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Abstract—This paper introduces a new paradigm for unsuper-
vised audiovisual document structuring. In this paradigm,a novel
Nonnegative Matrix Factorization (NMF) algorithm is appli ed on
histograms of counts (relating to a bag of features representation
of the content) to jointly discover latent structuring patterns and
their activations in time. Our NMF variant employs the Kullb ack-
Leibler divergence as a cost function and imposes a temporal
smoothness constraint to the activations. It is solved by a
majorization-minimization technique. The approach proposed is
meant to be generic and is particularly well suited to applications
where the structuring patterns may overlap in time. As such,
it is evaluated on two person-oriented video structuring tasks
(one using the visual modality and the second the audio). This is
done using a challenging database of political debate videos. Our
results outperform reference results obtained by a method using
Hidden Markov Models. Further, we show the potential that our
general approach has for audio speaker diarization.

Index Terms—Content structuring, Unsupervised classification,
Machine learning, Videos, Indexing, Bag of features, Matrix
factorization.

I. I NTRODUCTION

Automatic audiovisual documentstructuring represents a
key technological component as part of the global effort to
set up efficient multimedia and video indexing tools. Though
there seems to be no consensual definition of this process,
it is widely accepted that it is one of extracting a temporal
organization of an audiovisual document, by organizing it
into different sections, orstructural units, each conveying a
homogeneous (audio/video) type of content (possibly high-
lighting content repetitions). The definition of a “structural
unit” highly depends both on the particular type of content
that is processed and the application considered, for which
a human-generated groundtruth is generally available for a
set of manually annotated documents. Then, the structuring
problem comes down to automatically recreating the docu-
ments temporal-organization groundtruth (obviously in view
of automatically structuring new documents that have not been
manually annotated). As such,shot boundary detection[1] or
scene segmentation, also referred to assequence[2], story unit
[3] or logical unit [4] segmentation, etc., can be considered as
instances of video structuring problems. Other works consider
more specific structuring tasks and rely on expert techniques
specifically tailored for the particular structuring scheme that
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is envisaged. A number of proposals employsupervised ap-
proachesexploiting prior knowledge on the general structure
of the type of documents to be processed and using domain
rules and specific concept or event detectors (typically playing
field lines, ball hits and game-related events in sports videos
for example) [5], [6].

In our work we are concerned withunsupervised ap-
proachesthat can be applied generically to a wide range of
audiovisual documents without the need to assemble train-
ing data. In this case, the vast majority of state-of-the art
approaches extract the document structure using a form of
clustering to group content units that were previously seg-
mented by a change point detection technique. In the video
processing domain, these content units are generally shots
to be grouped into scenes [7]. In the audio domain they
are merely abstract homogeneous content segments (hopefully
belonging to different sound classes such as music, silence,
speakers, etc.). These segments are generally found by a
variant of the Bayesian Information Criterion technique [8].

In this case, the structuring events (here speaker/person
occurrences) may overlap in time, hence creating a serious
difficulty for classic approaches where each segment of data
is assumed to pertain to one of several clusters. Consequently,
when multiple events occur in some segments, each possible
combination of events should be modeled by a specific cluster.
This is a combinatorial approach which may turnout inefficient
when the data is scarce.

In this paper we resort to a different approach which
explicitly accommodates the composite nature of audio and
video data. By composite we refer to the possible simultane-
ous occurrence of multiple events. First, and like previously
mentioned methods, our approach takes the audio or video
data (a given file) as a time sequence of frames. In the video
case, a frame is simply a single image. In the audio case,
a frame is a fixed-length audio segment (1.5s in this paper
experiments) and adjacent frames typically overlap in time. In
our approach, each data frame is transformed into a “bag of
words”, where the term “word” here refers to a local attribute
and frames are characterized by occurrence counts of these
local attributes (in a analogy with text retrieval, a frame is
like a text document characterized by word counts). The set
of local attributes, referred to as “vocabulary” is file-specific
and learnt for the entire set of frames as later described.
Similarly to probabilistic Latent Semantic Indexing (pLSI)
[9], or more generally nonnegative matrix factorization (NMF)
with the Kullback-Leibler (KL) divergence [10], we propose
to factorize the resulting histogram data as the product of a
“dictionary” matrix times an “activation” matrix. The columns
of the dictionary, akin to “topics”, will reflect the individual
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speaker/person signatures and possibly other components such
as image background or audio residual noise. Because time
correlation is an important feature of audio and video data,
we introduce a novel KL-NMF algorithm that incorporates a
smoothness constraint on the activation matrix. Inspired by the
work of Ding et al. [11] in the case of NMF with the Euclidean
distance, we also introduce a “convex” variant of the KL-NMF
algorithm, compatible with the smoothness constraint, which
consists in constraining the dictionary elements to be linear
combinations of data points. Despite being more computation-
ally intensive than standard NMF, the convex variant will be
shown necessary in the audio case, in which the data exhibit
less structure.

Generally, the contributions are twofold. First, at the
methodological level, we propose a new generic structuring
paradigm whereby, whatever the modality (audio or video),
NMF is applied on histogram descriptors relating to a bag of
features representation, to jointly discover latent structuring
elements and their activations in time. Second, at the algorith-
mic level, we describe a majorization-minimization algorithm
for novel smooth and convex variants of KL-NMF.

Note that NMF has been considered for the related task of
audio or video classification with diverse usages, but generally
at the feature extraction stage. For example, a notorious
application of NMF is local feature extraction from face
images [12], [13]. In our setting, NMF is instead used at
the classification step, after the bag of words transformation.
The closest to our work is probably [14] which considers
classification of landscape images based on NMF of local color
histograms. Our work considerably develops both the feature
extraction and factorization parts, and its application tothe
multimedia segmentation problem is, to our best knowledge,
entirely novel.

The outline of the paper is the following. We start by
an overview of our approach in Section II, and expose our
new NMF algorithms in Section III. We then present two
distinct instantiations of our general approach on two different
applications that experimentally validate its effectiveness for
any particular structuring scheme, before we suggest some
conclusions.

II. A PPROACH OVERVIEW

Our recipe can be roughly accomplished as follows:

1) create a low-level (visual/audio) word vocabulary and
use it to extract histograms of word occurrences from
the sequence of observation frames at the temporal
granularity of interest;

2) apply a variant of Nonnegative Matrix Factorisation
(NMF) on the matrix assembled by stacking the word-
histogram descriptors column-wise, using the Kullback-
Leibler (KL) divergence, adding convexity and temporal
smoothing ingredients, so as to extract latent structuring
events from the document and their activations across
its duration.

Both this general approach to audiovisual document struc-
turing and the NMF variants we propose are completely novel.
We will show that NMF is able to discover relevant structuring

events as they are by essence recurrent events. The scheme
proposed here is in fact totally generic without preventing
one from constraining the semantics of the structure to be
extracted. Indeed, the semantics can be imposed by a proper
choice of vocabulary. For instance, for the two applications
chosen in this paper to instantiate our paradigm, the features
used are relating to audio or visual attributes characterizing
speakers or onscreen persons. We believe any other type
of structures could be extracted following the same scheme
merely by adapting the features and the observation time
horizons.

An overview of our approach to video structuring is de-
picted in Figure 1. Once the (audio or visual) word-histogram
descriptors have been extracted, they are processed by an NMF
algorithm (as explained in detail in the next section). The
NMF algorithm represents the descriptors as the activations
of particular basis vectors (to be associated in this application
with target structural units) at every time instant. By thresh-
olding the activations, the temporal structure of the document
is deduced.

Fig. 1. General approach overview.

III. SMOOTH NMF FOR HISTOGRAM SEQUENCES

PROCESSING

A. Motivation

Given histogram dataV with coefficientsvfn representing
the contribution of “word”f at framen, we seek a factoriza-
tion of the form

V ≈WH (1)

whereW andH are nonnegative matrices of dimensionsF ×
K andK × N , respectively, with coefficientswfk andℎkn.
We will denote byvn, wk andℎn the columns ofV , W and
H , respectively.

We seek to retrieve patterns characteristic of each “source”
(e.g., individual speaker/person) in the columns ofW while
the rows ofH represent the activation of these patterns along
the video. Because we assume an additive model in the data
domain, we allow two sources to be active in a same framen.
This is in contrast with usual mixture of distributions models
which instead assume a model of the formvn ≈ ℎknwk with
probability�k [15], i.e., a model in which each data framevn
is the expression of a unique “event” (either a single speaker,
or a certain combination of speakers, but where each possible
combination has to be modeled by a specific state). Given a
factorization of the form (1) we will base our source detection
criterion on the amplitudes of the coefficients ofH , using
appropriate thresholding.
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B. Specifications

1) Measure of fit: We seek an approximate factoriza-
tion (1) in the Kullback-Leibler (KL) sense,i.e., such that
DKL(V ∣WH) is small, where

DKL(V ∣WH) =
∑

fn

dKL(vfn∣
∑

k

wfkℎkn) (2)

and where

dKL(x∣y) = x log
x

y
− x+ y (3)

is the generalized KL divergence (sometimes referred to as
I-divergence). The generalized KL divergence is commonly
used measure of fit for histogram data, and in particular, in the
context of NMF, it derives from a natural probabilistic model,
see e.g. [10]. More precisely, the generalized KL divergence is
a minus log-likelihood in disguise for the Poisson noise model
such thatvfn ∼ P(

∑

k wfkℎkn), a common noise model of
count data [16].

2) Smoothness:Because we are dealing with time series of
histograms, a certain amount of correlation is to be expected
between columns ofH . As such, we propose to regularize
the factorization (1) by a smoothness-favoring penalty onH ,
chosen as

S(H) =
1

2

K
∑

k=1

N
∑

n=2

(ℎkn − ℎk(n−1))
2 (4)

More elaborate smoothness constraints, derived in a Bayesian
setting from hierarchical Gamma chains, and offering a shape
tuning parameter, have also been considered in the audio liter-
ature [17], but we here resort to the more standard smoothness
measure (4) for which we will derive an original algorithm in
Section IV-A.

C. Forming the objective function

In this section we present the general objective function
to be minimized overW andH and show the necessity of
mininization subject to fixed-norm constraints on the columns
of W to prevent from degenerate solutions. Assembling the
previous specifications, described in Section III-B, we areleft
with the following minimization problem:

min
W,H

C(W,H)
def
= DKL(V ∣WH) + �S(H)

s.t W ≥ 0, H ≥ 0 (5)

where� is a fixed nonnegative scalar, weighting the penalty,
and A ≥ 0 expresses nonnegativity of the coefficients of
matrix A. As it turns out, a solution(W ★, H★) to (5) may
only satisfy∥W ★∥ → ∞ or S(H★) = 0 (i.e., ℎ★kn is constant
w.r.t n). To see this, let us assume that there exists a solution
to (5) such that∥W ★∥ < ∞ and S(H★) ∕= 0. Let Λ be a
diagonal matrix of “scale” factors�k, with 0 < �k < 1, and
let W ∙ = W ★Λ−1, H∙ = ΛH★. It follows C(W ∙, H∙) =
DKL(V ∣W ★H★)+�

∑

k �
2
kS(ℎ

★
k), whereℎk denotesktℎ row

of H . Thus, we obtainC(W ∙, H∙) < C(W ★, H★), i.e., a
contradiction. As such it appears necessary to control the norm
of W , and we propose to subject the minimization (5) to the

additional constraint that∥wk∥ = 1, where∥ ⋅ ∥ is taken in
the following as theℓ1-norm. WhenS(H★) ∕= 0, this prevents
from ∥W ★∥ → ∞ and whenS(H★) = 0 (an unlikely but
admissible solution) this simply solves the scale indeterminacy
that exists betweenW andH . In the end, we want to solve

min
W,H

C(W,H) = DKL(V ∣WH) + �S(H)

s.t W ≥ 0, ∥wk∥ = 1, H ≥ 0 (6)

As it appears, and following [18], [19], the minimization (6) is
equivalent to the minimization of the following scale-invariant
objective function:

min
W,H

C̄(W,H)
def
= DKL(V ∣WH) + � S(ΛH)

s.t W ≥ 0, H ≥ 0 (7)

whereΛ = diag(∥w1∥, . . . , ∥wK∥). Indeed, let(W,H) be
a pair of nonnegative matrices and let(W ∙ = WΛ−1,
H∙ = ΛH) be their rescaled equivalents. Then, we have
C̄(W,H) = C(W ∙, H∙), and W ∙ satisfies the constraint
∥w∙

k∥ = 1 by construction. As such, one may solve (7), free
of scale constraint, and then rescale its solution to obtaina
solution to (6). We will use the notation�k = ∥wk∥ in the
rest of the paper. The next section describes a majorization-
minimization (MM) algorithm for the resolution of (7).

IV. M AJORIZATION-MINIMIZATION FOR SMOOTH

KL-NMF

We describe a novel iterative algorithm that updatesH given
the current iterate ofW and thenW given the current iterate
of H . Our algorithm employs no heuristics and is derived
in a rigorous maximisation-minimisation framework, which
guarantees non-increaseness of the objective function at each
iteration. Sections IV-A and IV-B describe the updates ofH
andW , respectively. A convex-NMF variant will also later be
exposed in Section VI.

A. Update ofH givenW

1) Unpenalized case (� = 0): In the unpenalized case and
givenW we are left with

min
H

C(H) = DKL(V ∣WH) =
∑

n

DKL(vn∣Wℎn)

s.t H ≥ 0. (8)

Because the objective function separates into independent
contributions ofℎn, n = 1, . . . , N , we are essentially left with
the problem of minimizing ofC(ℎn) = DKL(vn∣Wℎn). This
is a standard nonnegative linear regression problem which may
be handled in a majorization-minimization (MM) framework
[20], based on the iterative minimization of an (easier to
minimize) auxiliary majorizing function. TheℝK

+×ℝ
K
+ → ℝ+

mappingG(ℎ∣ℎ̃) is said to be anauxiliary function to C(ℎ)
if and only if 1) ∀ℎ ∈ ℝ

K
+ , C(ℎ) = G(ℎ∣ℎ), and 2)∀(ℎ, ℎ̃) ∈

ℝ
K
+ × ℝ

K
+ , C(ℎ) ≤ G(ℎ∣ℎ̃). The optimization ofC(ℎ)

can be replaced by iterative optimization ofG(ℎ∣ℎ̃). Indeed,
any iterateℎ(i+1) satisfyingG(ℎ(i+1)∣ℎ(i)) ≤ G(ℎ(i)∣ℎ(i))
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produces a monotone algorithm (i.e., an algorithm which
decreases the objective function at every iteration) as we have
C(ℎ(i+1)) ≤ G(ℎ(i+1)∣ℎ(i)) ≤ G(ℎ(i)∣ℎ(i)) = C(ℎ(i)). As
described in [21], [22], [23], an auxiliary functionG(ℎn∣ℎ̃n)
to C(ℎn) can be constructed using Jensen’s inequality thanks
to convexity ofC(ℎn), leading to

G(ℎn∣ℎ̃n) =
∑

k

− kn log ℎkn + �kℎkn + cst (9)

where kn = ℎ̃kn
∑

f wfkvfn/ṽfn, with ṽfn =
∑

k wfkℎ̃kn,
andcst denotes constant terms w.r.tℎ̃n. The minimization of
G(ℎn∣ℎ̃n) w.r.t ℎ̃n leads to the standard multiplicative update
ℎkn =  kn/�k

2) Penalized case (� > 0): In the penalized problem, the
contribution of ℎn to C̄(H) = DKL(V ∣WH) + �S(ΛH),
1 < n < N , can be written as

C̄(ℎn) = DKL(vn∣Wℎn) + � L(ℎn;ℎn−1, ℎn+1), (10)

where

L(ℎn;ℎn−1, ℎn+1)

=
1

2

∑

k

�2k
[

(ℎk(n+1) − ℎkn)
2 + (ℎkn − ℎk(n−1))

2
]

(11)

=
∑

k

�2k
[

ℎ2kn − (ℎk(n+1) + ℎk(n−1))ℎkn)
]

+ cst

wherecst is a constant ofℎkn. Using the preceding results, an
auxiliary function to the penalized objective function̄C(ℎn)
is readily obtained as

G�(ℎn∣ℎ̃n) = G(ℎn∣ℎ̃n) + � L(ℎn;ℎn−1, ℎn+1). (12)

The minimization ofG�(ℎn∣ℎ̃n) for 1 < n < N is easily
shown to amount to solving an order 2 polynomial with a
single positive root, given by

ℎkn =

√

b2kn + 4akn kn − bkn
2akn

, (13)

whereakn = 2��2k, bk = �k(1 − ��k(ℎk(n−1) + ℎk(n+1))),
1 < n < N . At the border of the chain,n = {1, N}, the
penalty (11) reduces to only one of its two terms and we
obtainak1 = ��2k, bk1 = �k(1 − ��kℎk2), andakN = ��2k,
bkN = �k(1 − ��kℎk(N−1)).

In practice, giveñV =WH̃ (with coefficients̃vfn on which
 kn depends) computed from current iterateH̃ , the columns
ℎn of H are updated iteratively with replacement forn =
1, . . . , N using (13).Ṽ is then updated with the new value
H̃ = H , and the algorithm proceeds to next iteration.

B. Update ofW givenH

1) Unpenalized case (� = 0): In the unpenalized case and
givenH , we are left with

min
W

C(W ) = DKL(V ∣WH) s.t W ≥ 0. (14)

which is essentially the same problem as (8). As such a
suitable auxiliary function forC(W ) is

G(W ∣W̃ ) =
∑

fk

−�fk logwfk + �kwfk + cst (15)

where�fk = w̃fk

∑

n[vfn/ṽfn]ℎkn and�k =
∑

n ℎkn, and
one obtains the multiplicative updatewfk = �fk/�k.

2) Penalized case (� > 0): In the penalized case (� > 0),
we have to solve

min
W

C̄(W ) = DKL(V ∣WH) +
�

2

∑

k

sk�
2
k

s.t W ≥ 0 (16)

wheresk = 2S(ℎk) and where we recall that�k =
∑

f wfk

is a function ofW . As before, an auxiliary function to the
penalized objective function̄C(W ) is given by

G�(W ∣W̃ ) = G(W ∣W̃ ) +
�

2

∑

k

sk�
2
k (17)

and the minimization ofG�(W ∣W̃ ) is easily shown to amount
to solving an order 2 polynomial with a single positive root,
given by

wfk =

√

b2fk + 4afk�fk − bfk

2afk
, (18)

whereafk = �sk, bfk = �k + �sk
∑

g ∕=f wgk.

V. A PPLICATION 1: VIDEO STRUCTURING BASED ON

PERSONS APPEARING ON-SCREEN

For a variety of TV shows, a structuring scheme centered
on show-participants’ occurrences is particularly meaningful
and useful [6]. Thus, as a first instantiation of our generic
video-structuring scheme previously presented, we consider
the task of automatically categorizing each frame of talk-
show videos into“multiple participants”, “full group” and
“personal shot”, differentiating for the latter category the
occurrences of each participant (hence the number of target
categories is the number of persons appearing in a video plus
two). This is further explained in the following.

A. Structuring-task statement and video corpus

We exploit theCanal9 political debatesdatabase for our
application [24]. This is a challenging TV show database
meant to serve for research on automatic analysis of social
interactions. It covers 4 years of broadcast. Each broadcast
features a moderator and 2 to 4 guests debating a political
question. There are different guests from show to show and
both the moderator and the set may vary, though most of them
have been shot in the same studio set.

The database comes with different types of manual annota-
tions. The visual annotations define an interesting structuring
scheme based on a particular taxonomy of the shots relating
to camera viewpoints, which is illustrated in Figure 2. Every
shot has been classified into one of three categories, namely
“full group” , “multiple participants” and “personal shot”.
Additionally, manual identification of the participant appearing
onscreen is given on “personal shots”.

The database is quite challenging as most camera viewpoints
are not stable in time, even across shots depicting the same
set of participants (as can be seen in Figure 2), which is



5

Fig. 2. Canal9 annotated shot-types. First shot (upper-left image) is
labeled“full group” , next shots:“multiple participants”, and last 2
shots are“personal shots” labeled with the identity of the onscreen
person.

also accompanied with significant changes in illumination.The
“full group” shots are an exception to this, though, as they
repeat invariably over the show duration.

Our goal is to automatically replicate the Canal9 database
visual groundtruth structure in a non-supervised fashion,hence
without trying to assign the given shot labels, or to name
the participants on the personal shots. Rather we aim at
jointly clustering the shots of the same category and the
“personal shots” of the same participants. This indeed defines
a semantically meaningful person-oriented structuring scheme
since the different shot changes and viewpoints implicitly
translate a high-level human structuring process, that is the
one proposed by the TV show director who generally selects
for the viewer the viewpoints that are the most informative
about the participants’ interventions and reactions.

To this end we instantiate our NMF-based structuring
scheme as shown in Figure 3. As previously explained, this
structuring scheme is completely generic and only the vocab-
ulary creation module needs to be adapted to the particular
structuring task considered, as explained hereafter.

B. Visual vocabulary creation

The visual vocabulary is created in such a way to be efficient
for onscreen-person spotting. The latter has been considered in
a number of studies [25], [26]. The classic approach consists
in detecting faces and using a clustering method on low-level
features, the whole process being possibly guided by a shot
change detector and a face tracking module. Features used
in this context were extracted from the face and possibly
the clothing regions, including color, texture and SIFT-like
features.

In our work we use a bag of visual words representation
based on PHOW features, where PHOW refers toPyramid
Histograms Of visual Words. Note that the termWord in
the acronym PHOW is kept here only to be consistent with
the original references [27], [28] where it refers to bins of
Histograms of Orientation Gradients (HOG), and should not
to be confused with our usage ofvisual word relating to
the vocabulary obtained by quantization of the whole set of
PHOW features. To avoid confusions, we will usefeature to
refer to the low-level attributes (i.e. PHOW features). The
featuresare quantized to create the vocabulary that is used to

extract histograms of word occurrences, which will be referred
to asdescriptors.

During the dictionary construction phase, the PHOW fea-
tures are extracted only from onscreen persons’ faces and
clothing regions as depicted in the left corner of Figure 3.
These regions are spotted as follows. First a Viola & Jones
face detector [29] is applied on the video frames. Then the
clothing region is detected by creating a rectangular bounding
box below the face bounding box, similarly to [26]. Its width
and height are respectively chosen to be twice and 2.5 times
the width and height of the latter. These parameters have been
chosen to limit the situations where a part of the background
is included in the clothing bounding box.1

It is worth mentioning that though color histograms seem
to be natural descriptors of the clothing regions [26], [30], we
found them to be less reliable for our task than the descriptors
we propose. In fact, we performed extensive preliminary
testing with a number of color histogram variants (testing
different color spaces and quantization steps) and found them
to be systematically lacking robustness to the significant
illumination changes accompanying camera viewpoint changes
in the talk show videos used for our evaluation.

PHOW features are extracted on a 8-pixel step grid at 3
scales using bin sizes of 8, 16 and 32-bins [28]. The set of
all PHOW features extracted from regions of interest over all
frames of the current video where a face has been detected, are
then quantized on 128 bins using the K-means algorithm. All
parameters have been tuned once and for all on a development
video that will not be included in the evaluation, to test for
the generalization ability of our system.

The visual vocabulary thus obtained (specifically for the
current video) is used to extract histograms of word counts2

from every frame of the video. Face detection is no longer
used at this stage, that is PHOW features are extracted over
the whole frames, which are thus globally described by the
histograms of visual words, allowing us to cope with the face
detector misses, especially on wide shots.

Therefore, we are relying on the NMF algorithm to de-
compose global frame-based histograms of words, possibly
representing the joint occurrence of two or more persons, into
elementary histograms, each representing a single person.Note
that, the process is clearly facilitated by the fact that there are
numerous close-up shots in a TV program video, showing only
one person at a time.

As previously explained, only the descriptors need to be
adapted to each particular task, the rest of the temporal
segmentation scheme remaining generic.

C. Experimental evaluation

In order to assess the robustness of our system, we use in
our evaluation 10-minute video excerpts from each of the 41
first shows,3 hence exploiting around 7 hours of video content,

1We will see in Section V-C that this constraint does not need to be too
rigid, as it is useful for our task to have some visual words representing the
background.

2The counts correspond to the occurrences of the vocabulary elements in
the current frame, as classically done in any bag-of-words approach.

3Excluding the pilot show labeled 05-09-21, for which the groundtruth
annotation is missing.
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Fig. 3. Visual vocabulary creation for the first instantiation of our generic structuring scheme. Left panel: PHOW feature extraction on a
visual frame during vocabulary creation phase (cf. SectionV-B).

involving 189 distinct persons and totaling 28521 video shots.
All system parameters tuning has been done once and for all
on a single development video excerpt (labeled 06-11-22 in the
database) leaving 40 videos for the evaluation. This procedure
is meant to show that our system is able to generalize properly
despite the limited tuning effort.

1) Reference system and evaluation procedure:To the best
of our knowledge, there has not been any previous works
addressing the specific structuring task we are handling in
this Section, hence there is no existing system to which we
could compare ours. Therefore, in order to assess the perfor-
mance of our proposal, we have implemented a competitive
reference system that uses ergodic HMMs [31] to model the
same sequence of visual-word histograms exploited by our
NMF system. We keep the features fixed for both systems
to make a fair comparison between the components that are
responsible for the extraction of the temporal structure and
better demonstrate the effectiveness of the NMF component,
which is the key contribution of this paper. Note that HMMs
have been successfully used in a number of previous related
works, though for different applications, see for instance[32].

The HMMs we use employ multivariate Gaussian emission
probabilities with full covariance matrices. The number of
hidden states is set toNsp + 2, whereNsp is the number of
current-show participants. Each state is expected to represent a
different structure category, henceNsp+2 is exactly the num-
ber of target categories: one for the “full group” shots, onefor
the “multiple participants” shots, and one for each participant’s
“personal shots”. HMMs are trained using the Baum-Welch
learning algorithm. The initialisation of the model parameters
is done in a “standard” manner, using uniform initial and
transition probabilities, and empirical means and covariances
for the emission probabilities after K-means clustering [31].

Note that we suppose the number of participants to be
known, both for the reference system and our NMF-based
system, which is often acceptable as it can be deduced
from textual metadata attached to the TV content (typically
integrated subtitles and/or teletext, see for instance [25]), or
given by an operator in human-assisted systems. Alternatively,
model order selection techniques could be employed which has
proven successful especially in the NMF case [33].

Scoring is performed following NIST4 speaker diariza-
tion evaluation procedure5 [34] which is well adapted to
our problem. It consists in finding a one-to-one mapping

4National Institute of Standards and Technology:
http://www.nist.gov/index.html

5We actually use the NIST scoring scripts.

between groundtruth segment labels (here shot types and
person identities on “personal shots”) and the labels found
automatically for each segment of the video, such that the
total time that is shared between the groundtruth labels and
the corresponding system outputs is maximized over the whole
show duration. This is done with the constraint that each
reference label be mapped to at most one system output label.
As suggested by the NIST procedure, 0.25-s time collars are
used on the segment-boundaries to forgive potential errorsin
the groundtruth.

The evaluation metric is thus the overall shot-type based
segmentation error. Note that we are evaluating our high-
level person-oriented structuring task, rather than an on-screen
person spotting task. We unfortunately cannot accurately eval-
uate the latter since the groundtruth does not indicate who
the onscreen-persons are on the “full group” and “multiple
participant” shots. It is worth mentioning, though, that inour
observations the NMF-based systems seem to behave well
even for this low-level task.

2) Analysis of the NMF output:NMF is computed using
K = Nsp + 1 components. This choice has been made to
let the NMF algorithm extract one histogram component for
each person, plus one for the histogram-descriptor observa-
tions which are dominated by visual words describing the
background. “Full group” frames are an example of such
observations that are systematically captured by one NMF
component as can be seen in Figure 4. Clearly, this type
of shots are easily represented by our method due to their
highly stable and recurrent nature. From this Figure, it can
also be noted that there are lower amplitude activations on
this same component, that relate to “multiple participant”shot
occurrences. These amplitudes are lower since fewer elements
of the studio background appear on the corresponding tighter
shots (and actually even fewer on “personal shots” causing
the current component not to be activated for the latter).
In fact, occurrences of background-related visual words are
initially highly present on all observations, which is why all
histogram vectors are normalized (prior to NMF computation)
by dividing each row of matrixV by the row maximum value,
so that each descriptor coefficient have full dynamics and the
cost is not dominated by histogram bins with large amplitudes
(thus typically bins relating to background visual words).One
might wonder how come such visual words are present in
the vocabulary while it was learned from features extracted
in persons’ face and clothing bounding boxes. Recall, though,
that we intentionally did not try to be too rigid on the location
of these bounding boxes, hence allowing us to capture some
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Fig. 4. KL-NMF activationsi.e.H coefficients on a short excerpt of the development video with� = 0. Each subplot represents the temporal
sequence of activations for onewk component,1 ≤ k ≤ K = Nsp + 1. For each component, the image on the right corresponds to the
frame where the activation value is maximum, which is supposed to be a good representative of the content modeled by the corresponding
wk component. Red vertical lines are groundtruth shot boundaries and the other images inside the plot or around it are key frames of the
time-corresponding shots. Green dotted horizontal lines are decision thresholds. It can be seen that NMF has succeededin extracting the
relevant components and related activations. Note that the2nd component is not activated here as the corresponding person does not appear
in any personal shot of this part of the video.

elements of the background as can be seen in Figure 3. Addi-
tionally, background elements are unintentionally captured on
every “false-alarm face detection”, which here is useful toour
system, the key idea being that we mostly want visual words
representing the onscreen persons, but also a few to describe
the background.

The desired video structure is obtained by thresholding
the activations (see Figure 4). The thresholds are chosen,
heuristically (by trial and error, once and for all on the
development video) to be 0.6 times the maximum activation
value for each component. This yieldsNsp + 1 clusters (one
cluster per NMF component) covering theNsp speakers and
the “full group” frames as can be deduced from Figure 4. A
frame belongs to a cluster if its corresponding activation is
above the decision threshold. A last cluster is created withall
unassigned segments which are associated to situations where
all corresponding activations are below the chosen threshold.
This is always a winning strategy (as will be confirmed by
the results on the whole database), thanks to the behavior
of the “background-related” component (top first component
in Figure 4), where as previously explained two levels of
activations are observed: one corresponding to the “full group”

shots and the other to the “multiple participant” shots. It is
important to note that none of our systems exploit a shot
change detection module. Instead shot boundary detection
comes as natural byproduct of our higher-level structuring
process. In fact, both the reference HMM system and our
NMF-based system prove very successful at detecting shot
changes.

Figure 5 illustrates the effect of the smoothing on theℎkn
sequences. The activations become more stable and easier to
threshold, hence potentially creating a positive impact onthe
system performance (as will be seen in the next sections).

3) Evaluation results discussion:The overall structuring er-
rors of our NMF-based systems are 16.6%, 14.6% and 26.2%,
respectively for� = 0, 0.1 and 1. The overall performance
of the HMM reference system is 23.8%. The statistics of
these scores across all database videos are summed-up in the
boxplots of Figure 6.

NMF-based systems are clearly superior to the reference
HMM system with� ∈ {0, 0.1}. The error can be as low as
4.6% with NMF(0.1) (best scored-video), against 6.4% with
HMMs, and never exceeds 33.4% for the former while it may
be as high as 58.3% for the latter.
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Further, there is a significant improvement with the smooth
NMF version (� = 0.1) compared to the non-smooth “stan-
dard” version (� = 0), with -2% in absolute error. This is
no longer true if too much smoothing is imposed, as asserted
by the poor results obtained with� = 1, where a too strong
smoothing penalty may have negtively affected the extraction
of the relevant basis vectors.

VI. A PPLICATION 2: SPEAKER DIARIZATION

We propose a second instantiation of our generic structuring
scheme on aspeaker diarizationproblem using the same
dataset that was used in the first application, now focusing on
the audio modality (and not considering the image modality).
We here merely aim to make a proof of concept (on a single
show). Our goal is to emphasize that our approach can be truly
applied to various tasks, and to show its potential for complex
problems such as speaker diarization. For this problem, it
exhibits its capacity to cope withoverlapped speechsegments,
which is an issue that remains critical for researchers in this
field [35].

A. Audio descriptor extraction for speaker diarization

For audio analysis the temporal evolution of the local signal
characteristics is of great importance. This has led researchers
in the field to largely rely on dynamic modeling approaches,
hence the success of HMMs for audio classification tasks in
general, and in particular for speaker diarization tasks where
it is used with Gaussian Mixture Model (GMM) emission
probabilities (see for example [36]). In fact, agglomerative
clustering techniques exploiting GMM-HMM structures and
Binary Information Criteria over cepstral features have been
extensively used as it has proven successful in solving this
problem (for instance within NIST international evaluation
campaigns).

HMMs are traditionally used as a decision model in the
sense that a one-to-one mapping is determined between the
speakers and the hidden states, and the diarization result is
directly deduced by Viterbi decoding of the observed sequence
of low-level features (generally MFCC features) being mod-
eled by the GMM-HMM. In this work, we follow a different
approach, inspired by [37], where we use HMMs only to
build the audio descriptors and leave the speaker modeling
and decision taking tasks to the NMF algorithm.

Figure VI sums up the whole descriptor extraction proce-
dure. The audio signal is analyzed in short overlapping 20-
ms length windows, with a 10-ms hop size, over which 12
Mel Frequency Cepstral Coefficients are extracted (excluding
the energy coefficient). AQ-state HMM is trained in a non-
supervised fashion on the sequence of MFCCs, withQ much
greater than the expected number of speakers (Q = 80 in
the experiment presented hereafter), using Gaussian state-
conditional densities with full covariance matrices. The audio
word vocabulary merely consists of the HMM states found by
the Baum-Welch learning algorithm.

The most likely sequence of states is then inferred by
Viterbi decoding yielding a state-label for each low-level
frame. Subsequently, state occurrences are counted over 1.5-
s length integration windows using a 40-ms hop size, hence
forming the audio descriptors (extracted at a rate of 25 Hz).

B. NMF decomposition for speaker diarization

We have shown in the visual stream segmentation example
that very competitive results can be obtained with a “standard”
KL-NMF approach with no specific assumed structure forW
(and with the possible additional smoothness penalty onH). In
other examples relying on less structured data, such as audio
segmentation, we observed that the standard NMF approach
may fail at extracting single speakers individual patternsand
may instead extract elementary “parts” of speakers, possibly
shared among several speakers. This is a known property of
NMF [12], which can be desirable in some settings, such
as coding, but not in ours. As such, it can be beneficial
to assume a particular structure onW that penalizes the
latter effect. In our setting, though multiple speakers occur
in many frames, each speaker is also expected to appear
alone in a large proportion of data (corresponding to single
speaker segments in the audio track). Hence, the individual
speaker patterns may be retrieved from the data itself and
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Fig. 7. Audio vocabulary creation for the second instantiation of our generic structuring scheme. Left panel: extraction of the state histogram
descriptor on an audio signal (cf. Section VI-A).

we may assume the dictionary matrixW to be a linear
combination of data points,i.e., W = V L, whereL is a
nonnegativeN × K “labeling” matrix. This corresponds to
a “convex”-NMF setting, as proposed by Ding et al. [11],
where the authors show that the matrix columns ofL tend to
become sparse,i.e., the columns ofW are built from a linear
combination of a few data points, acting as “centroids”. Ding
et al. [11] consider convex-NMF with the Euclidean distance,
but we obtained similar findings with the KL divergence. It
is possible to combine the results of [23], which reports MM
updates for convex-NMF with the KL divergence, with the
results of Section IV-B to produce a MM algorithm for smooth
& convex KL-NMF. GivenW = V L, the update ofH given
by Eq. (13) is unchanged.

A suitable MM update forL, with coefficientslmk, can be
obtained as

lmk =

√

b2mk + 4amk�mk − bmk

2amk

, (19)

where �mk = l̃mk

∑

fn vfm[vfn/ṽfn]ℎkn, amk = �sk�
2
m,

bmk = (�k + �sk
∑

n∕=m �nlnk)�m, and �m =
∑

f vfm. It
has to be noted that the update ofW (i.e., L) in convex
NMF is of complexity O(N2K) (per iteration) while of
complexity O(FNK) in standard NMF. Given that in our
settingN >> F , convex NMF induces an important increase
of the computational burden.

C. Experimental proof of concept

We validate our NMF-based approach by comparing it to a
state-of-the-art speaker diarization system, namely theLIUM
SPKDIARIZATIONsystem [38]. The NIST speaker diarization
error achieved by our proposal is 7.38% while the LIUM
system error is 14.16%. Thus, our diarization scheme appears
to be quite promising as it performs much better than a state-
of-the-art system on the development video.

Figure 8 depicts the activations found by our convex NMF
algorithm, with� = 0.5, applied to the audio-word histograms
of our development video. One of the interesting features of
our approach is its ability to cope with overlapped speech
segments as can be observed around timet = 9000 frames,
where this situation occurs. Two components are then active,
that correspond to the two persons who are effectively speak-
ing simultaneously at that instant.

It is important to note that it was necessary to use both the
smoothing and convexity ingredients to get these results. The
non-convex NMF version did not behave well as it tended to

Fig. 8. Convex NMF output on the audio descriptors. Red vertical
lines are groundtruth speaker segments (where a new segmentis
created every time there is a change in the set of active speakers,
hence some segments correspond to overlapped speech). Dotted green
lines represent decision thresholds (here 0.4 times the maximum
activation value for each component), while continuous green lines
are constants representing all activation-coefficients that are above
the threshold. The dotted-line rectangle highlights a region where
overlapped speech occurs and the NMF components of the two
corresponding speakers are activated simultaneously.

decompose a same speaker on two different components and
to represent others with the same component.

VII. C ONCLUSIONS

In this work we have proposed a new generic structuring
paradigm whereby, whatever the modality (audio or video),
NMF is applied on histogram descriptors relating to a bag
of features representation, to jointly discover latent patterns,
representative of elementary events, and their activations in
time. Second, at the algorithmic level, we have proposed a
majorization-minimization algorithm for novel smooth and
convex variants of KL-NMF. Our approach was shown to
give results clearly superior to a reference HMM system
on a person-oriented video structuring application with an
unpenalized standard NMF. Smoothing with a suitable value
of the penalty weighting parameter� was shown to improve
results even more. We have also illustrated the relevance of
our general approach on a speaker diarization problem, on
audio data, as a second instantiation of our general approach
to structuring. In that case we found our convex (and smooth)
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variant of KL-NMF to be necessary to obtain satisfactory
results, at the expense of an increased computational burden.

A first perspective of this work would be a more thorough
evaluation of our approach on the audio speaker diarization
task. Secondly, there is interesting potential in combining the
two previous applications (treated separately in this paper)
into a single multi-modal system. Indeed, these visual and
audio structures produce relevant entry points to the show
content, enabling various navigation modes. For instance,the
following: “browse over all interventions of participant Jack,
with Jack speaking and onscreen”, which is typically the type
of video segments that would be used to build a summary of
Jack’s interventions. There is even more potential for joint
audio-visual approaches, since there is obviously a strong
correlation between the audio and visual NMF activation coef-
ficients (used to deduce a video structure). These correlations
can be easily exploited to stabilize the audio activations on
segments where a person is jointly speaking and appearing
onscreen.

On the methodological side, perspectives concern the au-
tomatic evaluation of the “hyperparameters”,i.e., � and the
number of componentsK. These are common issues of
factorizations models, that may be handled through cross-
validation or user feedback, or through Bayesian integration
[39]. An other perspective is the design of online matrix
factorization techniques [40] to alleviate the computational
burden incurred in the large scale multimedia setting.
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degree from theÉcole Nationale d’Ingénieurs de
Tunis, Tunisia, in 2001, the M.Sc. (D.E.A.) degree in
digital communication systems from théEcole Na-
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