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We present a general formulation for quantum macroscopic nonlinear optics, which can be considered as a fully
quantized version of its semiclassical counterpart in which the electric field is treated as the classical variable.
Our formulation begins with the fundamental minimal-coupling Lagrangian, which is then transformed into
the multipolar Lagrangian. After a quantum preservative expansion by using a Hamiltonian decomposition
proposed in this paper, we have found the formal relations between the Heisenberg operators of macroscopic
polarization density and macroscopic electric field. Finally, the linearized quantum effects for nonlinear optics

are also discussed. © 2009 Optical Society of America
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1. INTRODUCTION

The quantum theory of light has a central place in mod-
ern optics. Although the standard theories of quantum
electrodynamics have been well established, there are
still certain application issues for one who wishes to use
an effective macroscopic quantum model to describe light
in bulk materials. Just like their classical counterparts,
the effective quantum models should enable one to de-
scribe the macroscopic optical phenomena with the pre-
given macroscopic quantities, such as linear and nonlin-
ear susceptibilities, without being involved in the ab
initio calculations at a microscopic level. Many research
works have been carried out in the past. Nowadays, these
kinds of effective quantum theories have been well estab-
lished for linear optics [1-6]. For nonlinear optics, how-
ever, some ambiguities persist because of some important
restrictive approximations made in previous works
[7-11].

In this paper, we present a formal theory for macro-
scopic quantum optics, which relates the macroscopic po-
larization density to the macroscopic electric field. In Sec.
2, we begin our study with the fundamental minimal-
coupling Lagrangian [12-14]. Following the procedure
presented in [12], we will explicitly construct a multipolar
matter-field Hamiltonian, which will then be quantized.
In Sec. 3, we will decompose this Hamiltonian into the mi-
croscopic and the macroscopic parts defined in this paper.
After a quantum perturbative expansion by using the ex-
plicit expression of macroscopic interaction Hamiltonian,
we will be able to find the quantized relation between po-
larization density field and electric field. Finally, in Sec. 4,
the linearized quantum effects for nonlinear optics will be
discussed.

2. QUANTUM MULTIPOLAR MATTER-
FIELD HAMILTONIAN

Neglecting spin, we can use the following minimal-
coupling Lagrangian [12] to describe the nonrelativist dy-
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namics of a material made up of charged particles inter-
acting with the electromagnetic (EM) field:

1 . 1
Ly= EJ (eolA+ Vol = 3|V X AP)d%r + 23 m, X,

s,

+ f (A-J-pe)d’r, 1)
with the charge density and the current density given by

J= 2 esaxsaé(r - xsa) 5 P= E esaa(r - Xsa) s (2)
s,

s,a

where the point-headed variables stand for the total time
derivative, e.g., A=dA/d¢; x,,, €., and m,, are, respec-
tively, the coordinate (Cartesian vector), the electric
charge, and the mass of a particle numerated by « in an
assembly s, e.g., atom, molecule, etc; and the field vari-
ables A and ¢ are, respectively, the vector and the scalar
potentials, which are related to the electric field E and
the magnetic field B by the following familiar relations
with an arbitrary gauge:

B:VXA, E=—V(,D—A. (3)

Equation (3) is equivalent to the following two Maxwell’s
equations:

iB

V-B=0, VXE+—=0. (4)
Jdt

Appling the Euler-Lagrange Egs. (3) and (14) on Egs. (1)
and (2), we can find the other two Maxwell’s equations,
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JE
VxB- Soko " = Hod (5)

V-E =ple,
and the Newtonian equation of motion for the charged
particulars, i.e., the Lorentz force equation mgX,,
=esa[E(Xsa) +Xgq X B(Xsa)].

Now, consider an assembly whose mass center, total
mass, and total charge are given by

R, =MD myXeey My= 2 My Q=D €0 (6)

For the sake of simplicity, we assume all assemblies con-
stitute a neutral system, i.e., ,Q,=0. Then, we can intro-
duce two auxiliary field for the assembly s: the polariza-
tion density Py (r) and the magnetization density M,(r),
under the following forms:

1

Ps(r) = E esa(xsa - RS)f 5(1‘ - Rs - lu'(xsa - RS))dlu’
a 0

1
+ QsRsf or - ,LLRs)d,LL, (7
0
and
M, = > %,0 X Ny, (8)
with
! Mg+ (Ms - msa),u
Nsa(r) == esa(xsa - Rs)f 5[(1. - Rs)
0 Ms

1

Qs
- (Xge— Ry dp - ]VRS f pdr - uRy)du, (9)
s 0

where N; is the total number of particles in assembly s.
The total polarization and magnetization densities are
then given by

P(r)= > Py(r), M(r)= > Mr). (10)

Thus, the charge density and the current density defined
in Eq. (2) can be rewritten under the forms

V-P(r)=-pr), P@)+VXMr)=dJx), (11

and, therefore, Eq. (5) becomes

JD

V-D=0, VXH--—=0, (12)
at

where the two new field variables are, as usual, given by

B=u(H+M), D=¢E+P. (13)

Separating the vector fields into the transverse and
longitudinal parts that we denote, respectively, with “1”
and “l,” and following the gauge-independent Lagrange-
transformation procedure of [12], we can obtain the fol-
lowing multipolar Lagrangian from the minimal-coupling
Lagrangian (1), by using Eq. (11):
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€ . 1
Lp=| | Z|A*P = —|VX AP+ M-V X A*
2 2po

) 1
- Al : Pi>d31‘ + 52 msaxga - VCoulomb, (14)

s,a

where

1
VCoulomb = gf |P”|2d3r (15)
0

is the total Coulomb interaction among all charges [12]. It
is worth noting that the effective multipolar Lagrangian
(14), equivalent to the minimal-coupling Lagrangian (1)
in the absence of the external charged particles [13,14],
contains only the transverse part of the vector potential.
The construction of the Hamiltonian is then straightfor-
ward. The canonical momentum conjugates to the trans-
verse vector potential A' can be found as follows:

SLp .
H= N =80AL—Pl=—80El—PL=—Dl=—D,
SA*

(16)

where we have used the relation Et=—A', and the mo-
mentum conjugates to the particle’s coordinate x,, is

oL
Psa= —— =my X+ | N, X Bd®r. (17)

‘9Xsa
Then, with Eqgs. (16) and (17), we can find the following

Hamiltonian:

Hsz-Aid3r+2pm-xm—LR

s,

1 P P2
=§f (e3P + ug B[HdPr + > — +f—d3r

2myg, 2¢g
In-P Psa
+f< +B- > ’ XN8a>d3r
€0 s, Mo
1
+> |f N,, X Bd®r]?, (18)
s, 2msa

where the terms of the second line are the free energies of
the transverse EM field and the system of charged par-
ticles, and the terms of the third line are the interaction
energies between the charged particles and the trans-
verse EM field. It is worth noting that this Hamiltonian
only contains the EM field’s transverse degree of freedom.
This is because, from Egs. (11) and (12), we have E'=
—P!/¢,, which means the longitudinal electric field can be
expressed in terms of the charged coordinates and hence
belongs to the material’s degrees of freedom [13].

Now, we can quantize the system by replacing dynamic
variables with quantum operators that we denote with a
caret “A” and imposing the following canonical commuta-
tion relations:
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[A*(r),T1,(r')] = iR S — 1),
(19)

[-ira,jaﬁsﬂ,k] = ih&rﬂysﬁﬁjk’

where Eﬁe(r—r’) is the transverse Dirac tensor defined as
follows:

O = 1) = (57, = 34 (20

4zr-r'|’
with ,=d/x;,. In the Heisenberg picture, using the equa-
tion of motion for Heisenberg operators, i.e., 8té(t)

=iﬁ‘1[I:I s O(t)], one can find the following equations of mo-
tion with Hamiltonian (18):

GAL = s+ B,

oM =-pug'V X VX AL, (21)

Thus, using E-=-d,A' and D'=¢,E'+P'=0, we find the
equation of motion for the electric field,

VXVXE+SOILL0(7Z?E=—M0[7?IA). (22)

3. QUANTIZED MACROSCOPIC RELATIONS
BETWEEN THE POLARIZATION
DENSITY AND THE ELECTRIC-FIELD

A. Interaction picture and the decomposition of
Hamiltonian

The polarization density should be a functional of the
electric field. In order to find the relation between them, it
is convenient to work with the interaction picture, in
which the total Hamiltonian of the system can be decom-
posed into two parts: H=Hy+H,,,, with H, and H;, being
the Hamiltonians of the unperturbed system and the per-
turbation. In this picture, if HO is time-independent, the
operators are transformed as follows:

. i, 0\ i
Plt) = exp<gH0t>P exp(— i_iHot>’ (23)

where the index “I” stands for the interaction picture.
Heisenberg operators are related to interaction operators
by [15]

P(t) = Ulto,t)P1(6)Ult, o) (24)

where ﬁ(t,to) is a unitary evolution operator given by

-t
f](t,to) = T( exp[— %f dsﬂ{nt(s)] )

0

1 t 1 2 pt
=1+—| ds,H +| = d
lﬁJ;O S1 Lnt(sl) (lh) J; S1

0

) ) 1 3 pt
X [ s, HL (s Hi(s9) + | — ds;
to n n’ lﬁ ,

0
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$2
Xff(:dszf ds3HiInt(sl)HiInt(Sg)HiInt(ss) 4o
to
(25)

with T'(e) being the time-ordering operator and fI{nt(t) de-
fined as follows:

. i, . i,
H(t)= acp(#jrot)Hint exp(— f—LHOt) : (26)
To decompose our system (18) into the unperturbed
part and the perturbation, we note first that we can re-
write the spatial integrals in Eq. (18) as the integrals in

reciprocal space because of Parseval’s theorem. For ex-
ample, we have

f I(r) - P(r)d®r = J (k) - P(- k)d’k. (27)

This implies that we can decompose these integrals in mi-
croscopic and macroscopic parts as follows:

f d*rll(r) - P(r) = f d3rIl(r) - P(r)

+ f drll(r) - P(r), (28)
with

f dPrli(r) - P(r) = f , Pkll(k)-P(-k) (29)
mac |k|<A—W

c

and
f rii(r) - P(r) = f Ckll(k) - P(-k), (30)
mic |k\2f

where A, is a characteristic length much larger than the
molecular size A, and much smaller than the optical
wavelengths A, i.e., A,<A,<\. Thus, we can decompose
the Hamiltonian (18) as follows:

H=Hy+H,,, (31)

with Hy= I?l?ric +H ., where

-117712 -11H|2 A9 502
, &g M* + g B b |P|
Ho= J —_—  Fre > — s | —dr
mic mic

2 S 2N, 2¢&g
NP P
+J ( +B- D XNsa)d?’r
mic €o s, Mgy
1 . A
+> || N,,xBd? (32)
S, 2msa mic

is the Hamiltonian for the microscopic dynamics and for-
mally equivalent to Eq. (18), with all full-space integrals
replaced by the corresponding microscopic integrals de-
fined by Eq. (30),
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. eo 0P + ' [BP |
Hge=| ————dr (33)
mac

is the Hamiltonian of the free macroscopic (long weve-
length) transverse EM field, and

1 . 1 .
H,. = —f II-Pd’r + —f |P|%2d°%r (34)
80 mac 280 mac

is the interaction Hamiltonian between the macroscopic
transverse EM field and the material. In Eq. (34), the
magnetic interaction has been neglected. Because Eq. (19)
can be rewritten in reciprocal space under the form,

. . kkn

we have

(A2, H,,.]=0. (36)

em ?

As a result, we see that the unperturbed system, i.e., I:IO

=H g“n";%l?l mic, consists of two systems independent of each
other.

B. Perturbative expansion of the polarization density
To find the explicit relation between the polarization den-

sity P and the electric field E, we shall use the following
important relation:

Ulto,t)0" (1) Ult, )

¢ 9
=0'(t) + f dt;—[Ulto,t1)0"(t)Ulty,t0)]
. Oty

0

t
A J
=0/(¢ dt,| —
()+£O 1{(%1

X L . L9,
XU(to,t) O ) Ulty,t0) + U(to,tl)of(ﬁ;U(tl,to)
1

A AR R . .
=0'(t) + %f dtlU(tOrtl[H{nt(tl)yol(t)])U(tl’to)7 (37)

to
where we have used the following relations:

A

oU iAI N

—(t,tg) = — —HL () U(t,t,),

ﬁt( 0) A mt() ( O)

U i .

—(to,t) = ~Ulto,t) H (2). 38
at(o ) P (¢0,8)Hip(2) (38)

Now, we set £, to —» where we adiabatically launch the
interaction. The interaction Hamiltonian in the interac-
tion picture is given by
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. 1 . . 1 .

H (t)=— f I (r,t) - Pl(r,t)d%r + — J |Pl(r,t)|?d®r.
80 mac 280 mac

(39)

In what follows, keeping in mind that we are treating the

macroscopic phenomenon, we will omit the macroscopic

indication under the integral symbol. To avoid the diver-
gence of temporal integrals, we can conventionally multi-

ply H

int

by a time factor such that
H.(t) — HL,(t)exp(- elt]), with e—0,.  (40)

Thus, using Egs. (24), (37), and (39), we find
) ) i,
P,(r,t)=Pl(r,t) + . f dt; U(= ,t;)
X[HL(t0),PL (e, 0010 (25, - )
I 1 3 ' 1.
:P#(r,t) + E% d ry B dtléE‘h(rl’tl)
XU (=, t)[PY, (r1,1),PL(0,0)]U 1, )
1 ¢ 1,
+ _E d3rlf dtl—U(— Oo,tl)
ih a . 2
X[PL, (r1,t1), Pl (0,0)]U k1, = ) B, (ry,t1), (41)

where we have used [ﬁil(rl,tl),f’fl(r,t)]=0, EA£1=
—sal(ﬁildsil), and the following identities:

U(- W,t1)EA{11(I’1,t1) = Eal(rl,tl)fj(_ ®,t1),

B!, (r1,0)Ulty,- %) = Ulty, = #)Ey (r1,ty).  (42)
For the sake of abbreviation, we define a symmetric Liou-

ville superoperator for each operator C in Hilbert space
denoted by “+” such that

(CO+00). (43)

N |

C,0=
So, we can rewrite Eq. (41) as follows:
1 t
P, (rt)= Pi(r,t) + l_ﬁE d3r1f dtlEa1,+(rl,t1)U(_ o, 1)
Hl —00

X[PL, (r1,t1),PL(0,0)]U(t1, - ). (44)

Repeating the procedure of Eq. (41) to unwrap the term

[AJ(—OO,tm)[I:’{Im(rm,tm),[-]]f](tm,—w), we arrive at a series
expansion as follows:

D — pO p(1) p(2) p(3)
P,(r,t)=P, (r,t) + P, (r,t) + P, (xv,t) + P (x,t) + -+,
(45)

where ﬁi?)(r,t)zpi(r,t), and for n>0, 135:‘) is the
nth-order polarization density given by
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Pgl>(r,t)=fd3r1-~-d3r,,f d71-~-f dr,

XEal,+(r1’ TI)EQZ,+(I‘2’ 7'2) Tt Ean,+(rn’ Tn)

Ai(n)
X Gﬂnan—l' s

X(rmrn—lv T Ty Tp-1, 7Tl;r,t)m, (46)
with the n-points Green’s operator

Gw

ananfl---allu,(rn’rn—la Sl T Ta-1, " Tl;r’t)

l

1 n
= (_h) 0t —7)0(my = 79) -+~ 07,1 — T,)

X[PL, (0, 7,),[ [P (o, ), [P, (x1,7), PL(r,0)]11]

(47)

and 6(¢) being the Heaviside step function,
1, t=0 48
o) = 0, ¢t<O0. (48)

In Eq. (46), the Einstein summation convention on re-
peated indexes has been used. In the frequency domain,
Eq. (46) can be rewritten as

) e 4o 40
Prr,t) = PED f d’r,---d’r, Jm dw; -+ LJ do,

X_Ea1,+(rl’ wl)Ea2,+(r2’ (1)2) T Ean,+(rn’ wn)

s (n)

T M T

Xexp(— iz wlt), (49)

=1

(rn’rn—l’ Wy, W, 0 :wl;r’t)

or more compactly as

" €0 " " ”
(n) _ 4 . 3(n)
E,u, (r,t) = (Zﬂ)nf d nUEa1,+Ea2,+ Ean,+Xanan_1‘--a1/.L
n-1
X(r,t)exp(— iy, a)lt), (50)
=1

with the nth-order electric susceptibility operator given
by

s(n)

an---al,u.(rn’ LT Wy, ,01;1,1)

400 +oo

—g! A(n) e Pt e

—SOJ d7'1 f dTnGan“'alp.(rm X153 Thy ’Tl?rvt)
—o

—o0

Xexp(iE w(t - m) ) (51)

=1

Notice that we have used the following relation:

. 1,
E(r,t) = ;Tf E(r,w)exp(-iowt)dw + H.c. (52)
0
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Equations (45)—(51) are therefore a quantized version
of the standard macroscopic nonlinear optics [16] to re-
cover which we only need to replace quantum operators in
these equations with their classical values. In fact, if we
consider the electric field as classical and write the inter-
action Hamiltonian in interaction picture as

ﬁ{nt(t) == f dSrsz(r’t) : pﬂ(r’t% (53)

using the same technique as for Eq. (45), we can find

Uy XM

BYe, 1) = f A", B,y By G 00), (54)

where the Green’s operator is the same as given by Eq.
(47). This is the reason why we did not put the second
term of interaction Hamiltonian (34) into the unperturbed
system. Indeed, if we only kept the first term of Eq. (34),
the polarization density would become the response to the
displacement field instead of the electric field, which is in
disaccord with the conventional nonlinear optics formal-
ism.

C. Some discussions

In Sec. 3.A, we have decomposed our system into the mi-
croscopic and the macroscopic parts, and this last one is
the sum of the macroscopic EM field and its interaction
with the microscopic part. In what follows, we will as-
sume that the characteristic distance A, can be chosen

short enough that the microscopic Hamiltonian I:ImiC is
approximately the Hamiltonian of the material. That is to
say, without external perturbations, the impact of the in-
trinsic macroscopic optical radiation is negligible. This
should be verified in the dielectrics in which the electrons
are bounded, and the direct interactions between charged
particles at a macroscopic scale (~A,) are negligible. In-
deed, without perturbations, the macroscopic fields origi-
nate from the material’s spontaneous fluctuations, which
are very weak at optical frequencies. Besides, it is of in-
terest to note that in Eq. (32) we did not extract the mi-
croscopic matter-field interaction term of
&5 midl(r)-P(r)d®r from the material’s unperturbed
Hamiltonian, i.e., Hy;. This is because—as a matter of
fact—for neutral assemblies, all the intermolecule inter-
actions are mediated through the exchange of transverse
photons [12,14]. Thus, a material’s Hamiltonian should
consist of the Hamiltonians of molecules, EM field, and
the interactions between them, which are principally mi-
croscopic. In fact, this implies that our formalization
above has already taken into account the local field cor-
rection [16], unlike in the classical calculations of nonlin-
ear susceptibilities where we consider—at first—the mol-
ecules as independent to each other.

The electric susceptibility operator (51) depends on the
absolute time ¢. This reflects the fact that the material’s
response functions are not stationary. Indeed, if adopting
the conventional assumption that the unperturbed sys-
tem is originally in thermal state, whose density matrix is
given by
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R exp(- H mid KgT)
Pth = N ) (55)
trlexp(— H i/ KgT)]

and hence commutes with the unperturbed Hamiltonian,

ie., flmic, one can find that the quantum expectation of
the Green’s operators is independent on the absolute time
Z,

(G Ty s Tt = 1P Gy (T 1T E)]

= trlpuG)

"'alu(Tn_t7 ey 71

~t;5,0]=G". . (1,~t, ...,

ag
-t;r) (56)
and, therefore, the susceptibilities or the quantum expec-

tation of the susceptibility operators are time indepen-
dent, i.e.,

R 00) = X0 (). (57)

Thus, the susceptibility operators can be decomposed into
the classical part and the time-dependent quantum fluc-
tuations part,

A a8 = X0+ AR 0s), (58)

and we can rewrite the nth-order polarization density op-
erator under the form,

p(n) —_ Dn) p(n)
Pl(r,t) =P (r,t) + AP, (r,2), (59)
with

. €0
(n) _ 4 (n)
P(r,t) = (27T)"f d nUX%an_r”al#

n
X (r)Ea1,+ T Ean71,+Ean exp(— LE wlt) ’(60)
=1

representing the nth-order response of the material to the
electric field, and

~ €0 ~ A ~
(n) - 4n Ln)
AP: (r7t) - (Zﬂ)nf d O-Eal,+ Ean71,+EanAX(:;an_1~~aly,
n
X(r,t)exp(— » wlt), (61)
=1

representing the nth-order mixing of material’s spontane-
ous fluctuations and the electric field. The total polariza-
tion density is, therefore, the sum of the material’s re-
sponse to the electric field and the mixing of material’s
spontaneous fluctuations with the electric field.

4. FORMAL RELATION FOR LINEARIZED
QUANTUM EFFECTS

Although Eqgs. (60) and (61) are rather general, there are
some calculus difficulties due to the noncommutative na-
ture of quantum operators. This problem remains open
for future research. In what follows, we will assume for
further discussions that, over the wavelengths of interest,
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we can consider the macroscopic electric field as the sum
of a classical intense coherent field and a small quantum

one, i.e., E=E+AE. This later can be considered as the
quantum fluctuations noise or a small nonclassical quan-
tum field. In practice, this is usually the case, for ex-
ample, in the parametric fluorescence [17], where the
pump is generally coherent and intense and the created
entangled photon-pairs number is small. Another ex-
ample is the fiber Raman amplifiers [18] where the pump
and the signal are both coherent and intense, and the
quantum effect is related to a relatively small fluctuating
quantum noise. Thus, we can linearize Eqgs. (60) and (61)
in terms of quantum fluctuations, by only retaining in Eq.

(60) the terms linear in AE and replacing E by E in Eq.
(60). With this approximation, Eq. (60) becomes 7557)

=PI(J‘)+A73£:‘), where Pfu") is the classical nth-order polar-
ization density, and

Aﬁi:’)(r,t) = nf d4n0'AEalEa2 .. 'Ean_lEa Gm (r)

n ApPp-1AH

(62)

is the material’s nth-order response to the quantum fluc-
tuations of the electric field. Equation (61) becomes

TR NS U

AP (r,t) = f d"oE, - E, E,AGY (r,1),

(63)

which is due to the material’s nth-order spontaneous fluc-
tuations. Notice that, when deriving Eq. (62), since there
is no longer the operator-ordering problem, we used the
fact that only the part having the following permutation
symmetry property contributes to the integral of Eq. (62):

ety
D0 FHRUUIEN LSNP PRI 17 TITTIN AU SN 21 o
=G\ —
D0 TN RO NN 117 TITTUN RSN AR 21 Y B
(64)

Equation (62) implies that we can now write the total
material’s response to the quantum fluctuations of the
electric field as follows:

AP, (r,0) = >, AP (x,t)

+o0
= SOJ d3r1f dtlAEal(rDtl)RallL(rl’tl’rvt)a

(65)

where
Ral,u,(rlathr,t) = E Rgll)lu(rlatl,rat)
n

n
=0t —t1), a—f g
n ©0

X G E, —E, (66)

@ T gy n
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is the total response function, which explicitly depends on
the classical electric field and is generally nonstationary.
For the sake of simplicity, we assume that the response is
spatially local, which means we have in frequency domain

Ealﬂ(rhwl?r)w) = 2775(1‘_1'1))(0(1/4(1.7 (.Ul,w), (67)

where the effective electric susceptibility can be found un-
der the form,

Xap(T,— 01,0) = X3)(0) 8w - @)

1
+ —Eaz(w - wl)X(aQZ)aﬂ(w - w1, 07)
T

3 e
+ Wf_m dawE, (0 - w)E, (03— w1)
XXﬁxSB)aza,B(w2 - W1, = Wy, w1) + (68)

Thus, from Egs. (65)-(67), we have
400
AP,u,(rf w) = Sof dwlAEal(rawl)Xallu(ry_ (D1,w). (69)

From Eq. (22), the quasilinearized equation of propaga-
tion for the electric field’s quantum fluctuations is there-
fore written as

N w® [+ N
VXV XAE(r,0) - —2J dw;e(r,w,w;) AE(r, w)
C —00

= - W’ oAP(r,w), (70)
where &,4(r,w,01)=8,50(w—w1)+ xpu(r,~w1,w) is the ef-
fective relative permittivity. It is worth noting that the
frequency integral of Eq. (70) is over the entire real axis,
and, thus, the positive and negative frequency compo-
nents are coupled.

Since Eq. (70) is linear, its solution can be represented
under the form

A

AE(I‘, (D) == /‘LOJ wle(r’ w,Xq, wl)AI:)(rb wl)d3r1dw1’
(71)

where the two-dimensional (2D) Green’s tensor is defined
as the solution of the following equation:

w [0}
VXV XG(r,o,r;,o) - f dwz—s(r,w,wz)—ZG(r,w2,r1,w1)
c c
=18(r-r))dw- w;). (72)
It is easy to verify that the following relations hold:
G(r,wyrlawl) = GT(rlvwl’rﬁ w)’ (73)
G*(r, (U,r]_,wl) = G(rb_ w,I,— w)> (74)

and
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Im G(ry, we, 11, 0q) = E[G(me%rpwﬂ - GT(I'bwbI'z,wz)]

+ w w3
= G’(r’w’r% wZ)zeA(rvw’ w3)?

XG(r,wg,rl,wl)dgrdwdwg, (75)

with £4(r,w,0)=[e(r, 0,0 -£(r, 0;,0)]/2i, whose ex-
plicit expression can be found by simply replacing X-(Tl-)aﬁ
X (-, w1) of Eq. (68) by [x") (-, 01) ~ X"}, (-, —)]/2i. In
the Appendix, we have proven that the following relation
holds:

. ot—-t) . . (et
Rallu,(rlvtl’r’t)z . e <[APa1(r1’tl):AP,u,(rat)]>n )
0
oe-t)'y plm) B(n-m-1)
= 2 (AP, 1), AP N 1)])
0 m=0

(76)

Thus, since AI?L(@):AI:’M(—w), we can find the following
relation for material’s total spontaneous fluctuations:

(AP (r,0), AP)(r, 1)) = 4mheges 44(r, 0, 01) Sr - 17),
(77)

which can be considered as a fluctuation-dissipation rela-
tion [5,15,19]. Due to Eq. (77), the material’s spontaneous
fluctuations should be approximated to the (n—1)th order
for an effective electric susceptibility approximated to the
nth order. When an effective electric susceptibility is al-
ready given, however, we do not really need to write out
the explicit expression for the spontaneous fluctuations.
Finally, with Eq. (77) and using Egs. (71) and (75), we can
find

. . hwywy
<[AEa(r2,w2),AEL(r1,wl)]> = ?477 Im G 4(ry, g, 11, 007).
0

(78)

This result is in good agreement with the previous work
for linear optics [5] in which the frequency dependence of
the Green’s tensor is 8(wg—w1). We see that it is in general
not the case for nonlinear optics, since nonlinear effects
can create new frequency components, which are, there-
fore, quantum entangled.

5. CONCLUSION

In this paper, we have presented a general formulation
for quantum macroscopic nonlinear optics by decompos-
ing the multipolar matter-field Hamiltonian (18) into the
microscopic and the macroscopic parts. Equations
(45)—(51) can be considered as a fully quantized version of
standard nonlinear optics formalism. Our development is
gauge independent and independent of the choice of the
explicit expression of the material’s Hamiltonian. To our
knowledge, this is the first time that a general quantum
relation between the Heisenberg operators of the macro-
scopic polarization density and the macroscopic electric
field is discussed.
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Moreover, we have discussed the quantum effects with
the quasilinearization approximation, which enables us to
study the quantum effects in a frame of the linear re-
sponse theory. We have shown that the response function
or the effective permittivity is generally nonstationary
due to the nonlinear coupling. Equations (77) and (78) can
be understood as the fluctuation-dissipation relations.
Different from linear optics, the quantum fluctuations in
nonlinear optics are generally nonstationary and hence
correlated in frequency.

APPENDIX
To prove Eq. (76), we will first define the following evolu-

tion operator that depends on an extra parameter A:

R A
Ult,tg;N) =T| exp—
nl,

t
dtlﬁfnt(tl)) , (A1)

0

where fI{nt(tl) is the semiclassical Hamiltonian given by

Eq. (563). With this evolution operator, we can define the
following A-parametered polarization density operator:

P,x,t;0) = U(=0,t; VPLr,t)U(t,—=;)).  (A2)

Therefore, we have Isﬂ(r,t)zlsﬂ(r,t;)\zl) and IA’fL(r,t)
=I:’#(r,t;)\=0). Hence, the nth-order semiclassical polar-
ization density operator given by Eq. (54) can also be re-
garded as the nth-order coefficient of the Taylor’s expan-
sion of Eq. (A2) about A=0, that is to say

) 1 &P, (r,t;\)
Pyt ———————| . (A3)
H n! I\ \<0

Using the properties of the evolution operators expressed
explicitly by Eq. (37), it is not difficult to prove

aU(t,—=:N) . i [
— T U(t,—eN~ | dey | dPrE,
I\ n 1

X (01, P, (r1,t150). (A4)

Thus, using Eq. (A3), we have

n!

. 1
P(:)(I‘,t)= th dtlf dsrlEal(th)

PP, (1,150, P (1, 850)]

X a)\n—l

1 t
= Ul_ﬁJ_w dtlJ d3rlEa1(rl7tl)

X [}/\)al(rlytl)yﬁﬂ(r; t)](n_l)

1 t
- 3
ey dtlf d°r,E, (ry,t)
n-1
X [P (e,80),PY (e, )] (A5)

m=0
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Now, since [P, (ri,t1),P,(r,t)]=[AP, (ry,t1), AP, (r,0)],
comparing Eq. (A5) with Eq. (54), we find

4(n-1) A(n)
J A VoE, B, GW, 00

ot-t) . . 1)
= T[Apal(rl’tl)yAP#(ryt)] . (AG)

n

Thus, replacing Eq. (A6) in Eq. (66), we obtain Eq. (76).
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