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Abstract—This paper introduces a new paradigm for unsuper-
vised audiovisual document structuring. In this paradigm,a novel
Nonnegative Matrix Factorization (NMF) algorithm is appli ed on
histograms of counts (relating to a bag of features represeation
of the content) to jointly discover latent structuring patterns and
their activations in time. Our NMF variant employs the Kullb ack-

is envisaged. A number of proposals empkypervised ap-
proachesexploiting prior knowledge on the general structure
of the type of documents to be processed and using domain
rules and specific concept or event detectors (typicallyipta

field lines, ball hits and game-related events in sportsosde

Leibler divergence as a cost function and imposes a temporal for example) [5], [6].

smoothness constraint to the activations. It is solved by a

majorization-minimization technique. The approach proposed is
meant to be generic and is particularly well suited to appliations
where the structuring patterns may overlap in time. As such,
it is evaluated on two person-oriented video structuring taks
(one using the visual modality and the second the audio). Thiis
done using a challenging database of political debate videoOur
results outperform reference results obtained by a method sing
Hidden Markov Models. Further, we show the potential that our
general approach has for audio speaker diarization.

Index Terms—Content structuring, Unsupervised classification,
Machine learning, Videos, Indexing, Bag of features, Matm
factorization.

|. INTRODUCTION

In our work we are concerned withinsupervised ap-
proachesthat can be applied generically to a wide range of
audiovisual documents without the need to assemble train-
ing data. In this case, the vast majority of state-of-the art
approaches extract the document structure using a form of
clustering to group content units that were previously seg-
mented by a change point detection technique. In the video
processing domain, these content units are generally shots
to be grouped into scenes [7]. In the audio domain they
are merely abstract homogeneous content segments (higpeful
belonging to different sound classes such as music, silence
speakers, etc.). These segments are generally found by a
variant of the Bayesian Information Criterion techniqug [8

In this case, the structuring events (here speaker/person
occurrences) may overlap in time, hence creating a serious

Automatic audiovisual documersiructuring represents a gigicy ity for classic approaches where each segment of data
key technological component as part of the global effort {Q 4s5umed to pertain to one of several clusters. Consdguent
set up efficient multimedia and video indexing tools. Thougf,ep, multiple events occur in some segments, each possible
there seems to be no consensual definition of this procesgmpination of events should be modeled by a specific cluster

Itis V\_nde_ly accepted th‘fﬂ '_t is one of extracting a te_m_pora_\lhis is a combinatorial approach which may turnout ineffitie
organization of an audiovisual document, by organizing \then the data is scarce

into different sections, ostructural units each conveying a

In this paper we resort to a different approach which

homogeneous (audio/video) type of content (possibly highsjicitly accommodates the composite nature of audio and

lighting content repetitions). The definition of a “strucl

video data. By composite we refer to the possible simultane-

unit” highly depends both on the particular type of contery s qccurrence of multiple events. First, and like previpus

that is processed and the application considered, for whigh, ioned methods, our approach takes the audio or video

a human-generated groundtruth is generally available foryg, (5 given file) as a time sequence of frames. In the video
set of manually annotated documents. Then, the structuri@gse a frame is simply a single image. In the audio case

problem comes down to automatically recreating the docy-some is a fixed-length audio segment (1.5s in this paper

ments temporal-organization groundtruth (obviously iBwi
of automatically structuring new documents that have nenhbe

manually annotated). As sucshot boundary detectiofi] or
scene segmentatipalso referred to asequencég?], story unit

experiments) and adjacent frames typically overlap in time

our approach, each data frame is transformed into a “bag of
words”, where the term “word” here refers to a local attrébut
and frames are characterized by occurrence counts of these

[3] or logical unit[4] segmentation, etc., can be considered §§e| attributes (in a analogy with text retrieval, a franse i
instances of video structuring problems. Other works @®Tsi |i e 5 text document characterized by word counts). The set

more specific structuring tasks and rely on expert techisiqugr |5cal attributes, referred to as “vocabulary” is file-sifie

specifically tailored for the particular structuring schreethat
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and learnt for the entire set of frames as later described.
Similarly to probabilistic Latent Semantic Indexing (pD.Sl
[9], or more generally nonnegative matrix factorizatiorMN)

with the Kullback-Leibler (KL) divergence [10], we propose
to factorize the resulting histogram data as the product of a
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Paris, France.

of the dictionary, akin to “topics”, will reflect the individal



speaker/person signatures and possibly other componegits vents as they are by essence recurrent events. The scheme
as image background or audio residual noise. Because tipreposed here is in fact totally generic without preventing
correlation is an important feature of audio and video datane from constraining the semantics of the structure to be
we introduce a novel KL-NMF algorithm that incorporates axtracted. Indeed, the semantics can be imposed by a proper
smoothness constraint on the activation matrix. Inspigethb choice of vocabulary. For instance, for the two applicagion
work of Ding et al. [11] in the case of NMF with the Euclidearchosen in this paper to instantiate our paradigm, the featur
distance, we also introduce a “convex” variant of the KL-NMRised are relating to audio or visual attributes characteyiz
algorithm, compatible with the smoothness constraint,ctvhi speakers or onscreen persons. We believe any other type
consists in constraining the dictionary elements to bealineof structures could be extracted following the same scheme
combinations of data points. Despite being more computatiamerely by adapting the features and the observation time
ally intensive than standard NMF, the convex variant will beorizons.
shown necessary in the audio case, in which the data exhibiAn overview of our approach to video structuring is de-
less structure. picted in Figure 1. Once the (audio or visual) word-histogra
Generally, the contributions are twofold. First, at theescriptors have been extracted, they are processed by & NM
methodological level, we propose a new generic structuridgorithm (as explained in detail in the next section). The
paradigm whereby, whatever the modality (audio or videdMF algorithm represents the descriptors as the activation
NMF is applied on histogram descriptors relating to a bag of particular basis vectors (to be associated in this agfdin
features representation, to jointly discover latent stmicg with target structural units) at every time instant. By #ire
elements and their activations in time. Second, at the #igor olding the activations, the temporal structure of the doenim
mic level, we describe a majorization-minimization algiom is deduced.
for novel smooth and convex variants of KL-NMF.

Note that NMF has been considered for the related task | audio ssgments, ..
audio or video classification with diverse usages, but galyer AV Histograms | o NwE H Activation
at the feature extraction stage. For example, a notorio | ™mes of words | \ thresholding
application of NMF is local feature extraction from face i
images [12], [13]. In our setting, NMF is instead used & Structure extracted
the classification step, after the bag of words transfonati = —o"
The Closest to our Work iS probably [14] WhICh Consider 1. Bag of words representation 2. Data factorisation and temporal segmentation §

classification of landscape images based on NMF of locafcolo
histograms. Our work considerably develops both the featdrd- -
extraction and factorization parts, and its applicationtte
multimedia segmentation problem is, to our best knowledge,
entirely novel.

The outline of the paper is the following. We start by o
an overview of our approach in Section II, and expose ofir Motivation
new NMF algorithms in Section Ill. We then present two Given histogram dat& with coefficientsvy,, representing
distinct instantiations of our general approach on twoedéht the contribution of “word”f at framen, we seek a factoriza-
applications that experimentally validate its effectiges for tion of the form
any particular structuring scheme, before we suggest some
conclusions.

General approach overview.

I1l. SMOOTH NMF FOR HISTOGRAM SEQUENCES
PROCESSING

V~WH (1)

whereW and H are nonnegative matrices of dimensidns
II. APPROACH OVERVIEW K and K x N, respectively, with coefficients¢, and hy,,.
. . We will denote byw,,, wy andh,, the columns of’, W and
Our recipe can be roughly accomplished as follows: H, respectively.
1) create a low-level (visual/audio) word vocabulary and we seek to retrieve patterns characteristic of each “sdurce
use it to extract histograms of word occurrences frofe g., individual speaker/person) in the columnsVifwhile
the sequence of observation frames at the tempoggb rows of H represent the activation of these patterns along
granularity of interest; the video. Because we assume an additive model in the data
2) apply a variant of Nonnegative Matrix FactorisatioRiomain, we allow two sources to be active in a same frame
(NMF) on the matrix assembled by stacking the wordfhis is in contrast with usual mixture of distributions mésle
histogram descriptors column-wise, using the Kullbackyhich instead assume a model of the fooma hy,,wy, With
Leibler (KL) divergence, adding convexity and temporabrobability o, [15], i.e., @ model in which each data framg
smoothing ingredients, so as to extract latent structurifgthe expression of a unique “event” (either a single speake
events from the document and their activations acrogg a certain combination of speakers, but where each pessibl
its duration. combination has to be modeled by a specific state). Given a
Both this general approach to audiovisual document struectorization of the form (1) we will base our source detati
turing and the NMF variants we propose are completely novetiterion on the amplitudes of the coefficients #f, using
We will show that NMF is able to discover relevant structgrinappropriate thresholding.



B. Specifications additional constraint thafw| = 1, where|| - || is taken in
1) Measure of fit: We seek an approximate factorizathe following as the/,;-norm. WhenS(H*) # 0, this prevents

tion (1) in the Kullback-Leibler (KL) sensd,e., such that from [[W*[| — oo and whenS(H*) = 0 (an unlikely but
Dy (VIWH) is small, where admissible solution) this simply solves the scale indeteacy

that exists betweef/ and H. In the end, we want to solve

Drr(VIWH) =Y " dir (vl Y wikhin) — (2)
fn k %11510(”/7}[) = Drr(VIWH) + BS(H)

and where st W >0, ||lwgl]l=1, H>0 (6)

X
drr(zly) = xlog , T Ety (3)  As it appears, and following [18], [19], the minimizatior) (€

] ) ) ) equivalent to the minimization of the following scale-in\zant
is the generalized KL divergence (sometimes referred to 8Sjective function:

I-divergence). The generalized KL divergence is commonly

used measure of fit for histogram data, and in particulahent . C(W, H) def Dicr(VIWH) + 8 S(AH)

context of NMF, it derives from a natural probabilistic mgde Ww.H ’

see e.g. [10]. More precisely, the generalized KL divergasac st W>0,H>0 (7)
a minus log-likelihood in disguise for the Poisson noise eiod _
such thatv,, ~ P(3, wikhin), @ cOmmon noise model of where A = diag([[wil],..., [lwkl]). Indeed, let(W, H) be
count data [16] ke a pair of nonnegative matrices and lfv® = WAL,

2) SmoothnessBecause we are dealing with time series off W:HAH—) t()jeV’;/r1.e|;{[escalzdwe'(qu|va_lefnts. 'Ir;hen, we have
histograms, a certain amount of correlation is to be explect%(. H) = C(W°, ,)’ an satisties the constraint
between columns of{. As such, we propose to regularizé wi(l = 1 by construction. As such, one may solve (7), free

the factorization (1) by a smoothness-favoring penaltyFan of sc_ale constraint, a_nd then rescale_ its solution t_o obdain
chosen as solution to (6). We will use the notatioh;, = |lwg] in the

KN rest of the paper. The next section describes a majorization
1 minimization (MM) algorithm for the resolution of (7).
S(H) = 3 33 (i — by’ (4) (MM) alg (")
k=1n=2

: R . IV. MAJORIZATION-MINIMIZATION FOR SMOOTH
More elaborate smoothness constraints, derived in a Bayesi KL-NME

setting from hierarchical Gamma chains, and offering a shap ) _ . ) _
tuning parameter, have also been considered in the auelio lit Ve describe a novel iterative algorithm that updaiegiven
ature [17], but we here resort to the more standard smoahnBl current iterate ofi” and thenli” given the current iterate

measure (4) for which we will derive an original algorithm ifPf H- Our algorithm employs no heuristics and is derived
Section IV-A. in a rigorous maximisation-minimisation framework, which

guarantees non-increaseness of the objective functioadit e
. L _ iteration. Sections IV-A and IV-B describe the updatesibf
C. Forming the objective function and W, respectively. A convex-NMF variant will also later be
In this section we present the general objective functiaxposed in Section VI.
to be minimized ovel¥ and H and show the necessity of
mininization subject to fixed-norm constraints on the catsm A
of W to prevent from degenerate solutions. Assembling the
previous specifications, described in Section IlI-B, we lafe
with the following minimization problem:

wmin C(W, H) © Dy, (VIWH) + 55(H) g CUI) = Dt (VIWH) = 3 Dice(vn|Whn)

Update ofH given W

1) Unpenalized case3(= 0): In the unpenalized case and
given W we are left with

st W>0,H>0 (5) st H>0. (8)
where is a fixed nonnegative scalar, weighting the penaltpecause the objective function separates into independent
and A > 0 expresses nonnegativity of the coefficients dgontributions ofi,,, n =1,..., N, we are essentially left with

matrix A. As it turns out, a solutio(W*, H*) to (5) may the problem of minimizing o’(h,,) = D r.(v,|Wh,). This
only satisfy ||WW*|| — oo or S(H*) = 0 (i.e,, h, is constant is a standard nonnegative linear regression problem whash m
w.r.t n). To see this, let us assume that there exists a solutié handled in a majorization-minimization (MM) framework
to (5) such that|IW*| < oo and S(H*) # 0. Let A be a [20], based on the iterative minimization of an (easier to
diagonal matrix of “scale” factors,, with 0 < \, < 1, and Mminimize) auxiliary majorizing function. Th&/* x R — R
let W* = W*A~!, H* = AH*. It follows C(W*, H*) = mappingG (hlh) is said to be arauxiliary functionto C'(h)
D (VIW*H*)+ 3>, \2S(h};), whereh, denotes:’" row if and only if 1) Vh € RE, C(h) = G(h|h), and 2)¥V(h, ) €
of H. Thus, we obtainC(W*,H®*) < C(W*,H*), i.e, a RY x R, C(h) < G(hln). The optimization of C(h)
contradiction. As such it appears necessary to controldnen can be replaced by iterative optimization Gfi|h). Indeed,
of W, and we propose to subject the minimization (5) to theny iterater(+1) satisfying G(h0+D|A(M) < G(h®|h®)



produces a monotone algorithme(, an algorithm which where ¢, = Wy Y-, [Vfn /Tpnlhin @andoy = >, hin, and
decreases the objective function at every iteration) asave h one obtains the multiplicative updates, = ¢ /o%.
C(htD) < GREADIAD) < G(WWD|RD) = C(hD). As  2) Penalized case3(> 0): In the penalized case3 (> 0),
described in [21], [22], [23], an auxiliary functio@(h,|h,) we have to solve
to C'(h,) can be constructed using Jensen'’s inequality thanks 3
to convexity ofC'(h,,), leading to min C(W) = Dicr.(VIWH) + 5 > seAd

k

G(hn|hn) = % —Ukn log hgp + Aphin + cst (9) st W>0 (16)
wherev, = hin S WikVpn /T pn, With By = 3, W ke wheres;, = 25(h;,) and where we recall that, = >_ . wyy,

and cst denotes constant terms w.kf. The minimization of is a f_unctionlofW. As bgfo_re, aq aqxiliary function to the
G(hp|hn) W.r.t h, leads to the standard multiplicative updat@enallzecj objective functiot’(W) is given by

Pkn = Yrn/ Ak 7 i, B
2) Pﬁna{ized casef(> 0): In the penalized problem, the Gs(WIW) = GWIW) + 9 ZSM% 17)
contribution of h,, to C(H) = Dgp(VIWH) + BS(AH), b
1 <n < N, can be written as and the minimization o s (W|W) is easily shown to amount
to solving an order 2 polynomial with a single positive root,

C(hn) = DKL(Un|Whn) + ﬁL(hnn hn—la hn+l)a (10) given by

where
/0% + dapkdpr — by
L(hn; ho1, 1) ! (18)

Wrk = 2a ’
1 2 2 2 Ik
=3 E A [(Rin1y = hien)? 4 (R — hign—1))?]  (12)
o

= N [P = (i) + hign—1))han)] + st
k

whereayy = By, bpx = ok + Bk Y,z Wk

V. APPLICATION 1: VIDEO STRUCTURING BASED ON

. . . PERSONS APPEARING ONSCREEN
wherecst is a constant ofi,,. Using the preceding results, an

auxiliary function to the penalized objective functiéi(h,) For a variety of TV shows, a structuring scheme centered
is readily obtained as on show-participants’ occurrences is particularly meghih

N N and useful [6]. Thus, as a first instantiation of our generic
Gg(hn|hn) = G(hnlhy) + B L(hn; hp—1,hnt1).  (12)  video-structuring scheme previously presented, we censid
The minimization OfGB(hn|iLn) for 1 < n < N is easily the task of automatically categorizing each frame of talk-

shown to amount to solving an order 2 polynomial with §hOW videos into'multiple participants”, *full group” and
single positive root, given by “personal shot”, differentiating for the latter category the

occurrences of each participant (hence the number of target
By = Vb3, + 40 Vn — bin (13) categories is the number of persons appearing in a video plus
" 2akn

two). This is further explained in the following.

)

whereay, = 28X;, bx = Ai(1 — Bk (hin—1) + Prntn))s
1 < n < N. At the border of the chainp = {1, N}, the A. Structuring-task statement and video corpus

pena_llty (11) reguces to only one of its two terms ar;d WE \we exploit theCanal9 political debateglatabase for our
obtainag = SAL, by = Ak(1 = BAkhiz), andagy = BAL, application [24]. This is a challenging TV show database
brn = )‘k(_l - ﬂ,)‘khE(N—l)); ) L . meant to serve for research on automatic analysis of social
In practice, givert” = W H (with coefficientsi;, on which - jyieractions. It covers 4 years of broadcast. Each broadcas
1y depends) computed from current iterdie the columns  feaiyres a moderator and 2 to 4 guests debating a political

h, of H are updated iteratively with replacement for= 4 ,estion. There are different guests from show to show and

L,..., N using (13).V is then updated with the new valu€ysi the moderator and the set may vary, though most of them
H = H, and the algorithm proceeds to next iteration. have been shot in the same studio set.
The database comes with different types of manual annota-
B. Update ofi¥ given H tions. The visual annotations define an interesting stringju
1) Unpenalized case3(= 0): In the unpenalized case andscheme based on a particular taxonomy of the shots relating
given H, we are left with to camera viewpoints, which is illustrated in Figure 2. Bver

shot has been classified into one of three categories, namely
“full group” , “multiple participants” and “personal shot”.

which is essentially the same problem as (8). As suchAglditionally, manual identification of the participant a@ping

suitable auxiliary function foC'(W) is onscreen is given on “personal shots”. _ _
The database is quite challenging as most camera viewpoints

GWIW) =" —dyrlogws + oxwpy + st (15) are not stable in time, even across shots depicting the same
Tk set of participants (as can be seen in Figure 2), which is

min C(W) = Dir(VIWH) st W =>0. (14)



extract histograms of word occurrences, which will be nefer
to asdescriptors

During the dictionary construction phase, the PHOW fea-
tures are extracted only from onscreen persons’ faces and
clothing regions as depicted in the left corner of Figure 3.
These regions are spotted as follows. First a Viola & Jones
face detector [29] is applied on the video frames. Then the
clothing region is detected by creating a rectangular bownd
box below the face bounding box, similarly to [26]. Its width
Fig. 2. Canal9 annotated shot-types. First shot (upper-left inage and height are respectively chosen to be twice and 2.5 times
labeled"full group” , next shots“muiltiple participants”, and last 2 6 \yidth and height of the latter. These parameters have bee
shots aré'personal shots”labeled with the identity of the onscreen L . .
person. ph_osen to I|_m|t the snugtmns whgre a part of the background

is included in the clothing bounding bdx.
It is worth mentioning that though color histograms seem
to be natural descriptors of the clothing regions [26], [3G§
also accompanied with significant changes in illuminatiime  found them to be less reliable for our task than the desaegpto
“full group” shots are an exception to this, though, as theye propose. In fact, we performed extensive preliminary
repeat invariably over the show duration. testing with a number of color histogram variants (testing

Our goal is to automatically replicate the Canal9 databag#ferent color spaces and quantization steps) and fouenhth
visual groundtruth structure in a non-supervised fastience to be systematically lacking robustness to the significant
without trying to assign the given shot labels, or to namgumination changes accompanying camera viewpoint chang
the participants on the personal shots. Rather we aim jatthe talk show videos used for our evaluation.
jointly clustering the shots of the same category and thePHOW features are extracted on a 8-pixel step grid at 3
“personal shots” of the same participants. This indeed dsfirscales using bin sizes of 8, 16 and 32-bins [28]. The set of
a semantically meaningful person-oriented structuringesme  all PHOW features extracted from regions of interest over al
since the different shot changes and viewpoints implicitframes of the current video where a face has been detected, ar
translate a high-level human structuring process, thahés tthen quantized on 128 bins using the K-means algorithm. All
one proposed by the TV show director who generally selegiarameters have been tuned once and for all on a development
for the viewer the viewpoints that are the most informativgideo that will not be included in the evaluation, to test for
about the participants’ interventions and reactions. the generalization ability of our system.

To this end we instantiate our NMF-based structuring The visual vocabulary thus obtained (specifically for the
scheme as shown in Figure 3. As previously explained, thisrrent video) is used to extract histograms of word cdunts
structuring scheme is completely generic and only the vocdbom every frame of the video. Face detection is no longer
ulary creation module needs to be adapted to the particulesed at this stage, that is PHOW features are extracted over
structuring task considered, as explained hereafter. the whole frames, which are thus globally described by the

histograms of visual words, allowing us to cope with the face
, detector misses, especially on wide shots.
B. Visual vocabulary creation Therefore, we are relying on the NMF algorithm to de-

The visual vocabulary is created in such a way to be efficiee@mpose global frame-based histograms of words, possibly
for onscreen-person spotting. The latter has been corsidier representing the joint occurrence of two or more persorts, in
a number of studies [25], [26]. The classic approach camsigiementary histograms, each representing a single pexsie.
in detecting faces and using a clustering method on lowtlevBat, the process is clearly facilitated by the fact thaterare
features, the whole process being possibly guided by a shetmerous close-up shots in a TV program video, showing only
change detector and a face tracking module. Features ugeg@ person at a time.
in this context were extracted from the face and possibly As previously explained, only the descriptors need to be
the clothing regions, including color, texture and SIFdeli adapted to each particular task, the rest of the temporal
features. segmentation scheme remaining generic.

In our work we use a bag of visual words representation . .
based on PHOW features, where PHOW referdPysamid C. Experimental evaluation
Histograms Of visual WordsNote that the termword in In order to assess the robustness of our system, we use in
the acronym PHOW is kept here only to be consistent wi@Hr evaluation 10-minute video excerpts from each of the 41
the original references [27], [28] where it refers to bins dirst shows? hence exploiting around 7 hours of video content,
Histograms of O“e_matlon Gradients (HOG), and S_hOUId I’]0'[1We will see in Section V-C that this constraint does not needbe too
to be confused with our usage eoisual word relating to rigid, as it is useful for our task to have some visual wordsresenting the
the vocabulary obtained by quantization of the whole set bﬁgkground _
PHOW features. To avoid confusions, we will usatureto The counts correspond _to the occurrences of the vocabulamyeets in

. . the current frame, as classically done in any bag-of-wopsaach.
refer to the low-level attributesi.¢. PHOW features). The 3Excluding the pilot show labeled 05-09-21, for which the wgrdtruth
featuresare quantized to create the vocabulary that is usedanotation is missing.




VISUAL VOCABULARY CREATION DESCRIPTOR EXTRACTION NMF DECOMPOSITION
PHOW feature K-means Histograms of NMF Activation
extraction quantization v. words extract. thresholding

A A ¢
Face detection H Face/clothing Visual Video 3
vocab. structured

Bounding boxes
Fig. 3. Visual vocabulary creation for the first instantiation ofr @eneric structuring scheme. Left panel: PHOW featureaetibn on a
visual frame during vocabulary creation phase (cf. Secvids).

Video i
frames

Video
frames

involving 189 distinct persons and totaling 28521 videotsho between groundtruth segment labels (here shot types and
All system parameters tuning has been done once and forgrson identities on “personal shots”) and the labels found
on a single development video excerpt (labeled 06-11-22an tautomatically for each segment of the video, such that the
database) leaving 40 videos for the evaluation. This pnaeedtotal time that is shared between the groundtruth labels and
is meant to show that our system is able to generalize pppette corresponding system outputs is maximized over theavhol
despite the limited tuning effort. show duration. This is done with the constraint that each
1) Reference system and evaluation procedUi@the best reference label be mapped to at most one system output label.
of our knowledge, there has not been any previous worRs suggested by the NIST procedure, 0.25-s time collars are
addressing the specific structuring task we are handling used on the segment-boundaries to forgive potential emors
this Section, hence there is no existing system to which e groundtruth.
could compare ours. Therefore, in order to assess the perforThe evaluation metric is thus the overall shot-type based
mance of our proposal, we have implemented a competitigggmentation error. Note that we are evaluating our high-
reference system that uses ergodic HMMs [31] to model the/el person-oriented structuring task, rather than asaeen
same sequence of visual-word histograms exploited by qsérson spotting task. We unfortunately cannot accuratedis e
NMF system. We keep the features fixed for both systemate the latter since the groundtruth does not indicate who
to make a fair comparison between the components that gie onscreen-persons are on the “full group” and “multiple
responsible for the extraction of the temporal structurd aparticipant” shots. It is worth mentioning, though, thatoir
better demonstrate the effectiveness of the NMF componesibservations the NMF-based systems seem to behave well
which is the key contribution of this paper. Note that HMMswven for this low-level task.

have been successfully used in a number of previous relate% Analysis of the NMF outputNMF is computed using
works, though for different applicat_ion.s, see for iqstaf&ﬁﬁ. K = N,, + 1 components. This choice has been made to

The HMMs we use employ multivariate Gaussian emissiqgy e NMF algorithm extract one histogram component for
p_robab|I|t|es vv_|th full covariance matrices. The number of, ., person, plus one for the histogram-descriptor observa
hidden states is set W, + 2, where N, is the number of ,hs which are dominated by visual words describing the
cgrrent-show participants. Each state |s_expected to septa background. “Full group” frames are an example of such
different structure category, hend&,, +2 is exactly the num- ,,seryations that are systematically captured by one NMF
ber of target categories: one for the “full group” shots, @ ., nonent as can be seen in Figure 4. Clearly, this type
Ehe multiple par’:uupants shots, qnd one_for each pgleit's o ghots are easily represented by our method due to their
personal shots”. HMMs are trained using the Baum-Welggp|y stable and recurrent nature. From this Figure, it can
learning algorithm. The initialisation of the model pardete 556 ‘he noted that there are lower amplitude activations on
is done in a "standard” manner, using uniform initial angis same component, that relate to “multiple participat
transition probabilities, and empirical means and cova®8 ,..\rrences. These amplitudes are lower since fewer etsmen
for the emission probabilities after K-means cIu_s_ter|ng][3 of the studio background appear on the corresponding tighte

Note that we suppose the number of participants 0 Rfsts (and actually even fewer on “personal shots” causing
known, both for the reference system and our NMF-basgth cyrrent component not to be activated for the latter).
system, which is often acceptable as it can be deducdgdact occurrences of background-related visual words ar
from textual metadata attached to the TV content (typicallitially highly present on all observations, which is why a
integrated subtitles and/or teletext, see for instanc§)[2B  pisiogram vectors are normalized (prior to NMF computdtion
given by an operatpr in human-asssted systems. Altem_y,tlv by dividing each row of matri%’ by the row maximum value,
model order selection techniques could be employed whish hg, ihat each descriptor coefficient have full dynamics aed th
proven successful especially in the NMF case [33]. ¢t s not dominated by histogram bins with large amplisude

~ Scoring is performed following NIST speaker diariza- (thys typically bins relating to background visual word3je
tion evaluation proce.du?e-[34]- which is well adapted t0 yight wonder how come such visual words are present in
our problem. It consists in finding a one-to-one mappinge yocabulary while it was learned from features extracted
sNational Institute of Standards and Technology,in persons’ face and clothing bounding boxes. Recall, thoug
http://Awww.nist.gov/index.html that we intentionally did not try to be too rigid on the lo@ati

5We actually use the NIST scoring scripts. of these bounding boxes, hence allowing us to capture some



c o
oo
M
o
b 4
-
y

-
"
-
b
Lt

IIIEIIE

i
b
iy

rIIIEII

2500

Fig. 4. KL-NMF activationsi.e. H coefficients on a short excerpt of the development video With 0. Each subplot represents the temporal
sequence of activations for one, component,l < k < K = N, + 1. For each component, the image on the right correspondseto th
frame where the activation value is maximum, which is supga® be a good representative of the content modeled by tinesponding

wr component. Red vertical lines are groundtruth shot bouesland the other images inside the plot or around it are kayds of the
time-corresponding shots. Green dotted horizontal limesdecision thresholds. It can be seen that NMF has succeéadexdracting the
relevant components and related activations. Note thamidecomponent is not activated here as the correspondirspmpeioes not appear
in any personal shot of this part of the video.

elements of the background as can be seen in Figure 3. Adgliots and the other to the “multiple participant” shots.slt i

tionally, background elements are unintentionally cagduon important to note that none of our systems exploit a shot
every “false-alarm face detection”, which here is usefubto change detection module. Instead shot boundary detection
system, the key idea being that we mostly want visual wordemes as natural byproduct of our higher-level structuring
representing the onscreen persons, but also a few to descphlocess. In fact, both the reference HMM system and our
the background. NMF-based system prove very successful at detecting shot

The desired video structure is obtained by thresholdincé]ahges' ) )
Figure 5 illustrates the effect of the smoothing on thg

the activations (see Figure 4). The thresholds are chosen, > )
heuristically (by trial and error, once and for all on theeduences. The activations become more stable and easier to

development video) to be 0.6 times the maximum activatigpreshold, hence potentlally creating a positive |mpac_thm
value for each component. This yield§, + 1 clusters (one system performance (as will be seen in the next sections).
cluster per NMF component) covering thé,, speakers and 3) Evaluation results discussiorhe overall structuring er-
the “full group” frames as can be deduced from Figure 4. pors of our NMF-based systems are 16.6%, 14.6% and 26.2%,
frame belongs to a cluster if its corresponding activatisn fespectively for3 = 0,0.1 and 1. The overall performance
above the decision threshold. A last cluster is created alith of the HMM reference system is 23.8%. The statistics of
unassigned segments which are associated to situatioms wiieese scores across all database videos are summed-up in the
all corresponding activations are below the chosen thidshdooxplots of Figure 6.

This is always a winning strategy (as will be confirmed by NMF-based systems are clearly superior to the reference
the results on the whole database), thanks to the behawtMM system withs € {0,0.1}. The error can be as low as
of the “background-related” component (top first componedt6% with NMF(0.1) (best scored-video), against 6.4% with
in Figure 4), where as previously explained two levels dfiMMs, and never exceeds 33.4% for the former while it may
activations are observed: one corresponding to the “fullgf  be as high as 58.3% for the latter.
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10° A. Audio descriptor extraction for speaker diarization

For audio analysis the temporal evolution of the local signa
characteristics is of great importance. This has led rebeas
in the field to largely rely on dynamic modeling approaches,
hence the success of HMMs for audio classification tasks in
e L general, and in particular for speaker diarization taskereh
ieratons data frames it is used with Gaussian Mixture Model (GMM) emission
" (€) Actvatons - p= 01 " () Actvatons =1 probabilities (see for example [36]). In fact, agglomemti
» clustering techniques exploiting GMM-HMM structures and
10 20 Binary Information Criteria over cepstral features haverbe
15 extensively used as it has proven successful in solving this
° 10 problem (for instance within NIST international evaluatio
N campaigns).
S e 00 a0 00 1000 S 00 Do 800 1000 HMMs are traditionally used as a decision model in the
sense that a one-to-one mapping is determined between the
Fig. 5. Smooth KL-NMF results on video 06-10-04 (visual stream)speakers and the hidden states, and the diarization result i
Fr= 128 N = 15001 and K = 6. (a) Cost functions for i v deduced by Viterbi decoding of the observed seqeen
B = 0 (solid line), 5 = 0.1 (dashed),s = 1 (dotted). (b-d) First .
1000 coefficients o, obtained with the three values af. One ©Of low-level features (generally MFCC features) being mod-
thousand iterations of the unpenalised and penalizeditiigts take €led by the GMM-HMM. In this work, we follow a different
respectively 349 and 362 seconds with a MATLAB implemeptati approach, inspired by [37], where we use HMMs only to
on a 2.8 GHz Quad-Core Mac with 8 GB RAM. build the audio descriptors and leave the speaker modeling
and decision taking tasks to the NMF algorithm.
Figure VI sums up the whole descriptor extraction proce-
dure. The audio signal is analyzed in short overlapping 20-
ms length windows, with a 10-ms hop size, over which 12
s Mel Frequency Cepstral Coefficients are extracted (exotudi
the energy coefficient). A)-state HMM is trained in a non-
P supervised fashion on the sequence of MFCCs, @itmuch
= m— greater than the expected number of speakérs=( 80 in
[ Enl the experiment presented hereafter), using Gaussian- state
- - -~ - conditional densities with full covariance matrices. Thelia
' word vocabulary merely consists of the HMM states found by
) ) _ the Baum-Welch learning algorithm.
Fig. 6. Overall visual structuring error in % and box plots of the 1o most likely sequence of states is then inferred by
per-show visual structuring errors in %. Whiskers extentheomost | .. . . L
extreme scores within 1.5 times the inner-quartile range. Viterbi decoding yielding a state-label for each low-level
frame. Subsequently, state occurrences are counted dwver 1.
s length integration windows using a 40-ms hop size, hence
Further, there is a significant improvement with the smoofRming the audio descriptors (extracted at a rate of 25 Hz).
NMF version (3 = 0.1) compared to the non-smooth “stan-
dard” version ﬁ = 0), with -2% in absolute error. This is B. NMF decomposition for Speaker diarization
no longer true if too much smoothing is imposed, as asserte
by the poor results obtained with = 1, where a too strong
smoothing penalty may have negtively affected the exwacti
of the relevant basis vectors.

-

qu have shown in the visual stream segmentation example
that very competitive results can be obtained with a “stadita
KL-NMF approach with no specific assumed structureifior
(and with the possible additional smoothness penalt§fpnin
other examples relying on less structured data, such a® audi
segmentation, we observed that the standard NMF approach
We propose a second instantiation of our generic strugurimay fail at extracting single speakers individual pattesing
scheme on aspeaker diarizationproblem using the samemay instead extract elementary “parts” of speakers, plyssib
dataset that was used in the first application, now focusing shared among several speakers. This is a known property of
the audio modality (and not considering the image modalityll\MF [12], which can be desirable in some settings, such
We here merely aim to make a proof of concept (on a singhs coding, but not in ours. As such, it can be beneficial
show). Our goal is to emphasize that our approach can be trtdy assume a particular structure &#i that penalizes the
applied to various tasks, and to show its potential for caxpllatter effect. In our setting, though multiple speakersuocc
problems such as speaker diarization. For this problem,irit many frames, each speaker is also expected to appear
exhibits its capacity to cope withverlapped speeckegments, alone in a large proportion of data (corresponding to single
which is an issue that remains critical for researchers im ttspeaker segments in the audio track). Hence, the individual
field [35]. speaker patterns may be retrieved from the data itself and

VI. APPLICATION 2: SPEAKER DIARIZATION
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Fig. 7. Audio vocabulary creation for the second instantiation af generic structuring scheme. Left panel: extraction efgtate histogram
descriptor on an audio signal (cf. Section VI-A).
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we may assume the dictionary matri¥’ to be a linear & w i
combination of data pointd,e, W = VL, whereL is a ki ‘ W}r
nonnegativeN x K “labeling” matrix. This corresponds to = Ll 1 Ly I
a “convex”-NMF setting, as proposed by Ding et al. [11], i e

where the authors show that the matrix columnd.atend to % | W

become sparsée., the columns oV are built from a linear % Jub b G wlls MMM% [ b
combination of a few data points, acting as “centroids”.@in i A o AR
et al. [11] consider convex-NMF with the Euclidean distance, j i W

but we obtained similar findings with the KL divergence. It % ol LAl [ Mm“ LMl .

is possible to combine the results of [23], which reports MM 1%

updates for convex-NMF with the KL divergence, with the % N
results of Section IV-B to produce a MM algorithm for smooth 2 IR I il | 0
& convex KL-NMF. GivenW = V' L, the update ofd given i ] r
: i ™ f
by Eq. (13) is unchanged. 0 &
A suitable MM update forl, with coefficients,,;, can be shi ol i o g AL wl I
obtained as
/b2 w +4amkdme — bmk Fig. 8. Convex NMF output on the audio descriptors. Red vertical
I = —2 S (19) lines are groundtruth speaker segments (where a new segment
m

created every time there is a change in the set of active spgak
_ 7 X ~ _ 2 hence some segments correspond to overlapped speecled Dogen
\b’Vheri¢mk bk 2 g vgml[vf"(s/vf"]h’d“%' a“_““ ﬁskaﬂi lines represent decision thresholds (here 0.4 times theinmuax
mk = (k& B3k D Onlnk)0m, @N Om = Zf Urm- It activation value for each component), while continuousegrénes
has to be noted that the update Wf (i.e, L) in convex are constants representing all activation-coefficien tre above
NMF is of complexity O(N2K) (per iteration) while of the threshold. The dotted-line rectangle highlights aaegivhere

complexity O(FNK) in standard NMF. Given that in our overlapped speech occurs and the NMF components of the two
setting N >> F, convex NMF induces an important increas&°"esponding speakers are activated simultaneously.
of the computational burden.

decompose a same speaker on two different components and
C. Experimental proof of concept to represent others with the same component.

We validate our NMF-based approach by comparing it to a
state-of-the-art speaker diarization system, namelyLtki VII. CONCLUSIONS
SPKDIARIZATIONsystem [38]. The NIST speaker diarization In this work we have proposed a new generic structuring
error achieved by our proposal is 7.38% while the LIUMparadigm whereby, whatever the modality (audio or video),
system error is 14.16%. Thus, our diarization scheme appeBiMF is applied on histogram descriptors relating to a bag
to be quite promising as it performs much better than a statsf-features representation, to jointly discover latenteyas,
of-the-art system on the development video. representative of elementary events, and their activation

Figure 8 depicts the activations found by our convex NMffme. Second, at the algorithmic level, we have proposed a
algorithm, with/s = 0.5, applied to the audio-word histogramsmajorization-minimization algorithm for novel smooth and
of our development video. One of the interesting features ofnvex variants of KL-NMF. Our approach was shown to
our approach is its ability to cope with overlapped speedive results clearly superior to a reference HMM system
segments as can be observed around tiree 9000 frames, on a person-oriented video structuring application with an
where this situation occurs. Two components are then activmpenalized standard NMF. Smoothing with a suitable value
that correspond to the two persons who are effectively spealf the penalty weighting parametérwas shown to improve
ing simultaneously at that instant. results even more. We have also illustrated the relevance of

It is important to note that it was necessary to use both ther general approach on a speaker diarization problem, on
smoothing and convexity ingredients to get these results. Taudio data, as a second instantiation of our general approac
non-convex NMF version did not behave well as it tended to structuring. In that case we found our convex (and smooth)



variant of KL-NMF to be necessary to obtain satisfactorys]
results, at the expense of an increased computational fourde

A first perspective of this work would be a more thorough
evaluation of our approach on the audio speaker diarizatigg]
task. Secondly, there is interesting potential in comlgjrtime
two previous applications (treated separately in this pape
into a single multi-modal system. Indeed, these visual afub)
audio structures produce relevant entry points to the show
content, enabling various navigation modes. For instathee,
following: “browse over all interventions of participant Jackji1]
with Jack speaking and onscréemvhich is typically the type
of video segments that would be used to build a summary
Jack’s interventions. There is even more potential fortjoin
audio-visual approaches, since there is obviously a strofgl
correlation between the audio and visual NMF activatiorf-coe
ficients (used to deduce a video structure). These cowakati [14)
can be easily exploited to stabilize the audio activations o
segments where a person is jointly speaking and appearf'%q
onscreen.

On the methodological side, perspectives concern the gis]
tomatic evaluation of the “hyperparametersg., 5 and the
number of componentd. These are common issues ofﬂ
factorizations models, that may be handled through cross-
validation or user feedback, or through Bayesian integnati
[39]. An other perspective is the design of online matriﬁs]
factorization techniques [40] to alleviate the computagio

burden incurred in the large scale multimedia setting. (19]
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