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Theoretical Analysis on the PMD-Assisted
Pump-to-Signal Noise Transfer in Distributed

Fiber Raman Amplifiers
Shifeng Jiang and Philippe Gallion, Senior Member, IEEE

Abstract—A theoretical analysis on the pump-to-signal noise
transfer, in the presence of the polarization mode dispersion in the
distributed fiber Raman amplifiers, is presented. We analytically
show the impact of temporal fluctuations of the pump state of
polarization on the relative intensity noise of the amplified signal.
The system performance degradations are then estimated with
analytical expressions.

Index Terms—Distributed Raman amplification (DRA), polar-
ization mode dispersion (PMD), relative intensity noise (RIN).

I. INTRODUCTION

D ISTRIBUTED Raman amplification (DRA), based on the
stimulated scattering (SRS) in the transmission fibers, has

become the most promising solution for future ultraband long-
haul transmission systems [1], [2]. One major issue of DRA is
pump-induced signal noise. Since SRS is a nonresonant process
in the optical fibers, the power fluctuations of the pump can
directly influence the signal and impair system performance
[1], [2]. This is more commonly known as pump-to-signal
relative intensity noise (RIN) transfer [3], [4]. Another issue
in DRA comes from the random birefringence of the optical
fibers, which causes the polarization mode dispersion (PMD),
where the states of polarization (SOPs) of the signal and pump
vary randomly with different velocities. It is well known that
SRS is polarization dependent, e.g., in the optical fibers, the
copolarized Raman gain coefficient is approximately an order-
of-magnitude larger than the orthogonal one [1], [2]. Thus, the
random changes of the relative SOP between signal and Raman
pump can induce system impairments. In [5], a vector theory of
SRS in fibers is presented. Two phenomena have been analyzed:
the polarization-dependent gain (PDG) and the fluctuations of
the output signal due to PMD. Although using the depolarized
or unpolarized pumps can compensate these system impair-
ments, it has been put forward that, in the presence of PMD, the
unpolarized pump can induce additional noise to the signal [6],
[7], as compared to the amount suggested by the RIN transfer
without PMD [3].

This paper presents a theoretical analysis on the PMD-
assisted pump-to-signal noise transfer in the distributed fiber
Raman amplifiers (DFRAs). In Section II, we will present the
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vector propagation model. Then, in Section III, the statistical
properties of the signal SOP and the relative local birefringence,
which will be introduced in Section II, will be studied with the
help of the analysis presented in Appendixes A–C. We will
show that the result obtained in [5], for the counterpumped
Raman amplifiers, is questionable, and therefore, the Raman
gain fluctuations due to PMD will be briefly revised. In
Section IV, the unpolarized pump-induced signal noises will
be analyzed. We will analytically show the impact of the
pump SOP temporal fluctuations on the amplified signal. In
Section V, the system performance degradations due to the
PMD-assisted pump-to-signal noise transfer will be analyzed
and discussed. This paper will be concluded in Section VI.

II. PROPAGATION MODEL

Based on the vector theory of SRS presented in [5], we
propose to model the spatiotemporal small-signal propagation
by the following equations:

(
∂z + v−1

s ∂t

)
Ps =

[
CRPp(1 +

⇀
s p · ⇀

s s)− αs

]
Ps (1.1)(

∂z + v−1
s ∂t

) ⇀
s s =

⇀

β s × ⇀
s s − CRPp

⇀
s s × (

⇀
s s × ⇀

s p)
(1.2)(

ep∂z + v−1
p ∂t

) ⇀
s p =

⇀

β p × ⇀
s p (1.3)

where Ps/p(z, t) is the signal/pump power,
⇀
s s/p (z, t) is the

signal/pump Stokes vector (unitary 3-D column vectors) repre-
senting the SOP on the Poincaré sphere, vs/p is the signal/pump
group velocity, ep = ±1 for copumping or counterpumping, αs

is the signal fiber loss coefficient, CR is the Raman effective

gain coefficient, and
⇀

β s/p is the fiber local birefringence vector
for the signal/pump [5], [8]–[11]. Since the local birefringence
vectors can be considered as proportional to the optical fre-

quencies in the first order [8], we assume
⇀

β p= ηps

⇀

β s, where
ηps = ωp/ωs, with ωp and ωs being the pump and signal optical
carrier frequencies, respectively.

In this paper, we will adopt the model proposed in [9], which
has been experimentally validated in [10]. This model describes
⇀

β s by the following Langevin equations:

dzβsk = −αββsk + gk, k = 1, 2 (2.1)

where αβ = L−1
F , with LF being the fiber birefringence co-

herence length [9]–[11], and g1 and g2 are real zero-mean
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stochastic processes, whose correlations are given by

〈gi(z1)gj(z2)〉 = σ2
gδijδ(z1 − z2). (2.2)

In this paper, the symbol 〈·〉 denotes the ensemble average over
the PMD, and E[·] will denote the expectation in time. With this
model, the PMD parameter Dp for signal can be found to be [9]

Dp =
√
32πLF

ωsLB
(3)

with the beat length LB =
√
16παβ/σg [11]. It should be

mentioned that we have, in fact, assumed
⇀

β s to be linear,
i.e., βs3 = 0. Since the circular birefringence of transmission
fibers is most likely artificially induced [11], we will adopt this
assumption in this paper for the sake of simplicity.

As in [5], we introduce a rotating frame so that the pump
SOP is not affected by the PMD, i.e.,

⇀
s p (z, t) =

⇀
s p (0, t). The

evolution of the matrix of rotating frame is then given by

dzRp = ep

⇀

β p × Rp = epηps

⇀

β s × Rp (4)

with the initial condition Rp(0) = I. In this frame, (1.1) is not
changed due to its scalar nature, and (1.2) is rewritten as

(
∂z + v−1

s ∂t

) ⇀
s s =

⇀

b sp × ⇀
s s − CRPp

⇀
s s × (

⇀
s s × ⇀

s p)
(5.1)

with the relative local birefringence vector

⇀

b sp = (1 − epηps)R−1
p

⇀

β s = ∆ηpsR−1
p

⇀

β s . (5.2)

III. RELATIVE LOCAL BIREFRINGENCE VECTOR AND

COUNTERPUMPED RAMAN GAIN FLUCTUATIONS

In [5], the relative local birefringence vector is modeled as a
3-D zero-mean delta-correlated stochastic process with

〈
⇀

b sp (z1)
⇀

b
T

sp (z2)
〉
=

I
3
∆Ω2

spD
2
pδ(z1 − z2) (6)

where (·)T stands for transpose, and ∆Ωsp = ωs − epωp. In
Appendix B, we show that, in the asymptotically stationary

regime (ASR),
⇀

b sp is a zero-mean stochastic process, and its
autocorrelation function (ACF) is〈

⇀

b sp (z1)
⇀

b
T

sp (z2)
〉
=

I
3
∆Ω2

spD
2
p

exp (−|z1 − z2|/LF )
2LF

.

(7)

Therefore, it is clear that (6) is the limit of (7) as LF → 0. How-
ever, we find that (6) is questionable for the counterpumped
configuration. Let us consider the case where the influence of
pump on the signal SOP is negligible. With fixed input signal
SOP, (5.1) is reduced to

dz
⇀
s s0 =

⇀

b sp × ⇀
s s0 . (8)

Fig. 1. Comparison between previous work, (9), and the exact solution (10)
for copumped and counterpumped configurations. LB = 20 m and LF =
15 m. Pump and signal wavelengths: λp = 1455 nm and λs = 1555 nm.

With (6), the ACF of
⇀
s s0 can be found to be [5]

〈
⇀
s s0 (z)

⇀
s

T

s0 (z + u)
〉
=

I
3
exp (−|u|/Ld) , for z 
 Ld

(9)

where Ld = 3D−2
p ∆Ω−2

sp is the diffusion length defined for (6).

Using the typical value Dp = 0.05 ps/km1/2 [5], we find Ld ≈
175 m for copumping, and Ld ≈ 0.2 m for counterpumping. By
noting that LF is typically of order of 10 m, we see that the re-
sult Ld ≈ 0.2 m � LF in counterpumping is not in agreement
with the assumption that the relative local birefringence vector
can be considered as delta correlated.

In Appendix A, we use the Stratonovich generator method
[9], [12] to find the exact statistical properties of

⇀
s s0 described

by (2) and (8). We show that, in ASR,
⇀
s s0 is uniformly

distributed on the Poincaré sphere, and its ACF is found to be

〈
⇀
s s0 (z)

⇀
s

T

s0 (z + u)
〉
=

I
3
Css(u) (10)

where Css(u) = Css(−u) is the scalar ACF, which we can
numerically calculate by using a set of recursive equations [see
(C.6)–(C.11)]. Again, comparing (9) with (10), one can find a
clear correspondence. Now, we can define the diffusion length
Ld in a general manner as follows:

Ld =

∞∫
0

Css(u)du. (11)

For copumping and counterpumping, Fig. 1 compares the re-
sults of the previous work, i.e., (9), with the exact solution (10).
We clearly see that (10) is practically in good agreement with
(9) for copumping, whereas for the counterpumping, (10) is
far from an exponential function because of the strong relative
local birefringence. Moreover, in counterpumping, the diffusion
length suggested by (9) is approximately an order-of-magnitude
smaller than those by (11) and (C.15). For example, with
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LB = 20 m and LF = 15 m, (9) gives Ld ≈ 0.2 m, whereas
(11) gives Ld ≈ 4.8 m.

For the counterpumped Raman amplifiers, we see that the
results of [5] should be revised. Here, we will only deal with the
counterpumped configurations encountered in practice, where
the influence of pump on the signal SOP is negligible before the
fiber birefringence. In this case, the signal SOP is governed by
(8), i.e.,

⇀
s s=

⇀
s s0. Since the signal SOP very rapidly attains its

ASR in counterpumping, generally, after a few meters, the sig-
nal SOP can be considered approximately as stationary. Thus,
we find that the Raman gain becomes polarization independent.
Using (1.1) with ∂t = 0, we can find the Raman gain, which
is defined as the ratio of the output powers with and without
Raman pump, in the first order as

G(z) ≈ [1 + ∆(z)] exp

z∫
0

CRPp(x)dx (12)

where ∆(z) =
⇀
s p ·

∫ z

0 CRPp(x)
⇀
s s (x)dx. Since the diffusion

length Ld is much smaller than the fiber effective length, when
evaluating the average and the correlation of ∆(z), we can
consider the signal SOP as a zero-mean and delta-correlated
process, i.e.,

〈
⇀
s s (z)

〉
=

⇀
0 and

〈
⇀
s s (z)

⇀
s

T

s (z + u)
〉
=

2I
3
Ldδ(u).

(13)

Therefore, the average and normalized variance of the Raman
gain can be found to be

〈G(L)〉 = exp

L∫
0

CRPp(z)dz (14.1)

and

〈
G2(L)

〉
/ 〈G(L)〉2 − 1 =

2
3
LdLeff(CRPp0)2 (14.2)

where L is the fiber length, Pp0 is the injected pump power,

and Leff =
∫ L

0 P 2
p (z)dz/P

2
p0 is the effective length. Since the

right-hand side of (14.2) is proportional to Ld, we see that
the counterpumped Raman gain fluctuations are much more
important (about an order of magnitude) than suggested in [5].

IV. UNPOLARIZED PUMP SOP
FLUCTUATION-INDUCED SIGNAL NOISE

In practice, the depolarized or unpolarized pumps are used to
compensate the Raman gain fluctuations and PDG due to PMD.
However, the term “unpolarized” means only that the time

average of the SOP is zero, i.e., E[
⇀
s p] =

⇀
0 . In fact, the vari-

ation of its instantaneous SOP, i.e., ∆
⇀
s p=

⇀
s p − E[sp] =

⇀
s p,

randomly fluctuates on the Poincaré sphere. From (1.1), it is
clear that these fluctuations can influence the signal.

We assume that the pump and signal powers can be written as

Ps/p(z, t) = P̄s/p

[
1 +ms/p(z, t)

]
(15)

where ms and mp are the signal and pump modulation indexes
representing the noises, P̄p(z) is the average pump power, and
P̄s(z, t) is the transmitted signal governed by(

∂z + v−1
s ∂t

)
P̄s(z, t) =

[
CRP̄p(z)− αs

]
P̄s(z, t). (16)

For the sake of simplicity and concentrating on the impact of
SOP fluctuations, we will ignore the spatial variations of the
pump RIN and the pump SOP in the rotating frame. Moreover,
the influence of pump SOP on the signal SOP will be assumed
negligible in the first order. Then, replacing (15) and (16)
in (1.1) and introducing a frame moving with the pump, we
obtain, in the first order

(∂z + βsp∂t)ms = CRP̄p(mp +msp) (17)

where βsp = 1/vs − ep/vp, and msp(z, t) =
⇀
s s0 (z) · ⇀

s p0

(t), with
⇀
s s0 being the same as given by (8), and

⇀
s p0 being

the input pump SOP. When writing (17), we have neglected
the crossed terms of ms, mp, and msp, which are assumed to
be small. The solution of (17) can be written in the frequency
domain as

ms(z, f) = hRIN(z, f)mp(f) +
⇀

hSOP(z, f) ·
⇀
s p0(f)

(18.1)

with the pump intensity fluctuations transfer function

hRIN(z, f) =

z∫
0

CRP̄p(x) exp [2πiβsp(z − x)f ] dx (18.2)

and the pump SOP fluctuations vector transfer function

⇀

hSOP(z, f) =

z∫
0

CRP̄p(x)
⇀
s s0 (x) exp [2πiβsp(z − x)f ] dx.

(18.3)

In this paper, the underlined symbols and TF[·] denote the
Fourier transform. Noting that RIN is the spectral density of
the modulation index, i.e.,

RIN(f) = TF [E [m(t+ τ)m(t)]] (f) (19)

and using (10), we find the PMD-averaged signal RIN at the
output as

〈RINs(f)〉 = |hRIN(L, f)|2RINp(f) + |HSOP(f)|2SSOP(f)
(20)

where

|HSOP(L, f)|2 = 1
3

L∫
0

L∫
0

C2
RP̄p(x1)P̄p(x2)Css(x1 − x2)

× cos [2πβsp(x1 − x2)f ] dx1dx2

≈ 1
3
C2

RP 2
p0LeffCss(2πβspf) (21)

will be called the SOP fluctuation transfer function in this
paper, RINp is the RIN of the pump, and SSOP is the pump
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Fig. 2. SOP fluctuations transfer function for copumped and counterpumped
configurations. λp = 1455 nm, λs = 1555 nm, CR = 0.5 W−1km−1,
Pp0 = 0.53 W, L = 100 km, Leff = 8.7 km, LF = 15 m, and LB = 20 m.
Dispersion parameter: Dp = 15 ps/nm/km.

SOP power spectrum, i.e.,

SSOP(f) = TF
[
E
[

⇀
s p0 (t+ τ) · ⇀

s p0 (t)
]]
(f). (22)

It is worth noting that the second step of (21) holds because we
have practically Leff 
 Ld.

Equation (20) clearly shows that, apart from the pump-to-
signal RIN transfer, the RIN of the amplified signal also results
from the pump SOP fluctuations. Two examples of the SOP
fluctuation transfer function are plotted in Fig. 2 for copumped
and counterpumped configurations. We see that they are all low-
pass filters. For comparison, the RIN transfer functions for the
two configurations are also plotted in Fig. 2. From (21), we find
the maximum of the SOP fluctuations transfer function as

|HSOP(L, 0)|2 = 2LdLeff(CRPp0)2

3
(23)

and the bandwidth corresponding to the corner frequency of a
first-order low-pass filter as

∆fH =
1
π

+∞∫
−∞

|HSOP(L, f)|2

|HSOP(L, 0)|2
df =

1
2π|βsp|Ld

. (24)

In practice, this last one is typically a few hundreds of mega-
hertz for copumped Raman amplifiers and a few megahertz for
counterpumped Raman amplifiers. This is to be compared with
the RIN transfer [3], where the corner frequencies are typically
on order of a few megahertz for copumping and a few kilohertz
for counterpumping.

For further discussions, we assume that the two orthogonal
field components of pump are statistically independent. Then,
since the pump RIN is practically small, we have

SSOP(f) ≈ RINp(f) + Sxy(f) (25)

where Sxy(f) is the relative beating spectrum given by

Sxy(f) =
Sx(f)⊗ Sy(−f) + Sx(−f)⊗ Sy(f)

2
(26.1)

with Sk(k = x, y) being the normalized power spectrum of
each field component, i.e.,

Sk(f) = TF


E[Ek(t+ τ)E∗

k(t)]

E
[
|Ek(t)|2

]

 (f) (26.2)

with Ek(k = x, y) being the field component. Then, we can
rewrite (20) as

〈RINs(f)〉 = |HRIN(L, f)|2 RINp(f) + |HSOP(f)|2 Sxy(f)
(27)

with the new RIN transfer function

|HRIN(L, f)|2 = |hRIN(L, f)|2 + |HSOP(L, f)|2 . (28)

Thus, the impacts on the amplified signal of pump SOP fluc-
tuations with the presence of PMD are as follows: 1) There is
an additional pump-to-signal RIN transfer, as compared to [3],
and 2) a novel noise called the SOP beating noise, whose noise
spectrum is given by (26.1), is transferred to the signal.

V. PERFORMANCE DEGRADATION ESTIMATIONS

The system performance degradation can be estimated by
means of the Q penalty given by the following expression [3]:

Penalty (dBQ) = 10 log10

√√√√1 +Q2
s

∫
Bc

〈RINs(f)〉 df (29)

where Qs is the quality factor of signal in absence of pump-
induced noise, and Bc is the receiver band. For the two pumping
configurations, we have

∞∫
0

|hRIN(z, f)|2 df = 3

∞∫
0

|HSOP(z, f)|2 df. (30)

Therefore, if the pump RIN is constant in the range of interest,
and the receiver bandwidth is much larger than ∆fH , we see
that the acceptable value of pump RIN is reduced by a factor of
4/3, or 1.25 dB, as compared to [3]. Moreover, we clearly see
from Fig. 2 that the new RIN transfer function (28) implies that,
as compared to [3], the spectral range of the transferable RIN
is extended by two or three orders of magnitude (∼Leff/Ld)
for the two configurations. This can result in an impact on the
Q penalty estimation and, therefore, on the pump RIN require-
ments. For example, in the counterpumped configuration, it was
found that the pump RIN requirement could be remarkably
relaxed by the technique of introducing a high-pass filter before
the photoreceiver, whose corner frequency is larger than that of
the traditional RIN transfer function [3], [4]. However, because
it becomes dominating before the traditional RIN transfer, the
additional RIN transfer assisted by PMD should not be omitted
in this case.
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To discuss the impact of beating noise, we assume that the
line shapes of the two orthogonal pump field components can
be both considered as Lorentzian. Then, we have

Sxy(f) =
∆Fc

∆F 2
c + 4π2(f +∆fxy)2

+
∆Fc

∆F 2
c + 4π2(f −∆fxy)2

(31)

where ∆Fc = ∆Fx +∆Fy , ∆Fk (k = x, y) is the linewidth
of the pump field components, and ∆fxy is the shift between
the carrier frequencies of the two field components. Since, ac-
cording to Section III, the copumping SOP fluctuations transfer
function can be considered approximately as Lorentzian, i.e.,

|HSOP(L, f)|2 ≈ 2LdLeff(CRPR)2

3
∆f2

H

f2 +∆f2
H

(32)

we can find for the copumped configurations∫
Bc

〈RINs(L, f)〉 df =
∫
Bc

|HSOP(L, f)|2 Sxy(f)df

≈ 1
3

LdLeff(CRPp0)2(1 + ∆Fc/∆ΩH)
(∆fxy/∆fH)2 + (1 +∆Fc/∆ΩH)2

(33)

where ∆ΩH = 2π∆fH , and Bc is set to (0,+∞) for the
second line. For the counterpumped configurations, since the
transfer function is far from Lorentzian, the numerical simula-
tion of (21) is generally necessary. If, however, the bandwidth of
the transfer function is much smaller than the pump linewidth,
∆fH � ∆Fc, and the frequency shift is negligible before the
pump linewidth, we find∫

Bc

〈RINs(L, f)〉 df ≈Sxy(0)
∫
Bc

|HSOP(L, f)|2 df

≈ (CRPp0)2Leffvs

6
∆Fc

∆F 2
c + 4π2∆f2

xy

(34)

where we have used βsp ≈ 2/vs. It is worth noting that this
result, which is independent of the fiber birefringence, is prac-
tically valid for the majority of counterpumped configurations,
where the fiber Raman lasers are generally deployed.

For copumped and counterpumped configurations, Figs. 3
and 4 show two examples of Q penalty as a function of
the pump linewidth ∆fc and the frequency shift ∆fxy . The
baseline of the quality factor Qs is chosen to be 10 for both
configurations. In Fig. 3, the frequencies ∆fc and ∆fxy are
normalized on the bandwidth of the SOP fluctuations transfer
function ∆fH since the approximation [see (33)] is used to
calculate the Q penalty. The direct numerical simulation of
(21) is used for Fig. 4, where the fiber birefringence coherence
length and the beat length are, respectively, chosen to be 25 and
100 m, which results in a PMD parameter of 0.013 ps/km1/2

and a diffusion length of 16 m. From the two figures, we see
that the Q penalty always decreases with the frequency shift
∆fxy . Therefore, it could be a solution for canceling out the

Fig. 3. Estimated Q penalty for copumped configuration as a function of
the normalized pump linewidth and the normalized frequency shift. Param-
eters: λp = 1455 nm, λs = 1555 nm, Qs = 10, CR = 0.5 W−1km−1,
Pp0 = 0.53 W, L = 100 km, Leff = 8.7 km, Ld = 175 m, and Dp =
15 ps/nm/km.

Fig. 4. Estimated Q penalty for counterpumped configuration as a function
of the pump linewidth and frequency shift. Parameters: λp = 1455 nm, λs =
1555 nm, Qs = 10, CR = 0.5 W−1km−1, Pp0 = 0.53 W, L = 100 km,
Leff = 8.7 km, LF = 25 m, LB = 100 m, and vs = 2.105 km/s.

beating noise transfer to, in spectrum, separate the two filed
components of the pump, as already mentioned in [6]. This
should be particularly useful for the copumped configuration,
where the Q penalty is much more important, and the Raman
pump is frequently the polarization-combined diodes [6].

VI. CONCLUSION

With the analysis presented in Appendixes A–C, we have
found a numerical method for calculating the signal relative
SOP correlation matrix. It is found that the delta-correlated
relative local birefringence assumption is only valid for cop-
umped configuration, and the Raman gain fluctuations in coun-
terpumped configuration should be an order-of-magnitude more
important than that suggested in [5]. Because of the temporal
fluctuations of SOP, the unpolarized pump assisted by PMD
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can induce extra noise to the signal, as compared to the pump-
to-signal RIN transfer without PMD [3]. First, there is an addi-
tional pump-to-signal RIN transfer. Special attention should be
paid to the bandwidth of this additional RIN transfer, which is
much larger than that of the RIN transfer without PMD. Second,
there is a novel noise, which is known as the SOP beating noise,
transferred to the signal. The system performance degradation
due to this SOP beating noise has been estimated by means of a
Q penalty. Analytical expressions that are valid for the majority
of practical cases have been found for evaluating the Q penalty.

APPENDIX A
STRATONOVICH FORMULATION

Consider the following stochastic differential equation
(SDE):

dt
⇀
x= Q(

⇀
x, t)

⇀
g +

⇀

U (
⇀
x, t) (A.1)

where
⇀
x and

⇀

U are n-dimensional vectors, and Q is an n×m
matrix. The process

⇀
g is an m-dimensional white noise process

with zero mean and correlations given by〈
gj(z)gk(z

′
)
〉
= σ2

j δjkδ(z − z
′
). (A.2)

Then, for any “smooth” function ψ of
⇀
x , we have

dt

〈
ψ(

⇀
x)
〉
=
〈
(Ĝψ)(

⇀
x)
〉

(A.3)

and Dynkin’s formula [9], [11], [12]

∂u

〈
ψ
[

⇀
x (z)

]
ψ
[

⇀
x (z + u)

]〉
=
〈
ψ
[

⇀
x (z)

]
(Ĝψ)

[
⇀
x (z + u)

]〉
(A.4)

for u ≥ 0, with the Stratonovich generator Ĝ given by

Ĝ =
∑

j

Uj∂xj
+

1
2

n∑
j=1

n∑
k=1

m∑
p=1

σ2
p

× (QjpQkp∂xj
∂xk

+ Qkp∂xk
Qjp∂xj

). (A.5)

The objective of this Appendix is to find the coherence matrix
of the signal SOP vector governed by (8),

⇀
s s =

⇀
s s0

Cs(z, u) =
〈

⇀
s s0 (z + u)

⇀
s

T

s0 (z)
〉
. (A.6)

If writing the matrix of the rotating frame as

RP =
(⇀
c 1

⇀
c 2

⇀
c 3

)
(A.7)

with
⇀
c 3=

⇀
c 1 × ⇀

c 2 and
⇀
c 1 · ⇀

c 2= 0, from (2), (4), and (8), we
have the following SDE:

d

dz




⇀
c 1
⇀
c 2
⇀
s s
⇀

β s


=

(
O9×2

I2×2

)(
g1

g2

)
+




epηps

⇀

β s × ⇀
c 1

epηps

⇀

β s × ⇀
c 2

⇀

b sp × ⇀
s s

−αβ

⇀

β s


 (A.8)

where ∆ηps = 1− epηps, O9×2 is a 9 × 2 zero matrix, and

I2×2 is a 2 × 2 identity matrix. We recall that
⇀

b sp is given by
(5.2). Then, the Stratonovich generator for (A.8) is given by

Ĝ = −αβ

⇀

β s · ∇β +
1
2
σ2

g∇2
β + epηps

∑
k=1,2

(
⇀

β s × ⇀
c k

)

· ∇ck
+
(

⇀

b sp × ⇀
s s

)
· ∇s (A.9)

where ∇x is the gradient.

APPENDIX B
PDF IN ASR

Strictly speaking,
⇀
s s is not a stationary stochastic process;

however, the results of the numerical simulation of (A.8) show
that after propagating a distance of order of Ld, it reaches its
ASR, where its PDF becomes z independent. Notice that PDF is
the inverse Fourier transformation of the characteristic function
[13], i.e.,

f(z;
⇀
x) = TF−1 [Φ(z;v)] (

⇀
x) (B.1)

where
⇀
x

T
= (

⇀
x

T

c1,
⇀
x

T

c2,
⇀
x

T

β ,
⇀
x

T

s ), vT = (
⇀
c

T

1 ,
⇀
c

T

2 ,
⇀

β
T

s ,
⇀
s

T

s ),
and Φ is the characteristic function of v, which is defined
as [13]

Φ(z;v) =
〈
exp(2πi

⇀

kv ·v)
〉

(B.2)

with
⇀

k
T

= (
⇀

k
T

c1,
⇀

k
T

c2,
⇀

k
T

β ,
⇀

k
T

s ). Assuming Φ(v → ∞) = 0,
we can find from (A.9) the following equation in ASR:

∂zf = αβ
⇀
xβ ·∇βf +

1
2
σ2

g∇2
βf −∆ηps(

⇀
x b ×

⇀
xs)

· ∇sf − epηps

∑
k=1,2

(
⇀
xβ × ⇀

x ck

)
· ∇ck

f = 0 (B.3)

where
⇀
x b= (

⇀
x c1,

⇀
x c2,

⇀
x c1 × ⇀

x c2)T
⇀
xβ .

To resolve (B.3), we will first consider the following reduced
PDF equation:[

αβ

⇀

β s · ∇β +
1
2
σ2

g∇2
β + (

⇀
c × ⇀

r ) · ∇r

]
f(

⇀

β s,
⇀
r ) = 0

(B.4)

where
⇀
c=

⇀
c (βs) is any vector function of

⇀

β s. Using a change
of variable

⇀
r (r, θ, φ) = r( cos θ sinφ sin θ sinφ cosφ )T (B.5)

where θ ∈ [0, 2π] and φ ∈ [0, π], we have [13]

f(
⇀

β s, r, θ, φ) = Jrf

(
⇀

β s,
⇀
r

)
(B.6)

with the Jacobian determinant

Jr(r, θ, φ) =

∣∣∣∣∣ ∂
⇀
r

∂(r, θ, φ)

∣∣∣∣∣ = r2 sinφ. (B.7)
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Now, setting r ≡ 1, we easily find from (B.4) that

f(
⇀

β s, θ, φ) = fβ(
⇀

β s)fr(φ, θ) (B.8)

with

fβ(
⇀

β s) =
1

2πσ2
β

exp

(
− 1
2σ2

β

∣∣∣∣⇀β s

∣∣∣∣
2
)

(B.9)

and

fr(θ, φ) =
1
4π

sinφ (B.10)

where σ2
β = σ2

g/2αβ . Then, we see that
⇀

β s is a 2-D Gaussian

random variable, and
⇀
r is uniformly distributed on the Poincaré

sphere and independent of
⇀

β s. Thus, with the following
changes of variable:

⇀
s s (θs, φs)=(cos θs sinφs sin θs sinφs cosφs)T (B.11)

and

Rp(γp, φp, θp) = Rz(γp)Ry(φp)Rz(θp) (B.12)

where Ry and Rz are the Stokes space rotation matrices [14],

the total joint PDF for Rp,
⇀

β s, and
⇀
s s can be found as

f = fβ

(
⇀

β s

)
fs(φs, θs)fp(γp, φp, θp) (B.13)

with

fs(φs, θs) =
1
4π

sinφs

and

fp(γp, φp, θp) =
1
8π2

sinφp. (B.13.1)

From (B.13), we see that
⇀
c 1,

⇀
c 2, and

⇀
s s are uniformly

distributed on the Poincaré sphere, and Rp,
⇀

β s, and
⇀
s s are

statistically independent in ASR.

APPENDIX C
CALCULUS OF ACF IN ASR

To calculate the ACF of
⇀

b sp defined by (5.2), we can first
find from (A.4) and (A.9) that

∂u

〈
⇀

b sp (z)
⇀

b
T

sp (z + u)
〉
= −αβ

〈
⇀

b sp (z)
⇀

b
T

sp (z + u)
〉

(C.1)

for u ≥ 0. Then, since ACF is symmetric in ASR, i.e.,

〈
⇀

b sp (z)
⇀

b
T

sp (z + u)
〉
=
〈

⇀

b sp (z + u)
⇀

b
T

sp (z)
〉

(C.2)

and from (B.13)〈
R−1

p (z)
⇀

β s (z)
⇀

β
T

s (z)Rp(z)
〉
=

2I
3
σ2

β (C.3)

we can easily find (7).
To calculate (A.6), we will first define the following

variables:

⇀
ς n,k (z) = (−1)n

∣∣∣∣⇀β s

∣∣∣∣
2n

(
2σ2

β

)n

n!
R−1

p

(
⇀

β s ×
)k

Rp
⇀
s s

(C.4.1)

⇀

ξ n,k (z) = (−1)n

∣∣∣∣⇀β s

∣∣∣∣
2n

(
2σ2

β

)n

n!
R−1

p

(
⇀

β s ×
)k

DRp
⇀
s s

(C.4.2)

where D = diag(0, 0, 1) is a diagonal matrix. Then, we define

xn,k(z, u) =
〈

⇀
ς n,k (z + u)

⇀
s

T

s (z)
〉

(C.5.1)

yn,k(z, u) =
〈

⇀

ξ n,k (z + u)
⇀
s

T

s (z)
〉

. (C.5.2)

Notice that x0,0(z, u) = Cs(z, u). From (A.4) and (A.9), after
long but straightforward calculus, we can find the following set
of recursion equations:

∂uxn,0 = −2nαβxn,0 − 2nαβxn−1,0 +∆ηpsxn,1

∂uxn,1 = −(2n+ 1)αβxn,1 − 2(n+ 1)αβxn−1,1

+∆ηpsxn,2

∂uxn,2 = −(2n+ 2)αβxn,2 − 2(n+ 2)αβxn−1,2

− σ2
gxn,0 − σ2

gyn,0 + 2∆ηps(n+ 1)σ2
βxn+1,1

∂uyn,0 = −2nαβyn,0 − 2nαβyn−1,0

+ (1− 3epηps)yn,1 + epηpsxn,1

∂uyn,1 = −(2n+ 1)αβyn,1 − 2(n+ 1)αβyn−1,1

+ 2σ2
β(n+ 1)(1− 3epηps)yn+1,0

+ epηpsxn,2 (C.6)

for u ≥ 0. Moreover, from (B.13), we have

xn,0(0) =
(−1)nI

3
, xn,1(0) = 0

xn,2(0) = (−1)n+1
4σ2

β

9
(n+ 1)I

yn,0(0) = (−1)n I
9

and yn,1(0) = 0. (C.7)

Now, we can write Cs as

Cs(z, u) =
I
3
Css(u) (C.8)
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with Css being the scalar ACF. We know that, in ASR, Css

is symmetric, i.e., Css(u) = Css(−u). To calculate Css(u),
for u ≥ 0, we can calculate the following infinite-dimensional
vector equation:

dv
du

= Mv (C.9)

where M is a constant matrix whose elements are the constant
coefficients of (C.6), and vT = [. . . ,vT

n−1,v
T
n ,vT

n+1, . . .] is a
column vector with the initial conditions

vT
n (0) = (−1)n

[
1 0

4σ2
β

3 (n+ 1) 1
3 0

]
. (C.10)

Therefore, we have

Css(u) = v0,0(u). (C.11)

It should be mentioned that, when numerically evaluating
(C.11), we generally find a good convergence for n ≥ 200 in
counterpumping and n ≥ 50 in copumping.

To calculate the Fourier transform of Css, we note that the
general solution of (C.11) can be written as

v(z) = exp(Mz)v(0). (C.12)

Then, we have

Css(k) =

∞∫
−∞

Css(x) exp(−ikx)dx = 2Re [w0,0(k)] (C.13)

with

⇀
w (k) =

∞∫
0

v(x) exp(−ikx)dx = −(M − ikI)−1v(0).

(C.14)

Last, the diffusion length defined by (11) is given by

Ld =
1
2
C̃ss(0). (C.15)
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