
surements. Eventually, we make a conclusion in Sec. VI and
give some remarks on our results and the future perspectives.

II. HOMODYNE DETECTION

Traditionally, the photon counters are most often used in
QKD systems because of their capability of operating in low
signal levels. We use the homodyne detection instead be-
cause of its advantages over the photon counting, most im-
portantly its better quantum efficiency in the optical commu-
nication system wavelength, its ability to deal with the phase
encoded signals at very high clock rates, its thermal noise
free operation as far as a strong local oscillator is available,
and its lower cost.

The quantum bit error rate �QBER� in homodyne detec-
tion can be obtained from Eq. �1� �8�,

e = 0.5 erfc��2��� , �1�

where � is the channel efficiency and can be calculated for
any given channel length, �, and the attenuation coefficient
of the channel, �, i.e., �=10−��. � is the average number of
photons per pulse.

For the WCP systems, the typical value of QBER in ho-
modyne detection is higher than the one typically found in
the photon counting and it results in a lower performance.
However, we can improve this QBER by using a double
symmetrical threshold decision discarding weak signals �9�
as following in Eq. �2�:

e = 0.5 erfc��2���1 + x�� . �2�

where, x is the normalized value of the threshold; i.e., we
normalize the average level of the receiving signal to 1.

The drawback to this change in the decision threshold is
that we abandon a portion of the receiving qubits with the
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following rate, called the bit abandonment rate �BAR�:

a = 0.5 erfc��2���1 − x�� − e . �3�

Therefore, in practice, we need to make a compromise
between the BER and BAR in order to get the optimum
information throughput.

III. PHOTON NUMBER SPLITTING

In the basic Bennett-Brassard 1984 protocol �BB84�, Ben-
nett and Brassard assumed a perfect single photon source.
However, this type of light source has been out of reach up to
now and in practical setups, we use the WCP laser sources
with approximately a Poissonian photon number distribution
�PND�. This special shortcoming of the practical systems
makes them vulnerable against the PNS attacks.

In order to perform the PNS attack, the eavesdropper
needs a nondemolition photon counter �10� to determine the
number of photons in each pulse without disturbing its quan-
tum state. Then, the optimum strategy is to block all single
photon pulses and to steal one or more photons from the
multiphoton pulses in order to get the full information on the
key.

This attack clearly adds up some extra loss to the receiv-
ing signal. If this added loss is not compensated by Eve, it
will change the QBER and the PND at the Bob’s end and the
attack can be detected by Bob.

Thus, Eve needs to compensate this added loss by replac-
ing the whole or a part of the transmission medium by a
superior channel with a lower attenuation. We assume a re-
placement by a perfect channel with no attenuation at the

worst case. She should also maintain the Poissonian PND.
It has been shown that the PNS attack is detectable if the

following inequality holds true �11�:

�1 + � +
�2

2
�e−� − �1 + ���e−�� � 0. �4�

For the numerical values of �=1.65 and �=0.21, we find
the maximum channel length of only 1.24 km independent of
the type of the QKD system and the detection scheme, which
is clearly not enough for the practical systems.

But, we should also consider the other types of attacks. In
general, the secure transmission rate in any QKD system can
be found from the following equation:

R = qpD�pp, �5�

where q=0.5 for the standard BB84 protocol and the detec-
tion probability pD can be easily calculated for the Poisso-
nian source, i.e., pD=1−exp�−���. It is only the third factor
�pp, called the postprocessing efficiency, which makes all the
difference among the QKD systems.

According to the GLLP security analysis, the secure val-
ues of the �pp are equal to the maximum of �1, obtained
from Eq. �6�, and zero �4�. Here,

�1 = − f���H��� − �1 − ���1 − H��/�1 − ���	 , �6�

where � is the detection probability of the multiphoton
pulses over the overall detection probability ratio, i.e., �
= pM / pD. The parameter � is the QBER and the function f���
is the efficiency of the error correcting code used in the post-
processing; we assume the typical value of f���=1.22. The

FIG. 1. GLLP transmission rate �R� for the homodyne detection
system.

FIG. 2. Secure transmission rate �R� vs channel length �l� with
�=1.65 and x=0.9.

FIG. 3. Secure transmission rate �R� vs channel length with �
=1.65 and x=2.

FIG. 4. �Color online� Minimum, optimum, and maximum chan-
nel lengths, respectively, from bottom to top for different values of
threshold �x�.

S. H. SHAMS MOUSAVI AND P. GALLION PHYSICAL REVIEW A 80, 012327 �2009�

012327-2



function H� � is the standard binary entropy function.
Figure 1 displays the transmission rate as a function of the

channel length for the case of the QKD system based on
homodyne detection. As we can see, in this case, the GLLP
bound is even more stringent than the bound imposed by the
PNS attack.

IV. DECOY-STATE QKD

One powerful method to counteract the threat posed by
the PNS attack against the QKD systems is the decoy-state
technique.

We explain the idea behind the decoy-state technique in a
very simple way. While performing the PNS attack, the
eavesdropper needs to maintain the QBER. Otherwise, the
attack will be detected by the legitimate parties. Now, we
randomly choose a portion of the qubits and send them with
a different coherent state called the decoy state; several de-
coy states can also be used.

At the end of the transmission, Alice announces publicly
for each qubit if she has used the decoy state or the signal
state. Then, Bob calculates the QBERs of the signal state and
the decoy state. Since the signal and decoy states are ran-
domly chosen and since two coherent states are nonorthogo-
nal, Eve cannot distinguish one from the other and at best,
she can maintain one QBER. So, Bob can detect the eaves-
dropping by checking both QBERs providing that they are
reasonably apart.

Now, by combining the decoy-state theory with the GLLP
security analysis, we can find the secure transmission rate
against individual attacks, third party attacks, and the PNS

attack all at the same time. We can choose either to use the
decoy state for the actual transmission of the data or to sim-
ply send dummy bits while using the decoy state. In general,
the postprocessing efficiency for each state is the maximum
of zero and �1 obtained from the following equation:

�1 = �1 − 2a��− f�e�H�e� + �1 − ���1 − H�e��	 . �7�

The term 1−2a, in the right hand side of Eq. �7�, is due to
the BAR of the coherent detector with the displaced thresh-
old. For the values of threshold less than 1, the transmission
rate resulted from Eq. �7� has the typical form of Fig. 2 with
a maximum transmission rate at zero channel length and a
maximum channel length in which the transmission rate
drops down to zero.

Interestingly, with the detection thresholds higher than 1
we also observe a minimum channel length �Fig. 3�. This is
due to the fact that while the BER decreases by increasing x,
the BAR increases. There is obviously an optimum value for
the x that gives the highest bit rate.

Generally, by increasing the threshold, both the minimum
and the maximum channel lengths increase �Fig. 4�. For the
thresholds lower than 1, the maximum R always happens at
�=0. However, for higher values of the threshold the best
performance occurs at a particular channel length, also plot-
ted in Fig. 4. We have drawn the maximum R for the values
of threshold between 0 and 10 in Fig. 5.

In summary, the value of the threshold should be chosen
according to the variations in the minimum and maximum
channel lengths so that the actual channel length will be
between these two bounds, with the best case being the chan-
nel length that gives the optimal performance. Furthermore,
we can always increase the operational range of the system
by increasing the threshold at the expense of a decrease in
the transmission rate.

Finally, we should add that if we choose to send the in-
formation by several coherent states, the overall transmission
rate will be the sum of all bit rates each multiplied by the
percentage of the qubits sent by the corresponding coherent
state, e.g., R= p1R1+ p2R2 for two coherent states.

V. EXPERIMENTAL RESULTS

For the experiments, we have used a QKD system based
on homodyne detection that is implemented in our laboratory

FIG. 5. Maximum transmission rate �R� for the different values
of the threshold �x�.

FIG. 6. �Color online� Block diagram of the weak coherent pulse quantum key distribution system using balanced homodyne detection.
EAM: electroabsorbent modulator, PR: polarization rotator, OA: optical attenuator, PM: phase modulator �Mach-Zehnder type�, C: 3 dB
coupler, PC: polarization controller, PS: phase shifter, PBS: polarization beam splitter �combiner�, and SMWC: single mode wideband
coupler.
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�9�. We tested the system for the short channel lengths �a few
meters� to find its secure performance. Figure 6 shows the
block diagram of our system.

We set the value of the threshold at zero and performed a
series of experiments for several values of �. These results
and the expected theoretical curve are shown in Fig. 7. We
found the best performance at �=1.65, which was used in all
simulations along the paper.

This setup is an implementation of the standard four-state
BB84 protocol via phase encoding. The interferometric
structures in two sides are used to produce the reference
pulse and the interference between the signal and reference
pulses, respectively. At Alice’s side, the first interferometer
also allows sending both the signal pulse and the reference
pulse through a single channel by the means of a time divi-
sion. This time division is compensated at Bob’s side by
adjusting the lengths of the two arms of the second interfer-
ometer to let the interference happen.

We compensate the phase instability that is introduced in
two interferometers by means of a feedback loop in the re-
ceiver.

The choice of the signal or decoy state is done at the
electroabsorbent modulator which is also used to make digi-
tal pulses out of the continuous laser beam. For a more de-
tailed explanation of the setup, without the decoy-state tech-
nique, we refer the readers to Ref. �9�.

The value of � in these experiments has been estimated
using the phase photon-number uncertainty equation,

�n�� �
1
2 . �8�

The output of the laser source is approximately a coherent
state with the Poissonian PND, for which we have

��n�2 = � . �9�

Now assuming the minimum uncertainty, i.e., the equality
in Eq. �8�, we have

� =� 1

2��
. �10�

The parameter �� in Eq. �10� is the standard deviation of
the detected phase and can be expressed in terms of the av-
erage value of detector output voltage �V� and its standard
deviation ���V�2� as

�� = �V/V . �11�

VI. CONCLUSION

In this paper, we demonstrated the application of the
decoy-state technique to the QKD systems based on homo-
dyne detection to achieve the security against the PNS at-
tacks.

We calculated the performance of the system for a wide
range of detection thresholds. From the results, we conclude
that for low channel lengths �below 4 km�, it is better to set
the threshold close to zero. On the other hand, for a longer
channel, higher threshold values result in a better perfor-
mance. Eventually, for any given channel length, we can find
the optimum value of threshold by a simple simulation.

The experiments that we have performed are only for a
very short channel length in which the attenuation is negli-
gible; further experiments have to be done to validate our
results for longer channel lengths which need more accurate
devices.
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