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Upper bound of loss probability for the
dimensioning of an OFDMA system with multi

class randomly located users
L. Decreusefond and E. Ferraz and P. Martins

Abstract—This work proposes a new analytical model for the
dimensioning of OFDMA systems. It relies on a rough but easily
computable upper bound for the probability of lost communica-
tions by insufficient number of sub-channels on downlink. The
positions of receiving users in the system as well as the number
of sub-channels dedicated to each one are randomized. Users
are classified in different classes according to their throughput
requirements and traffic patterns. We use recent results of the
theory of point processes which reduce our calculations to that
of the first and second moments of the total required number of
sub-channels. The upper bound probability leads to an acceptable
over dimensioning in terms of sub-channels.

I. I NTRODUCTION

Future wireless systems will widely rely on OFDMA (Or-
thogonal Frequency Division Multiple Access) multiple access
technique. OFDMA can satisfy end user’s demands in terms of
throughput. It also fulfills operator’s requirements in terms of
capacity for high data rate services. Systems such as 802.16e
and 3G-LTE (Third Generation Long Term Evolution) already
use OFDMA on the downlink. For the uplink, 802.16e has
also adopted OFDMA, while 3G-LTE uses SCFDMA (Single
Carrier Frequency Division Multiple Access). OFDMA can
also be possibly combined with multiple antenna technology
to improve either quality or capacity of systems.

Dimensioning of OFDMA systems is then of the up-most
importance for wireless telecommunications industry.

The model introduced in this contribution takes into account
the randomness of user locations and user traffic. It provides
also an upper bound of loss probability in terms of sub-
channels.

The paper first provides a short introduction to OFDMA air
interfaces, by providing some insights on sub-channel concepts
and OFDMA jargon (see section II). Besides a review on
point Poisson Process theory and concentration inequalities
is provided in section III. The dimensioning analytical model
is first developed for a deterministic wireless channel, taking
only into account the path-loss effect (cf. section IV). Section
V analyses a more realistic situation, where wireless channel
also encompasses shadowing effects. Section V-B extends the
results to a multi class user traffic. The accuracy of analytical
model is evaluated by comparing them with simulation.
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Fig. 1. OFDMA sub-carrier allocation principle

II. I NTRODUCTION TOOFDMA AIR INTERFACES

OFDM (Orthogonal Frequency Division Multiplex) is a
multi carrier technique especially designed for high data
rate services. It divides the spectrum in a large number of
frequency bands called sub-carriers that overlap partially in
order to reduce spectrum occupation. Overlapping is made
possible because the different sub-carriers are made orthogonal
to each other by choosing a sub-carrier spacing multiple of the
inverse of the OFDM symbol duration.

Each sub-carrier has a small bandwidth compared to the
coherence bandwidth of the channel in order to mitigate
frequency selective fading. User data is then transmitted in
parallel on each sub carrier.

Systems such as ADSL (Asymmetric Digital Subscriber
Line), digital audio broadcasting (DAB) and digital video
broadcasting (DVB-T) rely on OFDM modulation. Most re-
cently, power line systems (Home Plug) and WiMedia (short
range communications) have also adopted OFDM.

In OFDM systems, all available sub-carriers are affected to
one user at a given time for transmission. OFDMA extends
OFDM by making it possible to share dynamically the avail-
able sub-carriers between different users (see figure 1). Inthat
sense, it can then be seen as multiple access technique that
both combines FDMA and TDMA features.

In practical systems, such as WiMAX or 3G-LTE, the
sub-carriers are not allocated individually for implementation
reasons mainly inherent to the scheduler design and physical
layer signaling. Several sub-carriers are then grouped in sub-
channels according to different strategies specific to each
system. The unit of resource allocation is the sub-channel.

For example, in WiMAX, there are three modes available
for building sub-channels: FUSC (Fully Partial Usage of Sub-
channels), PUSC (Partial Usage of Sub-Channels) and AMC
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Fig. 2. OFDMA sub-channel principle

(Adaptive modulation and coding). In FUSC, sub-channels are
made of sub-carriers spread over all the frequency band. In
AMC, the sub-carriers of a sub-channel are adjacent insteadof
being uniformly distributed over the spectrum. FUSC provides
an averaging effect on quality which makes it more suitable
for mobile application, while AMC is more adapted for fixed
users.

The sub-channel concept makes it easier to schedule ra-
dio resources. However, it becomes more difficult to assess
channel quality as it is composed by different sub-carriers
that can possibly span over several timeslots. An extensive
literature has addressed that problem, and we will assume in
the following, that whatever the sub-channelization scheme
adopted, it is possible to consider an equivalent single channel
gain for all the sub-carriers making part of a sub-channel (for
example the average of channel gain computed on some sub-
carrier pilots). We also assume that subcarrier allocationto
different sub-channels is done slot by slot.

III. POISSON POINT PROCESSES

For details on point processes, we refer to [1, 4, 5, 6]. A
configurationη in R

k is a set{xn, n ≥ 1} where for each
n ≥ 1, xn ∈ R

k, xn 6= xm for n 6= m and each compact
subset ofRk contains only a finite subset ofη. We denote by
ΓRk the set of configurations inRk. Equipped with the vague
topology of discrete measures,ΓRk is a complete, separable
metric space. A point processΦ is a random variable with
values inΓRk , i.e., Φ(ω) = {Xn(ω), n ≥ 1} ∈ ΓRk . For
A ⊂ R

k, we denote byΦA the random variable which counts
the number of atoms ofΦ(ω) in A:

ΦA(ω) =
∑

n≥1

1Xn(ω)∈A ∈ N ∪ {+∞}.

Poisson point processes are particular instances of point pro-
cesses such that:

Definition 1. Let Λ be a σ finite measure onRk. A point
processΦ is a Poisson process of intensityΛ whenever the
following two properties hold.

1 - For any compact subsetA ∈ R
k, ΦA is a Poisson random

variable of parameterΛ(A), i.e.,

P(ΦA = k) = e−Λ(A) Λ(A)k

k!
.

2 - For any disjoint subsetsA and B, the random variables
ΦA and ΦB are independent.

The notion of point process can be extended to configura-
tions inR

k ×X whereX is a subset ofRm. A configuration
is then typically of the form{(xn, yn), n ≥ 1} where for each
n ≥ 1, xn ∈ R

k andyn ∈ X . We keep writing(xn, yn) as a
couple, though it could be thought as an element ofR

k+m, to
stress the asymmetry between the spatial coordinatexn and the
so-called mark,yn. For a marked point process, we denote by
Φ the set of locations, i.e.,Φ(ω) = {Xn, n ≥ 1} and byΦ̄ the
set of both locations and marks, i.e.,Φ̄(ω) = {(Xn, Yn), n ≥
1}. A marked point process with position dependent marking
is a marked point process for which the law ofYn, the mark
associated to the atom located atXn, depends only onXn

through a kernelK:

P(Yn ∈ B |Φ) = K(Xn, B), for any B ⊂ X.

If K is a probability kernel, i.e., ifK(x, X) = 1 for any
x ∈ R

k then it is well known that̄Φ is a Poisson process of
intensityK(x, dy)dΛ(x) onR

k×R
m. The Campbell formula

is a well known and useful formula

Theorem 1. Let Φ̄ be a marked Poisson process onR
k×R

m.
Let Λ be the intensity of the underlying Poisson process and
K the kernel of the position dependent marking. Forf : R

k×
R

m → R a measurable non-negative function, let

F =

∫

f dΦ̄ =
∑

n≥1

f(Xn, Yn).

Then,

E [F ] =

∫

Rk×Rm

f(x, y)K(x, dy)dΛ(x).

Definition 2. For F : ΓRk → R, for anyx ∈ R
k, we define

DxF (ω) = F (ω ∪ {x}) − F (ω).

Note that forF =
∫

fdΦ, DxF = f(x), for any x ∈
R

k. We now quote from [3, 8] the main result on which our
inequalities are based:

Theorem 2 (Concentration inequality). Assume thatΦ is a
Poisson process onRk of intensityΛ. Let f : R

k → R
+ a

measurable non-negative function and let

F (ω) =

∫

f dΦ =
∑

n≥1

f(Xn(ω)).

Assume that|DxF (ω)| ≤ s for any x ∈ R
k. Let

mF = E [F ] =

∫

f(x) dΛ(x)

and

vF =

∫

|DxF (ω)|2dΛ(x) =

∫

f2(x) dΛ(x).

Then, for anyt ∈ R
+,

P(F − mF ≥ t) ≤ exp

(

− vF

s2
g

(

t s

vF

))

whereg(x) = (1 + x) ln(1 + x) − x.
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IV. D ETERMINISTIC GAIN

We state the following assumptions:

Assumption 1. The position of each user is independent of
the position of all other. The users are indistinguishable,i.e.,
the positions are identically distributed.

Assumption 2. The time between two consecutive demands
of users for service in the system (or inter arrival time) is
exponentially distributed.

We defineρ(x) as the surface density of inter arrival time
in s−1m−2, constant in time. Hence, for a regionH ⊆ B, the
mean inter arrival rate ish =

∫

H ρ(x)dx in s−1.

Assumption 3. The service time for every user is exponen-
tially distributed with mean1/ν.

Assumption 4. The cellC is circular, with radiusR and with
the antenna in the center.

Assumption 5. The channel gain depends only on the distance
from the transmitting antenna.

Assumption 6. The surface density of inter arrival time is
constant.

These assumptions are commonly done to simplify the
mathematical treatment and are quite reasonable. If we show
that the point process given by the location of the users is
a Poisson process, then it is sufficient to have the two first
moments in order to apply theorem 2 and then calculate
an upper boundPsup for the probability Ploss of loosing
communications due to a lack of sub-channels. To do this,
we consider the following lemma:

Lemma 1. Considering assumptions 1, 2 and 3, the point
processΦ of the active users positions is, in equilibrium, a
Poisson process with intensity dΛ(x) = ρ(x)ν−1dx

Proof: For a regionH , in virtue of assumptions 2 and
3, the number of receiving (i.e., active) customers is the same
as the number of customers in an M/M/∞ queue with input
rate h and mean service timeν−1. It is known [7] that the
distribution of the number of usersU in equilibrium is then

P (U = u) =
(h/ν)u

u!
e−h/ν .

It follows that the first condition of definition 1 is satisfied
with intensity measureΛ(H)

Λ(H) = h/ν =

∫

H

ρ(x)

ν
dx.

Condition 2 of definition 1 follows straightforwardly from
assumption 1.

Without loss of generality, we consider the cellC has its
antenna located at the origin. We are looking at evaluating

Ploss = P(

∫

N dΦ ≥ N0),

α 1.5 1.6 1.7 1.8 1.9 2

Psup 0.18 0.1 0.04 0.02 0.008 0.003
∆ 0.98 0.1 1.15 1.3 1.3 1.4

TABLE I
COMPARISON BETWEENPsup AND Ploss FOR DETERMINISTIC GAIN.

whereN(x) is defined by

N(x) =













C0

W log2

(

1 +
PtKḡ

(I + η)‖x‖γ

)













,

whereḡ is the mean gain due to shadowing,C0 the throughput
requested by users,I the interference generated by outer
cells andη the noise. We will not take into account inter-
ference generated by outer cells, soI = 0. Note that, with
respect tox, N is increasing and piecewise constant. Let
Rj , j = 1, · · · , Nmax be the values such thatN(x) = j
for x ∈ [Rj , Rj+1). We can easily determine them by

Rj =

(

PtKg

η(2C0/(jW ) − 1)

)1/γ

.

According to Theorem 1, it is then clear that

E

[
∫

N dΦ

]

=

∫

NdΛ =
πρ

ν

Nmax
∑

j=1

j(R2
j − R2

j−1).

We denote bymN the last quantity. Moreover,
∫

N2dΛ =
πρ

ν

Nmax
∑

j=1

j2(R2
j − R2

j−1).

We denote byvN the last quantity. We takeN0 of the form
αmN , so that according to Theorem 2:

P(

∫

N dΦ ≥ αmN ) ≤ Psup(α)

where

Psup(α) = exp

(

− vN

N2
max

g

(

(α − 1)mNNmax

vN

))

.

It is then natural to verify how far this bound is from the
exact value of the loss probability in simple situations where
simulation is available. We used hereγ = 2.8, C0 = 200
kb/s,W = 250 kHz andPtK/(η) = 1 × 106. For the surface
density of inter arrival time we useρ = 0.0006 min−1m−2

and the service time is1/ν = 1 min, so, the mean number of
users in the system isπR2ρ/ν = 18.85 users. If we consider
the shadowing withσ =

√
10 dB andµ = 6 dB, we can use

the mean gaing, giving g = 1/12. Thus, users in the cell
boundary use 3 sub-channels, soNmax = 3. For α varying
from 1 to 2, which corresponds here to loss probabilities about
2% or 0.01%, we computed∆ = log10 Psup/Ploss.

Though concentration inequalities are usually thought as
almost optimal, the results shown in Table I seem at first
glance disappointing. Note though that the computation of the
bound is immediate whereas the simulation on a fast PC took
several hours to get a decent confidence interval. Note also that
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the error is about the same order of magnitude as the error
made when using a usual trick which consists in replacing
infinite buffers by finite ones in Jackson networks (see [2]).
The margin provided by the bounds may be viewed as a
protection against errors in the modeling or in the estimates
of the parameters.

V. RANDOM GAIN

A. Single class of user traffic

Let us determine now the upper bound probabilityPsup for
Ploss without assumption 5 but holding all other assumptions
of the preceding section. Lemma 1 still holds, since it is a
consequence of assumptions 1, 2 and 3. We also state two
other natural assumptions:

Assumption 7. The random gain is totally described by the
log-normal shadowing, with meanµ and standard deviation
σ, both in dB.

For a user at distanced from the origin, the gain isG =
1/S, whereS follows a log-normal distribution:

pS(y) =
ξ√

2πσy
exp

[

− (10 log10 y − µ)2

2σ2

]

,

whereξ = 10/ ln 10.

Assumption 8. A user is able to receive the signal only if the
signal-to-interference ratio is above some constantβmin.

This means, in particular, that the number of sub-carriers
needed by a transmitting user is surely bounded by

Nmax =

⌈

C0

W log2(1 + βmin)

⌉

.

The situation is slightly different from that of Section IV,
since the functional depends on two aleas: positions and gains.
Consider now that our configurations are of the form(x, s)
wherex ∈ R

2 is still a position ands ∈ R is a gain. Since
gain and positions are independent, we then have a Poisson
process onR3 of intensity measuredΛ(x) ⊗ pS(y)dy. Thus
we want to evaluate an upper bound of

P(

∫

NdΦ ≥ N0)

where

N(x, y) =













C0

W log2

(

1 +
PtK

ηy‖x‖γ

)













.

According to Theorem 2, we must compute

mN =

∫

N(x, y)pS(y)dy dΛ(x)

and

vN = sup
ω

∫

|Dx,yF (ω)|2pS(y)dy dΛ(x)

=

∫

N2(x, y)pS(y)dy dΛ(x).

Let β0 = ∞ andβj = 2C0/(Wj)−1 for j = 1, · · · , Nmax−1.
For j = 1, · · · , Nmax − 1, let

Aj =

∫

C×R+

1{y‖x‖γ≤PtK/ηβj}pS(y) dy dx

andA0 = 0.

Lemma 2. For j = 1, · · · , Nmax − 1,

Aj = πR2Q(αj − ζ lnR)

+ πe2/ζ2+2αj/ζQ(ζ lnR − 2/ζ − αj),

where

αj =
1

σ
(10 log10(PtK/ηβj) − µ) and ζ =

10γ

σ ln 10
.

Proof: We can write

Aj =

∫

C

P(S‖x‖γ ≤ β̃j) dx

whereβ̃j = PtK/ηβj . Remind thatS is equal in distribution
to exp(N (µ, σ2)ξ) with ξ = ln(10)/10. Thus after a few
manipulations, we get

Aj = 2π

∫ R

0

r Q(αj − ζ ln r) dr,

where

Q(x) =
1√
2π

∫ x

−∞

exp(− u2

2
) du.

The final result follows by a tedious but straightforward
integration by parts.

Theorem 3. For any functionθ : R → R,

∫

θ(N(x, y))pS(y)dy dΛ(x)

=

Nmax−1
∑

j=1

θ(j)(Aj −Aj−1) + θ(Nmax)(πR2 −ANmax−1).

Proof: SinceN can take only a finite number of values,
we have

∫

θ(N(x, y))pS(y)dy dΛ(x)

=
ρ

ν

Nmax
∑

j=1

θ(j)

∫

C×R+

1{(x, y), N(x, y)=j}pS(y)dy dx.

Now we see that

N(x, y) = j ⇐⇒ β̃j−1 < y‖x‖γ ≤ β̃j ,

for j = 1, · · · , Nmax − 1 and N(x, y) = Nmax when
y‖x‖γ > β̃Nmax−1. The proof is thus complete.

We used the same set of values as for the simulation of
Section IV together with assumptions 8 and 7 withβmin =
0.2. Results of Table II show that the theoretical bound is
rather stable when gains become stochastic.
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α 1.5 1.6 1.7 1.8 1.9 2

Psup 0.2 0.1 0.05 0.02 0.01 0.004
∆ 1.7 1.8 2.1 2.3 2.4 2.6

TABLE II
COMPARISON BETWEENPsup AND Ploss FOR RANDOM GAIN.

B. Multi class user traffic

1) Upper bound of loss probability:We consider in this
section, M classes of users. Classj users request a throughput
of Cj . The configurations associated to each class are of the
form (x, y), wherex ∈ R

2 is a position,y ∈ R is a gain. Since
gain and positions are independent, we then have for each
class of users a Poisson process onR

3 of intensity measure
Λj(x)dx ⊗ pS(y)dy, whereΛj(x) = ρj(x)ν−1

j and j is the
user class.

For the sake of computational simplicity, we assume in
the following, thatρj(x) is constant with respect tox but
the theory is still valid unaltered otherwise. Furthermorewe
consider that the random gain is totally described by the log-
normal shadowing, with meanµ and standard deviationσ,
both in dB. For a user at distanced from the origin, the gain
is G = 1/S, whereS follows a log-normal distribution as in
section V-A. We also assume that a user is able to receive the
signal only if the signal-to-interference ratio is above some
constantβmin. This means, in particular, that the number of
sub-channels needed by a transmitting user of classj is surely
bounded by

Nmax
j =

⌈

Cj

W log2(1 + βmin)

⌉

.

Without loss of generality, we consider the cellC has its
antenna located at the origin. We are then looking at evaluating

P(

∫

NdΦ ≥ N0)

where

N(x, j, y) =













Cj

W log2

(

1 +
PtK

ηy‖x‖γ

)













.

The functional depends on two aleas: positions and gains. It
has also an additional parameter that describes the class ofthe
user.

Theorem 4. With the assumptions of this Section,

P(

∫

N dΦ ≥ αmN ) ≤ Psup(α)

where

Psup(α) = exp

(

− v

N2
max

g

(

(α − 1)mNmax

v

))

,

with Nmax = maxj Nmax
j ,

m =

M
∑

j=1

∫

N(x, j, y)Λj(x)pS(y)dxdy,

and

v =

M
∑

j=1

∫

N(x, j, y)2Λj(x)pS(y)dxdy.

Proof: Let Λj be the intensity of the Poisson process
representing classj customers andΛ =

∑M
j=1 Λj . Let Φ be a

Poisson process onR2 of intensityΛ. Consider the probability
kernel

K(x, {j}) =
Λj(x)

Λ(x)
.

For a configurationω = {xn, n ≥ 1}, there is thus a sequence
of marks {un, n ≥ 1}, un ∈ {1, · · · , M} for all n ≥ 1,
corresponding to the position dependent marking accordingto
the kernelK. According to the properties of Poisson process,
the processΦj = {xn, un = j} is a Poisson process of
intensityΛj . Now add to each point ofΦ, an independent mark
yn, corresponding to the random gain, distributed according
to a log-normal distribution. Denote bȳΦ this point process
which turns to be a Poisson process since the marks are
independent from the positions. From section 2, we know that
the process, the atoms of which areω̄ = (xn, un, yn), is a
Poisson process of intensity

∑

j K(x, {j})Λ(x)pS(y)dxdyδj :

E





∑

n≥1

f(Xn, Un, Yn)





=
M
∑

j=1

∫

f(x, j, y)
Λj(x)

Λ(x)
Λ(x)pS(y)dxdy

=

M
∑

j=1

∫

f(x, j, y)Λj(x)pS(y)dxdy.

We are thus in position to apply the Theorem 2 to the Poisson
processΦ̄. The difference operator defined in Definition 2, is
here equal to

Dx,j,yF (ω̄) = F (ω̄ ∪ {x, j, y}) − F (ω̄),

as it suffices to takek = 2 + 1 + 1 = 4. That is to say, we
look at the impact of adding a user at positionx, with class
j and gainy. For F =

∫

NdΦ, we obtain

Dx,j,yF (ω̄) = N(x, j, y) ≤ Nmax
j .

Thus, inequality (2) holds withs = maxj Nmax
j ,

mN =
M
∑

j=1

∫

N(x, j, y)Λj(x)pS(y)dxdy,

and

vN =
M
∑

j=1

∫

N(x, j, y)2Λj(x)pS(y)dxdy.

Both m andv can be computed taking advantage of the fact
that N is piecewise constant (see section V-A). Letβ0 = ∞
and βj,k = 2Cj/(Wk) − 1 for k = 1, · · · , Nmax

j − 1. For
k = 1, · · · , Nmax

j − 1, let

Aj,k =

∫

C×R+

1{y‖x‖γ≤PtK/ηβk}pS(y) dy dx



6

andA0 = 0. It can proved from results of section V that for
k = 1, · · · , Nmax

j − 1,

Aj,k = πR2Q(αj,k − ζ lnR)

+ πe2/ζ2+2αj,k/ζQ(ζ lnR − 2/ζ − αj,k),

where

αj,k =
1

σ
(10 log10(PtK/ηβj,k) − µ) andζ =

10γ

σ ln 10
.

We finally obtain the following formula.

Theorem 5. For any functionθ : R → R,
∫

θ(N(x, j y))pS(y)dy dΛ(x)

=

Nmax
j −1
∑

l=1

θ(l)(Al − Al−1)

+ θ(Nmax
j )(πR2 − ANmax

j
−1).

2) Numerical application:In this section we will apply the
upper bound calculated previously to the dimensioning of sub-
channels in a OFDMA system. We consider here a cell, where
two classes of users are competing to the access of available
sub-channels. More precisely we consider hereM = 2. The
capacities required by each class of user is fixed toC1 = 200
kb/s andC2 = 100kb/s respectively. The path-loss exponent
is fixed to γ = 3.8 and the sub-channel bandwidth is equal
to W = 250 kHz. We also considerPtK/η = 1 × 1012. For
the surface density of inter arrival time we useρ1 = 0.0006
min−1m−2 and ρ2 = 0.0006 min−1m−2. The service times
are1/ν1 = 1 min and1/ν2 = 0.5 min, so the mean number
of users in the system isπR2ρ1/ν1 = 18.85 for class 1 users
and πR2ρ2/ν2 = 9.425 for class 2 users. We consider the
shadowing withσ =

√
10 dB andµ = 6 dB. We have also

consideredβmin = 0.2
We madeα varying from 1.6 to 1.8, by steps of0.05.

This corresponds here to an upper bound of loss probability
varying between0.0068 and0.045 As the analytical expression
obtained in the previous section, is an upper bound of the
real loss probability, applying it to dimension an OFDMA cell
will lead to an over dimensioning in terms of sub-channels.
We have computed the number of sub-channelsN0 with the
analytical expression of upper bound of loss probability. We
have computed by simulation the number of sub-channels
required if the upper bound probability is used as the loss
probability to dimension the system.

Results of table III show the over dimensioning is about
20% in terms of sub-channels. At a first sight, this result
can seem disappointing. We should note nevertheless that
the computation of the upper bound and associatedN0 is
immediate whereas the simulation on a fast PC is more tedious
to get a decent confidence interval. The margin provided by
the bounds may be viewed as a protection against errors in
the modeling or in the estimates of the parameters.

VI. CONCLUDING REMARKS

Using the concentration and deviation inequalities and the
difference operator on Poisson space, we have calculated the

α 1.6 1.65 1.7 1.75 1.8
Psup 0.0445 0.0286 0.0180 0.0111 0.0068
N0 obtained with
the analytical up-
per bound

45.2 46.7 48 49.5 50.9

N0 obtained by
simulation for the
same loss prob-
ability value as
Psup

38 39 40.4 41.6 42.8

TABLE III
DIFFERENCE IN TERMS OF SUB-CHANNELS OBTAINED BY SIMULATION

AND ANALYTICALLY

upper bound probability of overloading the system by high
demand of sub-carriers, over path loss and shadow fading. To
do this we have found the first and second moment of the
marked Poisson point process of users. We conclude that it is
possible to find an upper bound for the overloading probability,
even in a relatively complex system, which is analytically
computable in a very simple fashion. The method works for
any functional of the configurations, possibly enriched by
marks, which depends only on the positions of each user.
It does not work for functionals involving relative distance
between two or more users. Actually, for such a functionalF ,
there is no bound onDxF (ω) valid for all x andω.
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