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We present a general formulation for quantum macroscopic nonlinear optics, which can be considered as a fully
quantized version of its semiclassical counterpart in which the electric field is treated as the classical variable.
Our formulation begins with the fundamental minimal-coupling Lagrangian, which is then transformed into
the multipolar Lagrangian. After a quantum preservative expansion by using a Hamiltonian decomposition
proposed in this paper, we have found the formal relations between the Heisenberg operators of macroscopic
polarization density and macroscopic electric field. Finally, the linearized quantum effects for nonlinear optics
are also discussed. © 2009 Optical Society of America

OCIS codes: 190.0190, 270.5580, 270.2500.
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. INTRODUCTION
he quantum theory of light has a central place in mod-
rn optics. Although the standard theories of quantum
lectrodynamics have been well established, there are
till certain application issues for one who wishes to use
n effective macroscopic quantum model to describe light
n bulk materials. Just like their classical counterparts,
he effective quantum models should enable one to de-
cribe the macroscopic optical phenomena with the pre-
iven macroscopic quantities, such as linear and nonlin-
ar susceptibilities, without being involved in the ab
nitio calculations at a microscopic level. Many research
orks have been carried out in the past. Nowadays, these
inds of effective quantum theories have been well estab-
ished for linear optics [1–6]. For nonlinear optics, how-
ver, some ambiguities persist because of some important
estrictive approximations made in previous works
7–11].

In this paper, we present a formal theory for macro-
copic quantum optics, which relates the macroscopic po-
arization density to the macroscopic electric field. In Sec.
, we begin our study with the fundamental minimal-
oupling Lagrangian [12–14]. Following the procedure
resented in [12], we will explicitly construct a multipolar
atter-field Hamiltonian, which will then be quantized.

n Sec. 3, we will decompose this Hamiltonian into the mi-
roscopic and the macroscopic parts defined in this paper.
fter a quantum perturbative expansion by using the ex-
licit expression of macroscopic interaction Hamiltonian,
e will be able to find the quantized relation between po-

arization density field and electric field. Finally, in Sec. 4,
he linearized quantum effects for nonlinear optics will be
iscussed.

. QUANTUM MULTIPOLAR MATTER-
IELD HAMILTONIAN
eglecting spin, we can use the following minimal-

oupling Lagrangian [12] to describe the nonrelativist dy-
0740-3224/09/050902-8/$15.00 © 2
amics of a material made up of charged particles inter-
cting with the electromagnetic (EM) field:

L0 =
1

2� ��0�Ȧ + ���2 − �0
−1�� � A�2�d3r +

1

2�
s,�

ms�ẋs�
2

+� �A · J − ���d3r, �1�

ith the charge density and the current density given by

J = �
s,�

es�ẋs���r − xs��, � = �
s,�

es���r − xs��, �2�

here the point-headed variables stand for the total time
erivative, e.g., Ȧ=dA /dt; xs�, es�, and ms� are, respec-
ively, the coordinate (Cartesian vector), the electric
harge, and the mass of a particle numerated by � in an
ssembly s, e.g., atom, molecule, etc; and the field vari-
bles A and � are, respectively, the vector and the scalar
otentials, which are related to the electric field E and
he magnetic field B by the following familiar relations
ith an arbitrary gauge:

B = � � A, E = − �� − Ȧ. �3�

quation (3) is equivalent to the following two Maxwell’s
quations:

� · B = 0, � � E +
�B

�t
= 0. �4�

ppling the Euler-Lagrange Eqs. (3) and (14) on Eqs. (1)
nd (2), we can find the other two Maxwell’s equations,
009 Optical Society of America
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� · E = �/�0, � � B − �0�0

�E

�t
= �0J �5�

nd the Newtonian equation of motion for the charged
articulars, i.e., the Lorentz force equation ms�ẍs�

es��E�xs��+ ẋs��B�xs���.
Now, consider an assembly whose mass center, total
ass, and total charge are given by

Rs = Ms
−1�

�

ms�xs�, Ms = �
�

ms�, Qs = �
�

es�. �6�

or the sake of simplicity, we assume all assemblies con-
titute a neutral system, i.e., �sQs=0. Then, we can intro-
uce two auxiliary field for the assembly s: the polariza-
ion density Ps�r� and the magnetization density Ms�r�,
nder the following forms:

Ps�r� = �
�

es��xs� − Rs��
0

1

��r − Rs − ��xs� − Rs��d�

+ QsRs�
0

1

��r − �Rs�d�, �7�

nd

Ms = �
�

ẋs� � Ns� �8�

ith

Ns��r� = − es��xs� − Rs��
0

1 ms� + �Ms − ms���

Ms
���r − Rs�

− ��xs� − Rs��d� −
Qs

Ns
Rs�

0

1

���r − �Rm�d�, �9�

here Ns is the total number of particles in assembly s.
he total polarization and magnetization densities are
hen given by

P�r� = �
s

Ps�r�, M�r� = �
s

Ms�r�. �10�

hus, the charge density and the current density defined
n Eq. (2) can be rewritten under the forms

� · P�r� = − ��r�, Ṗ�r� + � � M�r� = J�r�, �11�

nd, therefore, Eq. (5) becomes

� · D = 0, � � H −
�D

�t
= 0, �12�

here the two new field variables are, as usual, given by

B = �0�H + M�, D = �0E + P. �13�

Separating the vector fields into the transverse and
ongitudinal parts that we denote, respectively, with “�”
nd “�,” and following the gauge-independent Lagrange-
ransformation procedure of [12], we can obtain the fol-
owing multipolar Lagrangian from the minimal-coupling
agrangian (1), by using Eq. (11):
LR =� 	�0

2
�Ȧ��2 −

1

2�0
�� � A��2 + M · � � A�

− Ȧ� · P�
d3r +
1

2�
s,�

ms�ẋs�
2 − VCoulomb, �14�

here

VCoulomb =
1

2�0
� �P��2d3r �15�

s the total Coulomb interaction among all charges [12]. It
s worth noting that the effective multipolar Lagrangian
14), equivalent to the minimal-coupling Lagrangian (1)
n the absence of the external charged particles [13,14],
ontains only the transverse part of the vector potential.
he construction of the Hamiltonian is then straightfor-
ard. The canonical momentum conjugates to the trans-
erse vector potential A� can be found as follows:

� =
�LR

�Ȧ�
= �0Ȧ� − P� = − �0E� − P� = − D� = − D,

�16�

here we have used the relation E�=−Ȧ�, and the mo-
entum conjugates to the particle’s coordinate xs� is

ps� =
�LR

�ẋs�

= ms�ẋs� +� Ns� � Bd3r. �17�

hen, with Eqs. (16) and (17), we can find the following
amiltonian:

H =� � · Ȧ�d3r + �
s,�

ps� · ẋs� − LR

=
1

2� ��0
−1���2 + �0

−1�B�2�d3r + �
s,�

ps�
2

2ms�

+� �P�2

2�0
d3r

+� 	� · P

�0
+ B · �

s,�

ps�

ms�

� Ns�
d3r

+ �
s,�

1

2ms�

�� Ns� � Bd3r�2, �18�

here the terms of the second line are the free energies of
he transverse EM field and the system of charged par-
icles, and the terms of the third line are the interaction
nergies between the charged particles and the trans-
erse EM field. It is worth noting that this Hamiltonian
nly contains the EM field’s transverse degree of freedom.
his is because, from Eqs. (11) and (12), we have E�=
P� /�0, which means the longitudinal electric field can be
xpressed in terms of the charged coordinates and hence
elongs to the material’s degrees of freedom [13].
Now, we can quantize the system by replacing dynamic

ariables with quantum operators that we denote with a
aret “∧” and imposing the following canonical commuta-
ion relations:
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�x̂r�,j,p̂s�,k� = i	�r�,s��jk, �Âj
��r�,
̂k�r��� = i	�jk

��r − r��,

�19�

here �jk
��r−r�� is the transverse Dirac tensor defined as

ollows:

�jk
��r − r�� = ��j

r�k
r − �jk�r�

1

4��r − r��
, �20�

ith �k
r =� /�xk. In the Heisenberg picture, using the equa-

ion of motion for Heisenberg operators, i.e., �tÔ�t�
i	−1�Ĥ ,Ô�t��, one can find the following equations of mo-

ion with Hamiltonian (18):

�tÂ� = �0
−1��̂ + P̂��,

�t�̂ = − �0
−1 � � � � Â�. �21�

hus, using Ê�=−�tÂ� and D̂�=�0Ê�+P̂�=0, we find the
quation of motion for the electric field,

� � � � Ê + �0�0�t
2Ê = − �0�t

2P̂. �22�

. QUANTIZED MACROSCOPIC RELATIONS
ETWEEN THE POLARIZATION
ENSITY AND THE ELECTRIC-FIELD
. Interaction picture and the decomposition of
amiltonian
he polarization density should be a functional of the
lectric field. In order to find the relation between them, it
s convenient to work with the interaction picture, in
hich the total Hamiltonian of the system can be decom-
osed into two parts: Ĥ=Ĥ0+Ĥint, with Ĥ0 and Ĥint being
he Hamiltonians of the unperturbed system and the per-
urbation. In this picture, if Ĥ0 is time-independent, the
perators are transformed as follows:

P̂I�t� = exp	 i

	
Ĥ0t
P̂ exp	−

i

	
Ĥ0t
 , �23�

here the index “I” stands for the interaction picture.
eisenberg operators are related to interaction operators
y [15]

P̂�t� = Û�t0,t�P̂I�t�Û�t,t0� �24�

here Û�t , t0� is a unitary evolution operator given by

Û�t,t0� = T	exp�−
i

	
�

t0

t

dsĤint
I �s��


= 1 +
1

i	�t0

t

ds1Ĥint
I �s1� + 	 1

i	

2�

t0

t

ds1

��t0

s1ds2Ĥint
I �s1�Ĥint

I �s2� + 	 1

i	

3�

t

t

ds1
0

��t0

s1ds2�
t0

s2

ds3Ĥint
I �s1�Ĥint

I �s2�Ĥint
I �s3� + ¯ ,

�25�

ith T�•� being the time-ordering operator and Ĥint
I �t� de-

ned as follows:

Ĥint
I �t� = exp	 i

	
Ĥ0t
Ĥint exp	−

i

	
Ĥ0t
 . �26�

To decompose our system (18) into the unperturbed
art and the perturbation, we note first that we can re-
rite the spatial integrals in Eq. (18) as the integrals in

eciprocal space because of Parseval’s theorem. For ex-
mple, we have

� �̂�r� · P̂�r�d3r =� ��̂ �k� · P�̂ �− k�d3k. �27�

his implies that we can decompose these integrals in mi-
roscopic and macroscopic parts as follows:

� d3r�̂�r� · P̂�r� =�
mac

d3r�̂�r� · P̂�r�

+�
mic

d3r�̂�r� · P̂�r�, �28�

ith

�
mac

d3r�̂�r� · P̂�r� =�
�k� 2�

�c

d3k��̂ �k� · P�̂ �− k� �29�

nd

�
mic

d3r�̂�r� · P̂�r� =�
�k�� 2�

�c

d3k��̂ �k� · P�̂ �− k�, �30�

here �c is a characteristic length much larger than the
olecular size �a and much smaller than the optical
avelengths �, i.e., �a��c��. Thus, we can decompose

he Hamiltonian (18) as follows:

Ĥ = Ĥ0 + Ĥint, �31�

ith Ĥ0=Ĥem
mac+Ĥmic, where

Ĥmic =�
mic

�0
−1��̂�2 + �0

−1�B̂�2

2
d3r + �

s,�

p̂s�
2

2ms�

+�
mic

�P̂�2

2�0
d3r

+�
mic
	 �̂ · P̂

�0
+ B̂ · �

s,�

p̂s�

ms�

� N̂s�
d3r

+ �
s,�

1

2ms�

��
mic

N̂s� � B̂d3r�2 �32�

s the Hamiltonian for the microscopic dynamics and for-
ally equivalent to Eq. (18), with all full-space integrals

eplaced by the corresponding microscopic integrals de-
ned by Eq. (30),



i
l

i
t
m
c

w

A
=
o

B
T
s
i

U

w

N
i
t

I
m
i
g
p

T

w
−

F
v
d

S

U
e

w
n

S. Jiang and P. Gallion Vol. 26, No. 5 /May 2009/J. Opt. Soc. Am. B 905
Ĥem
mac =�

mac

�0
−1��̂�2 + �0

−1�B̂�2

2
d3r �33�

s the Hamiltonian of the free macroscopic (long weve-
ength) transverse EM field, and

Ĥint =
1

�0
�

mac

�̂ · P̂d3r +
1

2�0
�

mac

�P̂�2d3r �34�

s the interaction Hamiltonian between the macroscopic
ransverse EM field and the material. In Eq. (34), the
agnetic interaction has been neglected. Because Eq. (19)

an be rewritten in reciprocal space under the form,

�A�̂ m
��k�,
̂� n�k��� = i		�mn −

kmkn

k2 
��k + k��, �35�

e have

�Ĥem
mac,Ĥmic� = 0. �36�

s a result, we see that the unperturbed system, i.e., Ĥ0

Ĥem
mac+Ĥmic, consists of two systems independent of each

ther.

. Perturbative expansion of the polarization density
o find the explicit relation between the polarization den-
ity P̂ and the electric field Ê, we shall use the following
mportant relation:

ˆ �t0,t�ÔI�t�Û�t,t0�

= ÔI�t� +�
t0

t

dt1

�

�t1
�Û�t0,t1�ÔI�t�Û�t1,t0��

= ÔI�t� +�
t0

t

dt1� �

�t1

�Û�t0,t1�ÔI�t�Û�t1,t0� + Û�t0,t1�ÔI�t�
�

�t1
Û�t1,t0��

= ÔI�t� +
i

	
�

t0

t

dt1Û�t0,t1�Ĥint
I �t1�,ÔI�t���Û�t1,t0�, �37�

here we have used the following relations:

�Û

�t
�t,t0� = −

i

	
Ĥint

I �t�Û�t,t0�,

�Û

�t
�t0,t� =

i

	
Û�t0,t�Ĥint

I �t�. �38�

ow, we set t0 to −� where we adiabatically launch the
nteraction. The interaction Hamiltonian in the interac-
ion picture is given by
Ĥint
I �t� =

1

�0
�

mac

�̂I�r,t� · P̂I�r,t�d3r +
1

2�0
�

mac

�P̂I�r,t��2d3r.

�39�

n what follows, keeping in mind that we are treating the
acroscopic phenomenon, we will omit the macroscopic

ndication under the integral symbol. To avoid the diver-
ence of temporal integrals, we can conventionally multi-
ly Ĥint

I by a time factor such that

Ĥint
I �t� → Ĥint

I �t�exp�− ��t��, with � → 0+. �40�

hus, using Eqs. (24), (37), and (39), we find

P̂��r,t� = P̂�
I �r,t� +

i

	
�

−�

t

dt1Û�− �,t1�

��Ĥint
I �t1�,P̂�

I �r,t��Û�t1,− ��

= P̂�
I �r,t� +

1

i	�
�1

� d3r1�
−�

t

dt1

1

2
Ê�1

�r1,t1�

�Û�− �,t1��P̂�1

I �r1,t1�,P̂�
I �r,t��Û�t1,− ��

+
1

i	�
�1

� d3r1�
−�

t

dt1

1

2
Û�− �,t1�

��P̂�1

I �r1,t1�,P̂�
I �r,t��Û�t1,− ��Ê�1

�r1,t1�, �41�

here we have used �
̂�1

I �r1 , t1� , P̂�
I �r , t��=0, Ê�1

I =
�0

−1�
̂�1

I + P̂�1

I �, and the following identities:

Û�− �,t1�Ê�1

I �r1,t1� = Ê�1
�r1,t1�Û�− �,t1�,

Ê�1

I �r1,t1�Û�t1,− �� = Û�t1,− ��Ê�1
�r1,t1�. �42�

or the sake of abbreviation, we define a symmetric Liou-
ille superoperator for each operator Ĉ in Hilbert space
enoted by “+” such that

Ĉ+Ô =
1

2
�ĈÔ + ÔĈ�. �43�

o, we can rewrite Eq. (41) as follows:

P̂��r,t� = P̂�
I �r,t� +

1

i	�
�1

� d3r1�
−�

t

dt1Ê�1,+�r1,t1�Û�− �,t1�

��P̂�1

I �r1,t1�,P̂�
I �r,t��Û�t1,− ��. �44�

Repeating the procedure of Eq. (41) to unwrap the term
ˆ �−� , tm��P̂�m

I �rm , tm� , �•��Û�tm ,−��, we arrive at a series
xpansion as follows:

P̂��r,t� = P̂�
�0��r,t� + P̂�

�1��r,t� + P̂�
�2��r,t� + P̂�

�3��r,t� + ¯ ,

�45�

here P̂�
�0��r , t�= P̂�

I �r , t�, and for n�0, P̂�
�n� is the

th-order polarization density given by
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ˆ
�
�n��r,t� =� d3r1 ¯ d3rn�

−�

+�

d�1 ¯�
−�

+�

d�n

�Ê�1,+�r1,�1�Ê�2,+�r2,�2� ¯ Ê�n,+�rn,�n�

�Ĝ�n�n−1¯�1�
�n�

��rn,rn−1, ¯ ,r1;�n,�n−1, ¯ ,�1;r,t�m, �46�

ith the n-points Green’s operator

Ĝ�n�n−1¯�1�
�n� �rn,rn−1, ¯ ,r1;�n,�n−1, ¯ ,�1;r,t�

= 	 1

i	

n

��t − �1����1 − �2� ¯ ���n−1 − �n�

��P̂�n

I �rn,�n�,�¯,�P̂�2

I �r2,�2�,�P̂�1

I �r1,�1�,P̂�
I �r,t�����

�47�

nd ��t� being the Heaviside step function,

��t� = 1, t � 0

0, t  0.� �48�

n Eq. (46), the Einstein summation convention on re-
eated indexes has been used. In the frequency domain,
q. (46) can be rewritten as

P̂�
�n��r,t� =

�0

�2��n� d3r1 ¯ d3rn�
−�

+�

d�1 ¯�
−�

+�

d�n

�E�̂ �1,+�r1,�1�E�̂ �2,+�r2,�2� ¯ E�̂ �n,+�rn,�n�

��̂�n�n−1¯�1�
�n� �rn,rn−1, ¯ ,r1;�n,�n−1, ¯ ,�1;r,t�

�exp	− i�
l=1

n

�lt
 , �49�

r more compactly as

P�̂ �
�n��r,t� =

�0

�2��n� d4n�E�̂ �1,+E�̂ �2,+ ¯ E�̂ �n,+�̂�n�n−1¯�1�
�n�

��r,t�exp	− i�
l=1

n−1

�lt
 , �50�

ith the nth-order electric susceptibility operator given
y

�̂�n¯�1�
�n� �rn, ¯ ,r1;�n, ¯ ,�1;r,t�

= �0
−1�

−�

+�

d�1 ¯�
−�

+�

d�nĜ�n¯�1�
�n� �rn, ¯ ,r1;�n, ¯ ,�1;r,t�

�exp	i�
l=1

n

�l�t − �l�
 . �51�

otice that we have used the following relation:

Ê�r,t� =
1

2�
�

0

+�

E�̂ �r,��exp�− i�t�d� + H.c. �52�
Equations (45)–(51) are therefore a quantized version
f the standard macroscopic nonlinear optics [16] to re-
over which we only need to replace quantum operators in
hese equations with their classical values. In fact, if we
onsider the electric field as classical and write the inter-
ction Hamiltonian in interaction picture as

Ĥint
I �t� = −� d3rE��r,t� · P̂�

I �r,t�, �53�

sing the same technique as for Eq. (45), we can find

P̂�
�n��r,t� =� d4n�E�1

E�2
¯ E�n

Ĝ�n�n−1¯�1�
�n� �r,t�, �54�

here the Green’s operator is the same as given by Eq.
47). This is the reason why we did not put the second
erm of interaction Hamiltonian (34) into the unperturbed
ystem. Indeed, if we only kept the first term of Eq. (34),
he polarization density would become the response to the
isplacement field instead of the electric field, which is in
isaccord with the conventional nonlinear optics formal-
sm.

. Some discussions
n Sec. 3.A, we have decomposed our system into the mi-
roscopic and the macroscopic parts, and this last one is
he sum of the macroscopic EM field and its interaction
ith the microscopic part. In what follows, we will as-

ume that the characteristic distance �c can be chosen
hort enough that the microscopic Hamiltonian Ĥmic is
pproximately the Hamiltonian of the material. That is to
ay, without external perturbations, the impact of the in-
rinsic macroscopic optical radiation is negligible. This
hould be verified in the dielectrics in which the electrons
re bounded, and the direct interactions between charged
articles at a macroscopic scale ���c� are negligible. In-
eed, without perturbations, the macroscopic fields origi-
ate from the material’s spontaneous fluctuations, which
re very weak at optical frequencies. Besides, it is of in-
erest to note that in Eq. (32) we did not extract the mi-
roscopic matter-field interaction term of

0
−1�mic�̂�r� ·P̂�r�d3r from the material’s unperturbed
amiltonian, i.e., Ĥmic. This is because—as a matter of

act—for neutral assemblies, all the intermolecule inter-
ctions are mediated through the exchange of transverse
hotons [12,14]. Thus, a material’s Hamiltonian should
onsist of the Hamiltonians of molecules, EM field, and
he interactions between them, which are principally mi-
roscopic. In fact, this implies that our formalization
bove has already taken into account the local field cor-
ection [16], unlike in the classical calculations of nonlin-
ar susceptibilities where we consider—at first—the mol-
cules as independent to each other.

The electric susceptibility operator (51) depends on the
bsolute time t. This reflects the fact that the material’s
esponse functions are not stationary. Indeed, if adopting
he conventional assumption that the unperturbed sys-
em is originally in thermal state, whose density matrix is
iven by
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�̂th =
exp�− Ĥmic/KBT�

tr�exp�− Ĥmic/KBT��
, �55�

nd hence commutes with the unperturbed Hamiltonian,
.e., Ĥmic, one can find that the quantum expectation of
he Green’s operators is independent on the absolute time
,

�Ĝ�n¯�1�
�n� ��n, . . . ,�1;r,t�� = tr��̂thĜ�n¯�1�

�n� ��n, . . . ,�1;r,t��

= tr��̂thĜ�n¯�1�
�n� ��n − t, . . . ,�1

− t;r,0�� = G�n¯�1�
�n� ��n − t, . . . ,�1

− t;r� �56�

nd, therefore, the susceptibilities or the quantum expec-
ation of the susceptibility operators are time indepen-
ent, i.e.,

��̂�n¯�1�
�n� �r,t�� = ��n¯�1�

�n� �r�. �57�

hus, the susceptibility operators can be decomposed into
he classical part and the time-dependent quantum fluc-
uations part,

�̂�n¯�1�
�n� �r,t� = ��n¯�1�

�n� �r� + ��̂�n¯�1�
�n� �r,t�, �58�

nd we can rewrite the nth-order polarization density op-
rator under the form,

P̂�
�n��r,t� = P̂�

�n��r,t� + �P̂�
�n��r,t�, �59�

ith

P̂�
�n��r,t� =

�0

�2��n� d4n���n�n−1¯�1�
�n�

��r�E�̂ �1,+ ¯ E�̂ �n−1,+E�̂ �n
exp	− i�

l=1

n

�lt
 ,�60�

epresenting the nth-order response of the material to the
lectric field, and

�P̂�
�n��r,t� =

�0

�2��n� d4n�E�̂ �1,+ ¯ E�̂ �n−1,+E�̂ �n
��̂�n�n−1¯�1�

�n�

��r,t�exp	− i�
l=1

n

�lt
 , �61�

epresenting the nth-order mixing of material’s spontane-
us fluctuations and the electric field. The total polariza-
ion density is, therefore, the sum of the material’s re-
ponse to the electric field and the mixing of material’s
pontaneous fluctuations with the electric field.

. FORMAL RELATION FOR LINEARIZED
UANTUM EFFECTS
lthough Eqs. (60) and (61) are rather general, there are
ome calculus difficulties due to the noncommutative na-
ure of quantum operators. This problem remains open
or future research. In what follows, we will assume for
urther discussions that, over the wavelengths of interest,
e can consider the macroscopic electric field as the sum
f a classical intense coherent field and a small quantum
ne, i.e., Ê=E+�Ê. This later can be considered as the
uantum fluctuations noise or a small nonclassical quan-
um field. In practice, this is usually the case, for ex-
mple, in the parametric fluorescence [17], where the
ump is generally coherent and intense and the created
ntangled photon-pairs number is small. Another ex-
mple is the fiber Raman amplifiers [18] where the pump
nd the signal are both coherent and intense, and the
uantum effect is related to a relatively small fluctuating
uantum noise. Thus, we can linearize Eqs. (60) and (61)
n terms of quantum fluctuations, by only retaining in Eq.
60) the terms linear in �Ê and replacing Ê by E in Eq.
60). With this approximation, Eq. (60) becomes P̂�

�n�

P�
�n�+�P̂�

�n�, where P�
�n� is the classical nth-order polar-

zation density, and

�P̂�
�n��r,t� = n� d4n��Ê�1

E�2
¯ E�n−1

E�n
G�n�n−1¯�1�

�n� �r�

�62�

s the material’s nth-order response to the quantum fluc-
uations of the electric field. Equation (61) becomes

�P̂�
�n��r,t� =� d4n�E�1

¯ E�n−1
E�n

�Ĝ�n�n−1¯�1�
�n� �r,t�,

�63�

hich is due to the material’s nth-order spontaneous fluc-
uations. Notice that, when deriving Eq. (62), since there
s no longer the operator-ordering problem, we used the
act that only the part having the following permutation
ymmetry property contributes to the integral of Eq. (62):

G�n¯�p¯�q¯�1�
�n�

��rn, . . . ,rp, . . . ,rq, . . . ,r1;tn, . . . ,tp, . . . ,tq, . . . ,t1;r�

= G�n¯�q¯�p¯�1�
�n�

��rn, . . . ,rq, . . . ,rp, . . . ,r1;tn, . . . ,tq, . . . ,tp, . . . ,t1;r�.

�64�

Equation (62) implies that we can now write the total
aterial’s response to the quantum fluctuations of the

lectric field as follows:

�P̂��r,t� = �
n

�P̂�
�n��r,t�

= �0� d3r1�
−�

+�

dt1�Ê�1
�r1,t1�R�1��r1,t1,r,t�,

�65�

here

R�1��r1,t1,r,t� = �
n

R�1�
�n� �r1,t1,r,t�

= ��t − t1��
n

n

�0
� d4�n−1�

��G�n¯�2�1�
�n� E�2

¯ E�n
�66�
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s the total response function, which explicitly depends on
he classical electric field and is generally nonstationary.
or the sake of simplicity, we assume that the response is
patially local, which means we have in frequency domain

R=�1��r1,�1,r,�� = 2���r − r1���1��r,�1,��, �67�

here the effective electric susceptibility can be found un-
er the form,

����r,− �1,�� = ���
�1������� − �1�

+
1

�
E� �2

�� − �1���2��
�2� �� − �1,�1�

+
3

�2��2�
−�

+�

d�2E� �2
�� − �2�E� �3

��2 − �1�

���3�2��
�3� ��2 − �1,� − �2,�1� + ¯ �68�

hus, from Eqs. (65)–(67), we have

�P�̂ ��r,�� = �0�
−�

+�

d�1�E�̂ �1
�r,�1���1��r,− �1,��. �69�

rom Eq. (22), the quasilinearized equation of propaga-
ion for the electric field’s quantum fluctuations is there-
ore written as

� � � � �E�̂ �r,�� −
�2

c2�
−�

+�

d�1��r,�,�1��E�̂ �r,�1�

= − �2�0�P�̂ �r,��, �70�

here ����r ,� ,�1�=������−�1�+����r ,−�1 ,�� is the ef-
ective relative permittivity. It is worth noting that the
requency integral of Eq. (70) is over the entire real axis,
nd, thus, the positive and negative frequency compo-
ents are coupled.
Since Eq. (70) is linear, its solution can be represented

nder the form

�E�̂ �r,�� = − �0� ��1G�r,�,r1,�1��P�̂ �r1,�1�d3r1d�1,

�71�

here the two-dimensional (2D) Green’s tensor is defined
s the solution of the following equation:

� � � � G�r,�,r1,�1� −� d�2

�

c
��r,�,�2�

�2

c
G�r,�2,r1,�1�

= I��r − r1���� − �1�. �72�

t is easy to verify that the following relations hold:

G�r,�,r1,�1� = GT�r1,�1,r,��, �73�

G��r,�,r1,�1� = G�r1,− �1,r,− ��, �74�

nd
Im G�r2,�2,r1,�1� =
1

2i
�G�r2,�2,r1,�1� − G†�r1,�1,r2,�2��

=� G†�r,�,r2,�2�
�

c
�A�r,�,�3�

�3

c

�G�r,�3,r1,�1�d3rd�d�3, �75�

ith �A�r ,� ,�1�= ���r ,� ,�1�−�†�r ,�1 ,��� /2i, whose ex-
licit expression can be found by simply replacing �

¯��
�n�

�¯ ,�1� of Eq. (68) by ��
¯��
�n� �¯ ,�1�−�

¯��
�n� �¯ ,−��� /2i. In

he Appendix, we have proven that the following relation
olds:

R�1�
�n� �r1,t1,r,t� =

��t − t1�

i	�0
���P̂�1

�r1,t1�,�P̂��r,t����n−1�

=
��t − t1�

i	�0
�
m=0

n−1

���P̂�1

�m��r1,t1�,�P̂�
�n−m−1��r,t���.

�76�

hus, since �P�̂ �
† ���=�P�̂ ��−��, we can find the following

elation for material’s total spontaneous fluctuations:

���P�̂ ��r,��,�P�̂ �
†�r1,�1��� = 4�	�0�A,���r,�,�1���r − r1�,

�77�

hich can be considered as a fluctuation-dissipation rela-
ion [5,15,19]. Due to Eq. (77), the material’s spontaneous
uctuations should be approximated to the �n−1�th order
or an effective electric susceptibility approximated to the
th order. When an effective electric susceptibility is al-
eady given, however, we do not really need to write out
he explicit expression for the spontaneous fluctuations.
inally, with Eq. (77) and using Eqs. (71) and (75), we can
nd

���E�̂ ��r2,�2�,�E�̂ �
†�r1,�1��� =

	�1�2

c2�0
4� Im G���r2,�2,r1,�1�.

�78�

his result is in good agreement with the previous work
or linear optics [5] in which the frequency dependence of
he Green’s tensor is ���2−�1�. We see that it is in general
ot the case for nonlinear optics, since nonlinear effects
an create new frequency components, which are, there-
ore, quantum entangled.

. CONCLUSION
n this paper, we have presented a general formulation
or quantum macroscopic nonlinear optics by decompos-
ng the multipolar matter-field Hamiltonian (18) into the

icroscopic and the macroscopic parts. Equations
45)–(51) can be considered as a fully quantized version of
tandard nonlinear optics formalism. Our development is
auge independent and independent of the choice of the
xplicit expression of the material’s Hamiltonian. To our
nowledge, this is the first time that a general quantum
elation between the Heisenberg operators of the macro-
copic polarization density and the macroscopic electric
eld is discussed.
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Moreover, we have discussed the quantum effects with
he quasilinearization approximation, which enables us to
tudy the quantum effects in a frame of the linear re-
ponse theory. We have shown that the response function
r the effective permittivity is generally nonstationary
ue to the nonlinear coupling. Equations (77) and (78) can
e understood as the fluctuation-dissipation relations.
ifferent from linear optics, the quantum fluctuations in
onlinear optics are generally nonstationary and hence
orrelated in frequency.

PPENDIX
o prove Eq. (76), we will first define the following evolu-
ion operator that depends on an extra parameter �:

Û�t,t0;�� = T	exp
i�

	
�

t0

t

dt1Ĥint
I �t1�
 , �A1�

here Ĥint
I �t1� is the semiclassical Hamiltonian given by

q. (53). With this evolution operator, we can define the
ollowing �-parametered polarization density operator:

P̂��r,t;�� = Û�− �,t;��P̂�
I �r,t�Û�t,− �;��. �A2�

herefore, we have P̂��r , t�= P̂��r , t ;�=1� and P̂�
I �r , t�

P̂��r , t ;�=0�. Hence, the nth-order semiclassical polar-
zation density operator given by Eq. (54) can also be re-
arded as the nth-order coefficient of the Taylor’s expan-
ion of Eq. (A2) about �=0, that is to say

P̂�
�n��r,t� = � 1

n!

�nP̂��r,t;��

��n �
�=0

. �A3�

sing the properties of the evolution operators expressed
xplicitly by Eq. (37), it is not difficult to prove

�Û�t,− �;��

��
= Û�t,− �;��

i

	
�

−�

t

dt1� d3r1E�1

��r1,t1�P̂�1
�r1,t1;��. �A4�

hus, using Eq. (A3), we have

P̂�
�n��r,t� =

1

n ! i	�−�

t

dt1� d3r1E�1
�r1,t1�

�� �n−1�P̂�1
�r1,t1;��,P̂��r,t;���

��n−1 �
�=0

=
1

in	
�

−�

t

dt1� d3r1E�1
�r1,t1�

��P̂�1
�r1,t1�,P̂��r,t���n−1�

=
1

in	
�

−�

t

dt1� d3r1E�1
�r1,t1�

��
n−1

�P̂�1

�m��r1,t1�,P̂�
�n−1−m��r,t��. �A5�
m=0
ow, since �P̂�1
�r1 , t1� , P̂��r , t��= ��P̂�1

�r1 , t1� ,�P̂��r , t��,
omparing Eq. (A5) with Eq. (54), we find

� d4�n−1��E�2
¯ E�n

Ĝ�n�n−1¯�1�
�n� �r,t�

=
��t − t1�

in	
��P̂�1

�r1,t1�,�P̂��r,t���n−1�. �A6�

hus, replacing Eq. (A6) in Eq. (66), we obtain Eq. (76).
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