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ABSTRACT 

Fundamental noise limitations of distributed quantum amplifiers are discussed. For Raman amplifier pumps to signals 

noise transfer, Rayleigh backscattering and polarization fluctuations of the pump are additional noise sources, which are 

discussed including their impact on system performances. 
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1 INTRODUCTION 

Because their optical gain per unit of length is small, most of the optical amplifiers work as Traveling Wave Amplifier 

(TWA) over a propagation length significantly large as compared to the optical wavelength. Distributed Raman Fiber 

Amplifiers (DRFA) based on the Stimulated Raman Scattering (SRS) are well-known to offer the advantages to provide 

a flat gain and a wideband amplification in conventional low-loss silica fibers itself, at any wavelength for which a 

pump, with frequency higher than that of signal by the Stokes shift, is available
1,2

. They also allow a distributed 

amplification over length of several tens of km which is significantly larger than the distribution length of Erbium Doped 

Fiber Amplifiers (EDFA)
3
, just acting as nearly lump amplifiers when  they are used in long span transmission. 

Therefore DRFA allows smaller magnitude excursion of the signal level and therefore low non-linearity impairments and 

lower noise than EDFA amplifiers. 

 

To take advantage of these potentialities, noise properties analysis is a key issue in DRFA design and analysis. The 3 

first major noise sources are the Fundamental Quantum Noise (FQN) generation
4,5

, usually expressed in terms of 

Amplified Spontaneous Emission (ASE), corrected by output shot noise ad hoc addition
6,7,8

, the pump-to-signal noise 

transfer, and the Double Raleigh Backward Scattering (DRBS)
9
. We will point out that the random birefringence, well-

known to be at the origin of the Polarization Mode Dispersion (PMD), also induces pumping noise transfer and acts as 

fourth source of noise. 

 

Because of the simultaneous amplification of the two non commutating quadratures of the optical field, any phase 

insensitive linear amplifier is subject to intrinsic quantum noise generation well known to lead to the 3 dB noise figure 

minimum, in the high gain limit
10,5

. In section 2, we will first consider this intrinsic noise generation and show that it is 

produced by the amplification of vacuum fluctuation input noise and by the intrinsic quantum amplification and 

attenuation noises mechanisms. Because of the very fast relaxation of the optical phonon, the lower state of pumped 

DRFA is nearly empty and the virtual inversion population is almost complete, keeping the quantum noise very close to 

its minimum value. Fundamental limits for the noise of homogeneous gain distribution over a lossy fiber will be 

discussed
11

. Results will be compared to those of the standard ASE beating noise description. Performance of DRFA as 

usually compared to lumped Erbium Doped Fiber Amplifier (EDFA). The better noise performances of the former are 

usually expressed by the so-called effective noise figure. However, since this concept may be misleading because the so-
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called effective noise figure could be negative we discuss the relation between standard and effective noise figure 

definitions. 

 

We will first briefly recall the basics of Raman amplification
2
 in section 3 and precise its fundamental noise mechanism 

and ultimate noise figure limit. As stimulated Raman scattering is nearly independent of the pump and signal propagation 

direction, fiber Raman amplifiers can work both for the counter propagating and co propagating pump with respect to the 

signal. These 2 configurations have different and contradictory interests with respect to intrinsic noise generation and to 

pump noise transfer
12

. 

 

The second noise impairment, discussed in section 4, is the pump noise transfer
13

. It results from the fact that the small 

Raman absorption cross-section requiring high power pumps exhibiting usually a large noise, described in terms of 

Relative Intensity Noise (RIN). Because Raman amplification operates through virtual excited states, no population 

inversion smoothes out the pumps fluctuations, and an instantaneous value of the signal experiments through propagation 

a fluctuating value of the gain, resulting of short time averaging over the pump to signal walk-off time. Since a large gain 

is first experimented, propagation of the signal and the pump is in the same direction is preferable, as far as only intrinsic 

noise is concerned. On the other hand, counter propagation configuration is more favorable when pump-to-signal noise 

transfer is concerned, because the cut-off frequency of intensity noise transfer from the pump to the signal is lower. 

Since multi pump amplification is required to achieve an flat and wide optical bandwidth compatible with Wavelength 

Division Multiplexing (WDM) application, we proposed a novel frequency model to evaluate the pump to signal 

intensity noise transfer in multi pump amplification of multiple WDM signals. The model takes into account the pump 

depletion and pump-to-pump, pump-to-signal and signal-to-signal interaction. 

 

The Rayleigh scattering in the optical media is due to the random fluctuations of the refractive index on a scale much 

smaller than the optical wavelengths
1
, leading to optical scattering loss that has a wavelength dependence of 

-4
. In the 

common silica-based single-mode fibers (SMF), the Rayleigh scattering loss is typically around 0.12-0.16 dB/km at 

1.55µm 
1
. In addition to causing the optical loss in SMF, Rayleigh scattering also reflects a fraction of the incident mode 

into the contra-propagating one, resulting in the phenomenon of Double Rayleigh Backscattering (DBR). In section 5 we 

will discuss the influence of DBR in terms of system penalty by taking into account its polarization degree with respect 

to that of the output signal. 

 

We will finally pointed out, in section 6, that the pump State of Polarization (SOP) temporal fluctuations in the presence 

of PMD influence the amplified signal noise and propose an analytical expression of the transfer function and cutoff 

frequency
14

. Influence, in terms of Q penalty, will be discussed. 

 

2 FUNDAMENTAL QUANTUM NOISE IN DISTRIBUTED AMPLIFICATION 

2.1  Localized linear phase insensitive linear optical amplification  

Let us consider an optical ideal phase insensitive and linear amplifier. The input to output transfer relation for the two 

optical field quadrature operators X and Y would be in this case, in the form
15
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=
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 (2.1) 

where G is the optical power gain. In this case we would have the average commutator relationship 

  XOUTYOUT[ ]  =G  XINYIN[ ]   (2.2) 

where [ ]  stands for the operator commutator ˆ X ˆ Y [ ] = ˆ X ˆ Y ˆ Y ̂  X  and  stands for the ensemble averaging. So the input to 

output transformation does preserve the commutator (obviously except for G =1) and this transformation is not canonical 

in the Hamiltonian meaning. Heisenberg uncertainty product is directly linked to commutator by 

 X 2 1/ 2
. Y 2 1/ 2

= X Y
1

2
  XY[ ]   =

h

2
B0  (2.3) 
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where BO is the optical bandwidth and h  the photon energy. Such an input to output relation does not preserve input 

Heisenberg uncertainty principle
10

. So, the input to output relation must mandatory include an additional noise 

contribution NX and NY and be in the form 
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The output commutator is then written as 

  XOUTYOUT[ ]  =G  XINYIN[ ]  +  NXNY[ ]  + G  XINNY[ ]  + G  NXYIN[ ]   (2.5) 

where the last 2 terms vanish out since signal and noise are independent. 

The preservation of commutator allows us to calculate the average minimum required additional noise contribution 

commutator which is 

  NXNY[ ]  = (1 G)  XINYIN[ ]   (2.6) 

For a singe polarization and an optical bandwidth BO, the corresponding the added noise power PA is found to be 

 PA = X Y = 1 G
h

2
B0  (2.7) 

This result is in good agreement with the standard Amplified Spontaneous Emission (ASE) average power derivation. 

This noise contribution is independent of the amplification of the input noise and is to be added to the additional noise 

free contribution derived from Eq.2.2. By adding second order momentum we obtain the minimum uncertainty product 

 XOUT YOUT = G + 1 G[ ]
1

2
 XINYIN[ ]  (2.8) 

For large values of the gain G, these two added noise contributions are close, meaning that, in the large gain limit, the 

minimum value of noise figure of the amplifier is 2, i.e. 3dB. This result is valid for any type of linear phase insensitive 

amplifier. 

For the particular case of a laser amplifier, the total output noise is the Amplified Spontaneous Emission (ASE), which in 

fact consists of an amplification of the incoming vacuum fluctuations and the contribution of carrier momentum 

fluctuation at the optical frequency. The latter provide the mandatory additional noise and the minimum value of the 

noise figure is only obtained when a perfectly population inverted medium is assumed. 

 

2.2  Noise figure for distributed amplifiers 

The standard approach of fundamental noise of a laser amplifier is usually performed in term of ASE and the associated 

beat noise
6,7

. It has been shown that a more general and more accurate description may be performed in terms of 

amplification of the vacuum fluctuation input noise and of the intrinsic amplification and attenuation noises 

mechanisms
15,16

. 

Let us consider the optical power spectral density of zero-point field fluctuations with the single-sided optical power 

spectral density of noise as the fundamental input noise
17,18,19

 

 SN 0 = h /2  (2.9) 

Despite its dependence on the optical frequency, the optical power spectral density is considered as an Additive Gaussian 

White Noise (AGWN), in the narrow optical band approximation. Its is to be mentioned that, as the thermal noise in the 

radiofrequency range, the zero-point field fluctuation noise level do not depends of the signal level and it is to be 

considered as the minimum input noise in optical amplifier noise analysis, even when no other input signal is applied. 

As well known in the radiofrequency range, a noise generation is also associated, in the optical domain, to any 

attenuation or beam partition process, due to fluctuation-dissipation theorem. For the light amplification through an 

elementary slice of width dz in a medium with the gain per unit of length  , the elementary noise contribution required 

to fulfill the commutator conservation is a differential version of Eq 2.7 for the single sided power spectrum and 

expressed as 
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 dS =
h

2
dz  (2.10) 

Considering an absorption coefficient per unit of length , the elementary noise contribution to the single sided power 

spectrum is expressed as 

 dS = h /2( )dz  (2.11) 

Let us consider now a slice of width dz of an amplifier medium with both a gain per unit of length   and a attenuation 

per unit of length . The single-sided spectral density SN( ,z) of optical noise is found to follow the propagation equation 

 

  

dSN = ( )SN dz
Noise Amplification
1 2 4 3 4 

+ ( + )(h /2)dz[ ]
Noise Generation

1 2 4 4 4 3 4 4 4 
 (2.12) 

In the general case the gain the coefficient   decays, due to pump absorption and pump depletion and the general 

solution of Eq.2.12 is expressed as incomplete gamma functions. Under assumptions of an amplification L shorter than 

the effective length corresponding to pump absorption and depletion, the gain as well as the loss do not depend of the 

coordinate, the general solution of Eq.2.12 is reduced to 

 SN (z) =C exp( )z
+

h 2 (2.13) 

C is an integration constant. Assuming an input noise spectral density SN (0) , the total output noise spectral density for 

an overall amplification length L is found to be 

 SN (L) = K (G 1)(h /2) +GSN (0)  (2.14) 

G is the net gain defined as G = exp( )L  and K the multiplicative noise excess factor as compared to the minimum 

added amplification noise (G 1)h /2 , required to fulfill minimum uncertainty product requirement. K in expressed as  

 K = ( + ) . (2.15) 

Using the definition of signal to noise ratio and noise figure F in the optical domain
20,21

 and making reference to a 

coherent state input, i.e. vacuum fluctuations, input noise SN (0) = h 2 , the total output of Fundamental Quantum Noise 

(FQN) noise is expressed as 

 SN (L) = FG(h /2)  (2.16) 

Using the standard definition, and making reference to vacuum fluctuation input level, the Noise Factor F, denoted Noise 

Figure (NF) when expressed in dB, is expressed as: 

 F = K
(G 1)

G
+1 K +1  for  G >> 1 (2.17) 
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Figure 3.1: Noise figure as a function of fiber loss for various values of the net gain 
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 Introducing the built in internal loss attenuation A = exp( L) , the noise figure given by Eq.2.17 can be also expressed as 

 F =
lnG 2lnA

lnG

G 1

G
+1 (2.18) 

The noise figure, for various values of the achieved net gain and as a function of fiber loss, is shown on Figure 3.1. The 

noise figure is obviously found to be less than the “3db limit” for the low values of the built in loss and of the achieved 

net gain
13

. For a purely attenuating medium with  = 0 , implying G = A, the signal propagation is at a constant level, and 

the noise figure is F = 2 L +1. For an exact and local attenuation and gain compensation  =   implying an overall gain 

G=1, the noise figure is F = 1/A . Noise figure tends to the 3dB high gain limit when the overall gain increase making 

noise enhancement by the built in loss is negligible. It is to be noticed that the optical noise figure concept is only 

relevant when the input noise in specified and when it is defined in the optical domain and for unsaturated amplifier for 

which the gain is independent of the signal and for which no noise regression occurs. 

 

2.3 Comparison with the Amplified Spontaneous Emission approach 

It is interesting to compare the general result given by Eq 2.16 and 2.17, which do not required the specification of the 

physical phenomena in charge of the FQN generation, to the well-know particular situation of laser amplification in 

which FQN generation is usually expressed in terms of Amplified Spontaneous Emission (ASE). The output average 

ASE power is usually obtained by considering that, according to the basic Einstein’s laser rate equation, the average 

spontaneous emission in a single mode corresponds to 1 photon. Considering again a gain coefficient   and attenuation 

, the spectral density on spontaneous emission SASE is governed by the equation 

 

  

dSASE = ( )SASEdz
Spontaneous Emission Amplification

1 2 4 4 3 4 4 
+ h dz

Spontaneous Emission Generation
1 2 3 

 (2.19) 

It is to be noticed that the amplification is proportional to the net gain (  - ), while the spontaneous emission generation 

is only governed by the total gain . By solving this equation in the ideal homogeneous case where gain and loss 

coefficient do not depend of the coordinate and assuming that the there is no input noise we obtain the total output ASE 

 SASE (L) = nSP (G 1)h       with   nSP = ( )  (2.20) 

nSP is well known to be the inversion population factor (sometime called the spontaneous emission enhancement factor).  

Eq.2.19 is well known to be incomplete for the total output noise description and the shot noise of the output signal 

contribution is to be added. This can be performed by adding h /2 to equation Eq.2.20, which is afterward and finally 

found equivalent to Eq.2.14 because we have 2nSP = K +1.  

Despite it finally allows us to find the good result, the weakness of the ASE model is to only calculate the average ASE 

power and to require photodetection and associated beat noise to take into account its stochastic nature. One may, of 

course, also wonder why only phase noise is taken into account in beat noise description and why no amplitude 

fluctuations are associated to ASE at this level. The ASE model does not consider the quantum noisy nature of light as an 

input noise, misses the quantum nature of light as an output noise and needs an heuristic ad hoc correction to take it into 

account. Furthermore, the concept of inversion population factor nSP for a Raman amplifier, in which this inversion is 

only virtual, is at least misleading. It is to be noticed that the spectral density of quantum noise in simply obtained by 

adding half of the photon energy to the spectral density on spontaneous emission. 

 SN ± z,( ) = SASE ± z,( ) +
h

2
 (2.21) 

2.4 Equivalent lumped amplifier noise figure  

Performances of a distributed amplifier is usually expressed in terms of the noise figure FLUMP, for a hypothetic lumped 

amplifier, localized after the corresponding attenuating section, and producing the same amount of ASE power. 

Observing that the noise figure FFIBER of a pure attenuation fiber is related to its attenuation coefficient by FFIBER = 1/A 

and using the standard cascading noise figure formula, this noise figure is expressed as FLUMP = AF. This value is 

strongly dependent on the attenuation of the fiber and may be obviously less than the 3dB (F = 2) high gain limit of an 

ideal amplifier for which K = nSP = 1. This equivalent noise figure may be of course also negative, when expressed in dB. 
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3 BASICS OF RAMAN AMPLIFICATION 

The principle of Raman amplification is the scattering of a photon, at the pump wavelength, with energy transferred to a 

photon at the signal wavelength and a phonon absorbed by the silica of the fiber
1,2

. SRS may transfer down the energy 

from the pump by subtraction of the phonon frequency of /2  =13,2 Thz, for GeO2 Silica fiber, to the pump frequency 

(Raman Stokes), or up, by the same photon frequency addition to the pump frequency (Raman anti Stokes). The two 

types of transition exist, with the probabilities respectively proportional to (1+nq) and nq, where 
  
nq = exp(h /kT ) 1( )

1
is 

the Bose-Einstein phonon population number. This phonon population number is 0.13 at T = 300 K and for optical 

frequencies in the low attenuation window. As the stimulated Stokes Raman scattering is usually the amplifying process, 

the anti Stokes diffusion acts an attenuation source. 

In a DRFA, due to the pump attenuation and to the pumps depletion by the signal, the amplification gain per unit of 

length   and an attenuation per unit of length  change along the propagation according to  

 (z) = 1+ nq( )CRPP (z)  and  (z) = S + nqCRPP (z)  (3.1) 

Pp z( ) is the pump power, S is the total attenuation coefficient at he signal frequency and CR is the Raman gain 

coefficient at the given signal and pump frequencies. The Raman gain coefficient CR is defined as 

 CR =
gR
2Aeff

 (3.2) 

Aeff is the mode effective area, taking into account pump confinement and pump with signal overlap, and the factor 2 is 

the reduction of the co-polarization Raman efficiency gR, since the Raman efficiency of the pump component with a 

polarization orthogonal with the signal is negligible. 

The net gain coefficient governing the energy transfer from the pump to the signal and therefore the net local gain is 

expressed as 

 (z) (z) =CRPP (z) S  (3.3) 

Assuming that a perfect distribution of gain can be achieved the fundamental noise factor of Raman, in the high gain 

limit is written as 

 FMinRaman = 2 1+ nq( ) 2.26  i.e.  3.5dB  (3.4) 

This value is impossible to achieved due to pump absorption and signal depletion and the main goal of pump engineering 

is to approach it. The pumping schemes for Raman amplification includes the forward pumping, the backward pumping 

and the bidirectional pumping. The power evolutions of a depolarized pump PP and a signal PS traveling in a fiber are 

described by the basic equations 

 ±
dPP
dz

= P

S

CRPSPP - PPP    and    
dPS
dz

= +CRPSPP - SPS  (3.5) 

The sign ± stands for the co propagation and counter propagation of the pump. P is the pump frequency, S the signal 

frequency, P is the attenuation coefficient at the pump frequency. 

 

Forward pumping scheme, in which the pump and the signal co-propagate in the optical fiber, first seems more 

interesting for the noise optimization and was studied at first. However, experiments have rapidly demonstrated a strong 

intensity noise transfers from the pump to signal in this configuration. Since the group velocity difference between the 

pump and signal is small, the intensity noise on pump is only averaged over a very short time and is easily transferred to 

the signal degrading the system performances. In the backward pumping scheme, the signal and the pump propagate in 

the counter direction, and hence the walk-off effect between the pump and signal time averages the fluctuations of the 

pump value experimented by the signal and prevents the high frequency noise component transfer from the pump to the 

signal. For these reasons, backward pumping has received more attention later on. Furthermore counter-propagating is 

more robust to gain saturation resulting of the pump depletion. However, with the advance in the low noise laser diode 

technology, more attention is now paid on the co propagating pumping configuration. If the RIN level is roughly less 

than -110dB/Hz, co-directional pumping can be employed to have better noise performance of the Raman amplifiers. 

The bidirectional multi pumping can balance the noise figure to flatten the noise level within the gain spectrum and its 
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optimization is another key issue in Raman fiber amplifiers. By using multiple pumps, one is able to obtain a flattened 

gain spectrum within 100nm. The nonlinearity of coupled equation prevents the linear optimization methods from 

application in WDM systems 

 

4 PUMP TO SIGNAL INTENSITY NOISE TRANSFER  

We have proposed a novel frequency model to evaluate the pump to signal intensity noise transfer in multi pump 

amplification, including a large number of pumps to achieve homogeneous properties over a wide frequency range, and 

for WDM signals including a large number of channels
22,23

. The model takes into account the pump depletion and pump-

to-pump, pump-to-signal and signal-to-signal interaction as well. 

 ±
dPi
dz

= g( i , j )PiPj
i ,j#i

m+n

- iPi     (4.1) 

Where the sign + indicates forward propagation, the sign – indicates backward propagation. n is the number of signal 

channels of the WDM multiplex, m is the number of pumps. Pi  and Pj  are the powers of the ith and jth pump or signal 

wave propagating along the fiber, respectively. g( i , j )  is the Raman gain coefficient between frequency i  and 

frequency j . 

Before introducing the frequency model, we make the assumption that the amplitude of the pump fluctuation Pi z,t( ) is 

relatively small as compared to the steady state pump power Pi z( )and satisfies the coupled equation Eq 4.1, in which we 

have omitted the second order term 

 ±
Pi z,t( )
z

+
1

vg,i

Pi z,t( )
t

= g i , j( )
j=1,j i

n+m

Pi z( ) Pj z,t( ) + g i , j( )
j=1,j i

n+m

Pj z( ) Pi z,t( ) i Pi z,t( ) (4.2) 

Taking Fourier transform on Eq. (4.2) and rewriting it in matrix form, one has: 

 

  

P z,( )
z

= A P z,( )   with    P z,( ) =

P1 z,( )
M

Pm z,( )

 

 

 
 
 

 

 

 
 
 

  (4.3) 

and A is a matrix with corresponding elements. The general solution have the following form 

 P L,( ) = MRIN P 0,( )     with    MRIN = lim
z 0

I +A k z( ) z( )
k=1

L / z

 (4.4) 

I is the identity matrix and MRIN can be evaluated numerically via a forward Euler method, a Runge-Kutta method or a 

Picard method. For the co-pumped RFAs, P 0,( )is known and the RIN transfer Ps L,( ) can be simply calculated by 

multiplying the matrix. For the counter-pumping scheme, the RIN transfer can also be evaluated. We achieve this by 

separating the vector P 0,( )into 
Pp 0,( )
Ps 0,( )

 

 
 

 

 
 , P L,( )into 

Pp L,( )
Ps L,( )

 

 
 

 

 
  and the matrix MRIN  into

M11 M12

M 21 M 22

 

 
 

 

 
 respectively. 

Since the intensity noise on the signal at the input end of the fiber is zero, PS 0,( ) = 0 , therefore the Eq.4.4 becomes:  

 
Pp _ out
Ps_ out

 

 
 

 

 
 =

M11 M12

M 21 M 22

 

 
 

 

 
 
Pp _ in
0

 

 
  (4.5) 

and the signal intensity noise at the output end is  

  Pp _ out = M 21M11
1 Pp _ out  (4.6) 

For sake of simplification it has been proven
23

, for the single pump and single signal case, that our model can derive the 

exactly the same formula as in Ref.13. Now we are going to consider the results for the multiple pump case. 
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Considering, a standard single mode fiber with the length of 50km is used as the gain media. The second order dispersion 

coefficient 2 and the third order dispersion coefficient 3 are -20.41 ps
2
/km and 0.1734 ps

3
/km at the wavelength of 

1550nm. 80 channels of signals are launched into the fiber with 100GHz channel spacing. The input signal power for 

each channel is –10dbm. Different pumping schemes are investigated upon this length of fiber sharing the same pumping 

wavelength, i.e. 1425nm, 1440nm, 1450nm, 1465nm and 1490nm. The gain profile for the co-pumping scheme has been 

equalized and the corresponding pump powers are 440.8mW, 312.9mW, 116.7mW, 180mW, and 39.1mW. The 

maximum gain ripple is 0.9dB. 
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Fig. 4.1: Intensity noise transfer of the co-pumped 50km RFA at 1530nm 

In Fig. 4.1, the intensity noise transfers from the pumps to the signal channels at the wavelength of 1530nm is 

demonstrated. Different pump induce different intensity noise transfer on the signal channels. Pump 1 causes the most 

significant intensity noise transfer. One more interesting phenomenon is that the intensity noise transfer from pump 4 to 

the signal channel at 1530nm reaches maximum at the frequency of about 200MHz. This has not been observed in single 

pump case. It may be caused by the complex coupling between the pumps and the signals, which transfers the intensity 

noise from pump 4 to pump 3. 

1.53 1.54 1.55 1.56 1.57 1.58 1.59
2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

 
 

Fig. 4.2. Net gain spectrum of the counter-pumped 50km RFA 
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Fig. 4.3. Intensity noise transfer of the counter-pumped 50km RFA at 1530nm 
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For the counter-pumping scheme, the Raman gain spectrum is illustrated in Fig. 4.2. The gain profile has also been 

equalized and the corresponding pump powers are 397.1mW, 288.2mW, 111.4mW, 180.1mW, and 47.4mW. The 

maximum gain ripple is about 1dB. 

 

The intensity noise transfer from pump 1 to pump 5 to the signal channel at 1530nm is plotted in Fig. 4.3. Similarly, it 

can also be inferred that in counter-pumping scheme the pump providing more gain on the signal will cause more 

intensity noise transfer. 

5 IMPACTS OF RAYLEIGH BACKSCATTERING 

5.1 Model of noise propagation and the noise properties in the presence of Rayleigh backscattering 

Rayleigh backscattering is due delta-correlated fluctuations of the propagation constant inside the fiber, resulting in the 

linear coupling between the for- and backward traveling modes in SMF. Rayleigh backscattering is characterized by a 

differential coupling constant R, called Rayleigh backscattering coefficient. With the quasi-monochromatic 

approximation, and taking into account the Rayleigh backscattering and the generation of the intrinsic noise in the two 

directions, we can model the spatial evolution of the forward and backward optical power spectral densities of noise in a 

DRFA by the following equation 

 
  

±
z
SN± z,( ) = g z( )SN± z,( ) + RSN m

z,( ) + 1+ 2nq( )CRPP (z) + ( S R )[ ]h   (5.1) 

where SN± z,( )  are the forward and backward spectral densities of noise and h  is the energy of a signal photon. It is to 

be noticed that R is to be subtracted from loss noise generation, since it corresponds to power coupling of the 2 counter 

propagating modes. The solving of Eq.5.1) is in fact a boundary value problem that can be solved numerically. It can be 

generalized by taking into account the frequency dependence of all the parameters and the depletion of the Raman 

pumps
 24

. For high Raman gains, i.e., GR > 30 dB, because of the Rayleigh backscattering, the pump saturation is 

enhanced by the multiple reflections and amplification of the signal and the total ASE. When the pump saturation is 

negligible, the first effect of the Rayleigh backscattering on the DRFA-based transmission systems are the amplified 

single backscattering of the backward traveling ASE leading to noise figure degradation. Due to the linear nature of Eq 

5, it can be seen that the DRB noise should have a spectrum identical to that of the signal and the second DRB effect is 

an important in-band crosstalk induced by the amplified DRB of the signal. It has been shown that the signal and the 

DRB noise are practically uncorrelated in time
25,26

, which means that, at the receiver, the signal beats not only with ASE 

but also with the DRB noise as well. 

The associated noise fields to DRB and ASE can be both considered as circular complex Gaussian random variables
25,26

, 

but the former is colored whereas the later is nearly white. Apart from this, it is also well known that, different from the 

unpolarized ASE noise, the DRB noise has the same state of polarization as the output signal and its degree of 

polarization is 1/9 of that of the output signal 
27

. In the notation of Jones vectors, we can write the output field of a 

DRFA as: As = AL es + AN , where AL  and es  are the slowly varying envelope and the unitary Jones vector (2D 

column complex) of the amplified signal, and AN = ADRB + AASE  is the total noise field. We assume that the amplified 

signal is fully polarized, which means es  does not vary with time. It is usual to describe the polarization properties of a 

quasi monochromatic light in terms of a coherence matrix whose elements are the self and cross correlation function of 

the transverse components of the field 

 J =
Rxx ( ) Rxy ( )
Ryx ( ) Ryy ( )

 

 
  

 

 
      where   Rxy ( ) = E Ax t +( )Ay t( )[ ]  (5.2) 

E[ ]  stands for the statistical average. The diagonal terms are the intensities corresponding to the 2 axis and the trace of 

J is the total intensity for  = 0. 

Therefore, if choosing es  as the one of the two principle axes, say, x-axis, the coherence matrix of the total noise field 

is diagonal since the noise on the 2 polarizations are independent. Therefore we have  
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 E  [ AN t +( ) AN t( ) ] =
Rx ( ) 0

0 Ry ( )

 

 
 
 

 

 
 
 
= SASE

1 0

0 1

 

 
 

 

 
 ( ) +KR

5/9 0

0 4 /9

 

 
 

 

 
 RL ( )  (5.3) 

where 
ASE
S is the optical power spectral density of the ASE noise on one polarization, and  

 KR = R
2 G 2 z( ) /G 2 x( ) dxdz

0

z

0

L

 (5.4) 

is the DRB crosstalk coefficient, with G z( ) = exp g x( ) dx
0

z

being the amplifier gain
28,29

.  

5.2 The Q-factor penalty due to Rayleigh backscattering 

For calculating the exact bit-error rate of the systems employing DRFA with Rayleigh backscattering, we have 

developed a semi-analytical method
23

. For simplification, however, we will only present here an analysis of the Q-factor 

penalty due to Rayleigh backscattering. Assuming that the beating noise dominates, the Q-factor can be found as 
25,29

 

 Q

XL t 1( )K 1, 2( )XL
* t 2( ) d 1d 2

2

2 XL t 1( )K 1, 2( )Rx 2 3( )K 3, 4( )XL
* t 4( ) d 1d 2d 3d 4

4

 (5.5) 

with the integral kernel given by  

 K 1, 2( ) = Ho 1 3( )He 3( )Ho 2 3( )d 3  (5.6) 

where 
o

H  and 
e

H  are the optical and electrical filters before and after the photodiode, and 
L
X is the optical field pulse-

shape of “1”s. The Q-factor penalty due to Rayleigh backscattering is defined, here, as the ratio of the Q-factors without, 

Q0, and with Rayleigh backscattering, QR. From (4.3) and (4.6), it can be found, in decibels, as 

 Q dBQ( ) = 10log10
Q0

QR

 

 
 

 

 
 = 5log10 1+ ASE +

10

9 DKRQ0
2 

 
 

 

 
  (5.7) 

where ASE = SASE /SASE ,0 1 is the ASE enhancement factor that we define as the normalized difference between the 

ASE spectral densities with and without Rayleigh backscattering, and, assuming the simple backscattering of the 

backward ASE dominates, it can be found from (4.1) as 

 ASE R

G z( )Pp z( )

G 2 x( )
dxdz

0

z

0

L Pp z( )

G z( )
dz

0

L

; (5.8) 

and the constant 
D

, depending uniquely on the modulation format and the detection configuration, is given by 

 D =

XL t 1( )K 1, 2( )RL 2 3( )K 3, 4( )XL
* t 4( ) d 1d 2d 3d 4

4

XL t 1( )K 1, 2( )XL
* t 2( ) d 1d 2

2

 

 

 
 

 

 

 
 

2 . (5.9) 

For example, in a direct-detection system using 40 Gbit/s RZ format, where the signal power pulse shape is Gaussian 

with a full width half maximum (FWHM) temporal width of 6.25ps (1/4 bit duration), the optical filter is Lorentzian with 

a 3-dB bandwidth of 0.4 nm (f3dB = 50GHz) and the electrical filter is a 2
nd

 order Butterworth filter with f3dB = 30GHz, 

we have 2.0=
D

 at the maximum point of the output pulse of the electronic circuit. 

In the figure 5.1, we have plotted the DRB crosstalk coefficient, the ASE enhancement factor and the Q penalty as a 

function of the percentage of forward pumping and the Raman gain in a 100 km long bidirectionally-pumped DFRA. As 

seen in figure 5.1(a) and (b), the DRB crosstalk coefficient and the ASE enhancement factor increase both much more 

Proc. of SPIE Vol. 6781  67810U-10



0
vo

25

20

-
10 =

KR dB)
5

0-i_50 I I I I
0 10 20 30 40 50 60 70 80 90 100

Go-pumping (%) Go-pumping (%)

Go-pumping (%)

 
 

 

rapidly with the Raman gain as in unidirectionally-pumped DFRA than in a bidirectionally-pumped DFRA. Moreover, 

we see that the DRB crosstalk is symmetric with respect to the 50% forward pumping, whereas the ASE enhancement is 

not and is found to be less in forward pumping than in backward. Figure 5.1(c) shows clearly that the bi-directional 

pumping with forward pumping around 50%-60% is very interesting for its tolerance on the penalty due to Rayleigh 

scattering. 

 

 

Fig. 5.1 Examples of (a) the DRB crosstalk coefficient, (b) the ASE enhancement factor and (c) the Q penalty as a function 

of the percentage of the forward pumping and the Raman gain in a 100 km long bidirectionally-pumped DFRA. 

Parameters: s/p = 1455 / 1555 nm, R = 1 10
-7

 km
-1

,  s/p = 0.20 / 0.26 dB/km, CR = 0.69 W
-1

km
-1

 and D = 0.2. 

6 PMD ASSISTED PUMP TO SIGNAL NOISE TRANSFER 

In the section 4, we have discussed the impact of the pump to signal noise transfer. However, it was in fact based on a 

scalar description of the SRS process, where the Raman pumps should be depolarized. It is well known that the SRS 

process is polarization dependent. As the Raman pumps are polarized, the PMD due to the birefringence of the optical 

fibers can lead to the Raman gain fluctuations and the polarization dependent gain
,30

. Although the depolarization of the 

Raman pumps can compensate these impairments, we have shown that additional noises can be induced to the signal 

because of the pump SOP temporal fluctuations associated with the PMD
,31

. 

6.1 Model of signal propagation taking into account the polarization effects  

Taking into account the polarization dependence of SRS, and working in a frame of reference traveling with the pump, 

we can write the signal propagation equation as
14,30
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Ps

z
+ sp

Ps

t
= C RPp 1+

v 
s s

v 
s p( ) s[ ]  Ps  (6.1) 

where 
  sp

= vs
1
m v p

1  is the pump signal walk-off parameter, 
s
s
v

 and ps
v

 are the SOP  Stokes vectors of the signal and the 

pump, that are 3D column unitary vectors, defined on the Poincaré sphere
30

. Moreover, we add another rotating frame in 

such a manner that the pump SOP is not affected by the fiber birefringence
30

. Now, to simplify the following analysis, 

we assume that the pump SOP does not change with the length of the fiber in the two frames of reference, i.e., 

)(tss pp

vv
= . Neglecting the impact of pump on the signal SOP, and assuming the latter is fixed at the input, we have

14,30
 

 
  

d

dz
v 
s s =

v 

b sp
v 
s s , with 

  

v 

b sp = 1m
P

S

 

 
 

 

 
  R 1

v 
 s , (6.2) 

where R  is a 3D rotation matrix governed by 
  
m d dz (R) = ps = P S( )

v 
 s R , with R 0( ) = I , and 

  

v 
 s  is the local 

birefringence vector at the signal frequency
30

 , that we describe using the model proposed in Ref.33 and experimentally 

validated
32

. With this model, we have shown that the autocorrelation matrix of the signal SOP is given by
14

 

 
  

v 
s s z( )

v 
s s
T z + u( ) =

I
3

C ss u( ) =
I
3

C ss u( ) , for 
d
Lz >> , (6.3) 

where Ld  is the diffusion length defined as Ld = Css u( ) du
 u 0

, and Css  is the scalar autocorrelation function. After an 

elaborated analysis, we have shown that this scalar function can be found numerically by using a set of recursive 

equations. For co-pumping, we have shown it can be approximated by the analytical expression proposed in 

Ref.30:Css u( ) = exp u /Ld( ) , where Ld = 6 Dp
2 ( P S )

2 with Dp being the PMD parameter
33

. For counter-pumping, 

however, the numerical simulation is generally necessary. 

6.2 Analysis on the SOP fluctuations induced signal noises 

We assume the pump is depolarized, which means 0)](E[
vv

=tsp . However, because of its definition, the pump SOP 

vector is always instantaneously unitary and, therefore, rotates randomly in time on the Poincaré sphere. Moreover, 

because of the PMD, the signal SOP rotates randomly, in the rotating frame, relative to the pump SOP with the length of 

the fiber. Therefore, from (6.1) where the signal amplification depends on the inner product of these two SOP vectors, 

i.e., 
  

v 
s s

v 
s p =

v 
s s (z)

v 
s p (t) , we see that their random fluctuations can obviously induce noises to the signal. To analyze the 

noise transfer, we write the signal and pump powers as Pµ = P µ  1+ mµ( ), where ms and mp are the signal and pump 

modulation indexes representing the noises, and P s (z,t)  and P p (z)  are the transmitted powers without noises. Then from 

Eq.6.1, we can find in the first order 

 
ms

z
+ sp

ms

t
= C RP p m p + msp( ) , with 

  
msp z,t( ) =

v 
s s z( )

v 
s p t( ) . (6.4) 

Since the RIN is just the spectral density of the modulation index, i.e., RIN f( ) = TF  E [m t +( )m t( )] [ ] , Eq.6.4 shows 

clearly that, apart from the pump to signal RIN transfer discussed in the section 4, the RIN of the amplified signal results 

also from the pump SOP fluctuations. 

It is useful to define the pump SOP spectral density as 
  
SSOP f( ) = TF  E[

v 
s p t +( )

v 
s p t( )] [ ] . Since the pump intensity 

fluctuations are generally small, we can find with approximation, for depolarized pumps, 

 SSOP f( ) RIN p f( ) + Sxy f( ) , with Sxy f( ) = 2P p
2TF Ax

* ( )Ax 0( )Ay ( )Ay
* 0( ) + Ax ( )Ax

* 0( )Ay
* ( )Ay 0( )[ ]   (6.5) 

where RIN p f( )  is the RIN of the pump, and yxA ,
 are the field envelopes the two pump polarization components. In what 

follow, we will call Sxy f( )  as the relative beating spectrum. Then, by solving Eq.6.4, we can find the PMD averaged 

signal RIN at the output as
14

 

 RIN s f( ) = hRIN L, f( )
2
RIN p f( ) + H SOP f( )

2
SSOP f( ) = H RIN L, f( )

2
RIN p f( ) + H SOP f( )

2
Sxy f( ) ,  (6.6) 
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where hRIN L, f( )
2
 is just the traditional RIN transfer function

13
,  

 H SOP L, f( )
2 1

3
CR

2Pp0
2 LeffTF Css[ ]  2 sp f( ), with Leff = Pp

2 z( ) dz
0

L

/Pp0
2  (6.7) 

will be called as the SOP fluctuations transfer function, and H RIN L, f( )
2

= hRIN L, f( )
2

+ H SOP L, f( )
2
 is, therefore, the 

novel pump to signal RIN transfer function taking into account the effects of polarization. For simplification, we have 

neglected the pump depletion.  

Thus, the impacts of pump SOP fluctuations on the amplified signal with the presence of PMD are the additional pump 

to signal RIN transfer, as compared to Ref.13, and a novel noise, the SOP beating noise is transferred to the signal. Two 

examples of the SOP fluctuations transfer function are plotted in figure 6.1 for co- and counter-pumped configurations. 

We see that they are all low-pass filter transfer function. For comparison, the traditional RIN transfer functions for the 

two configurations are also plotted in the figure 6.1. From (6.7), we find the maximum and the bandwidth of the SOP 

fluctuations transfer function as  

 H SOP L,0( )
2

=
2LdLeff CRPp0( )

2

3
   and   fH =

1 H SOP L, f( )
2

H SOP L,0( )
2
df

+

=
1

2 sp Ld
 (6.8) 

In practice, this last one is typically a few hundreds of megahertz for co-pumped Raman amplifiers and a few megahertz 

for counter-pumped Raman amplifiers. This is to be compared with the traditional RIN transfer
13

, where the corner 

frequencies are typically of order of a few megahertz for co-pumping and a few kilohertz for counter-pumping. 

 

Fig. 6.1 Examples of the transfer functions for co- and counter-pumped configurations . 

6.3 Performance degradation estimations 

The system performance degradation can be estimated by in terms of the Q penalty
13

. First, it is worth noting that, for the 

two pumping configurations, we have hRIN z, f( )
2
df

 
= 3 H SOP z, f( )

2
df

 
. Therefore, if the pump RIN is constant in the 

range of interest and the receiver bandwidth is much larger than fH, we see that the acceptable value of pump RIN is 

reduced by a factor of 4/3, or 1.25 dB, as compared to Ref.13. Moreover, we see clearly from figure 6.1 that the novel 

RIN transfer function H RIN L, f( )
2

= hRIN L, f( )
2

+ H SOP L, f( )
2
 implies that, as compared to Ref 13, the spectral range of 

the transferable RIN is extended by two or three orders of magnitude, for the two configurations. This can result in 

important impacts on the Q penalty estimation, and, therefore, on the pump RIN requirements. For example, in the 

counter-pumped configuration, it was found that the pump RIN requirement could be remarkably relaxed by the 

technique of introducing a high-pass filter before the photoreceiver, whose corner frequency is larger than that of the 

traditional RIN transfer function 
13,34

. However, becoming dominating before the traditional RIN transfer, the additional 

RIN transfer assisted by PMD should not be omitted in this case. 

    In order to discuss the impact of beating noise, we assume that the two pump polarization components are statistically 

independent and their lineshapes can be both considered as Lorentzian, with linewidth Fx,y and central frequencies 
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shifted by fxy. For co- and counter-pumped configurations, figure 6.2 shows two examples of Q penalty as a function of 

the pump linewidth Fc = Fx  + Fy and the frequency shift fxy, where the baseline of the quality factor Qs is chosen to 

be 10 for both the two configurations. From the figures, we see that the Q penalty decreases always with the frequency 

shift fxy. Therefore, it could be a solution for canceling out the beating noise transfer to separate in spectrum the two 

field components of the pump, as already mentioned
31

. This should be especially useful for the co-pumped configuration, 

where the Q penalty is much more important and the Raman pump is frequently the polarization combined diodes
31

. 

 
                                                   (a)                  (b) 

Fig. 5.2. Two examples of Q penalty  as a function of the pump linewidth and the frequency shift for (a) co-pumping  and 

(b) counter-pumping. 

7 CONCLUSION 

Fundamental limits for the noise figure of gain distribution over a lossy fiber have been discussed by using a simple 

model for fundamental quantum noise generation. Relation with the standard ASE approach and physical meaning of 

effective noise have been clarified 

We have proposed a novel frequency model to evaluate the pump to signal intensity noise transfer in multi pump 

amplification of WDM signals. The model takes into account the pump depletion and pump-to-pump, pump-to-signal 

and signal-to-signal interaction. We have discuss the influence of DBR in terms of system penalty by taking into account 

its polarization degree with respect to that of the output signal. The DRB crosstalk coefficient, the ASE enhancement 

factor and the Q penalty have been discussed as a function of the percentage of the forward pumping and the Raman 

gain.  

We also have pointed out that the pump State of Polarization (SOP) temporal fluctuations in the presence of PMD 

influence the amplified signal noise and propose an analytical expression of the transfer function. Cutoff frequency of 

PMD assisted noise transfer appears higher from 2 to 3 orders of magnitude than traditional noise transfer. Its influence 

has been discussed in terms of Q penalty. 
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