
eric lecolinet - telecom paris / ip paris

JSonSerial2
C++ Object Serialization in JSON

- JsonSerial allows serializing a set of C++ objects (a single object, a collection, a cyclic or acyclic
graph of objects)

- In most cases (and contrary to some other tools), JsonSerial does not require writing read/write
functions. Instead, you just need to register which classes and members you want to serialize.

- JsonSerial can handle basic types, enums, C and C++ strings, plain C++ objects, most C++
containers, C arrays with brackets, raw and smart pointers.

- JsonSerial supports graphs of objects pointing to each other, including cyclic graphs.
Pointees are automatically created when reading a JSON file. Shared objects (objects pointed by
multiple pointers) are not duplicated (this feature is optional).

- JsonSerial supports single and multiple inheritance and class polymorphism. When needed,
the class of derived classes is stored in the JSON file so that the proper objects will be created
when reading the JSON file.

- The names in the JSON file can be whatever you want (rather than auto-generated arbitray
names), e.g. the names of the objects' members.

- The JSON syntax can be relaxed: comments are supported, quotes and commas can optionally
be omitted.

- JsonSerial requires UTF8. It relies on C++ 11 templates and only consists of header files.

Licence: Apache Licence Version 2

Author: Eric Lecolinet – Télécom Paris – Institut Polytechnique de Paris 
 http://www.telecom-paris.fr/~elc (firstname.lastname@telecom.paris.fr)

Content
• Basic features

• Shared objects and cyclic graphs

• Inheritance and class polymorphism

• Smart pointers

• Custom class/member registration

• Other features + Limitations 

1

https://www.apache.org/licenses/LICENSE-2.0
http://www.telecom-paris.fr/~elc
mailto:firstname.lastname@telecom.paris.fr

eric lecolinet - telecom paris / ip paris

Basic features
This example shows how to serialize basic types and enums, C++ strings, C++ lists and plain
objects. Below is the class that will be serialized.

class Contact {
public:
 enum Gender {Unknown, Male, Female, Other};
 struct Phone {std::string type, number;};

 friend JSonClasses* registerClasses(); // needed if variables are not public!

 Contact() = default; // needed to instantiate pointees!
 Contact(std::string const& firstname, std::string const& lastname,
 unsigned int age, Gender gender);

 void addPhone(std::string const& type, std::string const& number);
 void print(std::ostream& out) const;

private:
 std::string firstname, lastname;
 unsigned int age{};
 Gender gender;
 std::list<Phone> phones; // list of plain objects
};

The registerClasses() function will be used to register the fields that need to be serialized. This
function must be a friend of the class if its variables are not public. The no-argument constructor
will be needed to instantiate pointees. We'll in another section how to relax these constraints.

Below is the source code for serializing the class. First, we must include the appropriate headers:

- jsonserial.hpp must be included first
- Then the header(s) for serializing C++ containers (here std::list is used, thus jsonserial_list.hpp

must be included)

- using namespace jsonserial avoids prefixing JSonSerial classes their namespace (i.e. by

jsonserial::)

#include "jsonserial.hpp"
#include "jsonserial_list.hpp"
using namespace jsonserial;

The registerClasses() function registers the classes and class members that need to be serialized:

JSonClasses * registerClasses() {
 auto * classes = new JSonClasses();

 classes->addClass<Contact>("Contact")
 .addMember("firstname", &Contact::firstname)
 .addMember("lastname", &Contact::lastname)
 .addMember("gender", &Contact::gender)
 .addMember("age", &Contact::age)
 .addMember("phones", &Contact::phones);

2

eric lecolinet - telecom paris / ip paris
 classes->addClass<Contact::Phone>("Phone")
 .addMember("type", &Contact::Phone::type)
 .addMember("number", &Contact::Phone::number);

 return classes;
}

This function creates and returns an instance of JSonClasses, which addClass() method registers a
class:

	 classes->addClass<Contact>("Contact")

The template argument of addClass() is the C++ class, its variable argument is a UTF8 string that
should be the name of the class.

Members are registered by calling the addMember() method of the registered class:

 .addMember("firstname", &Contact::firstname)

The first argument is a UFT8 string that identifies this member in the JSON file. Typicially it's the
name of the variable, but another name can be used provided that two members of the same class
don't have the same name. The second argument is a pointer to the corresponding class member
(note the & sign).

As previouly said, registerClasses() must be a friend of the serialized class, otherwise it won't have
access to class members and the program won't compile.

Let's now suppose that two objects, alice and bob have been created:

 Contact* bob = new Contact("Bob", "Dûpontèle", 31, Contact::Male);
 bob->addPhone("home", "123 456-7890");
 bob->addPhone("mobile","703 221-2121");

 Contact* alice = new Contact("Alice", "Dûpontèle", 33, Contact::Female);
 alice->addPhone("home", "123 456-7890");
 alice->addPhone("office", "211 1234-1234");

A std::list pointing to these 2 objects can be serialized and deserialized as follows:

 std::list<Contact*> users{bob, alice};

 static JSonSerial js(registerClasses());

 if (!js.write(users, "data.json", false)) return; // serializes users

 std::list<Contact*> users2;
 if (!js.read(users2, "data.json") return; // deserializes into users2

js is a JSonSerial object that can (de)serialize any instance of the classes registered by
registerClasses(), or a C++ container containing instances or pointing to them.

This object does not need to be static, but making it static allows reusing it if instances are
(de)serialized multiple times.

3

eric lecolinet - telecom paris / ip paris
The arguments of the write() methods are:

1. The object to be serialized, either a plain object, a raw or smart pointer, or a container

(std::list in this example). Not only this object, but also all the objects it contains or points to,
will be serialized (provided that the corresponding variables were registered)

2. The file name or a std::ostream
3. A boolean value specifying whether the objects' graph is cyclic. As it not the case in this

example, its value can be false (this feature will be explained in more detail in the next example).

The arguments of the read() methods are:

1. The object to be deserialized, either a plain object, a raw or smart pointer, or a container. Not

only this object, but also all the objects it contains or points to in the JSON file will be
deserialized. There is no need to specify whether the graph is cyclic or not.

2. The file name or a std::istream

Both methods return false in case of an error. By default, errors are printed out on std::cerr.
Errors can also be displayed in a user-specific way by providing a error handler to the JSonSerial
constructor (similarly, a error handler can be provided to the JSonClasses constructor). See the
Other features section.

The std::list could also be serialized to / deserialized from a stream:

void test_stream() {
 // same as above...

 std::stringstream ss;

 if (!js.write(users, ss, false)) return; // serializes users
 std::cout << ss.str() << std::endl;
 if (!js.read(users2, ss) return; // deserializes into users2
}

In addition, the data writen into the stringstream (which is the generated JSON) is printed on the
console, which is convenient for testing.

Full source code

Generated JSON File:

4

[

 {

 "firstname": "Bob",

 "lastname": "Dûpontèle",

 "gender": 1,

 "age": 31,

 "phones": [

 {

 "type": "home",

 "number": "123 456-7890"

 },

 {

 "type": "mobile",

 "number": "703 221-2121"

 }

]

 },

 {

 "firstname": "Alice",

 "lastname": "Dûpontèle",

 "gender": 2,

 "age": 33,

 "phones": [

 {

 "type": "home",

 "number": "123 456-7890"

 },

 {

 "type": "office",

 "number": "211 1234-1234"

 }

]

 }

]

https://perso.telecom-paristech.fr/elc/software/jsonserial2/examples/basics.cpp

eric lecolinet - telecom paris / ip paris

Shared objects and cyclic graphs
This second example is similar to the previous one, except that Contact now has pointers and a
std::map that point to other Contact objects:

- partner points to the Contact's partner,

- parent1 and parent2 point to his/her parents,

- children point to his/her children

This example involves shared objects and a cyclic graph: not only several pointers can point to the
same object, but objects point to each other. JSonSerial allows solving both problems and can
deserialize and create objects exactly as they were before writing them.

class Contact {
public:
 enum Gender {Unknown, Male, Female, Other};
 struct Phone {std::string type, number;};

 friend JSonClasses* registerClasses(); // needed if variables are not public!

 Contact() = default; // needed to instantiate pointees!
 Contact(std::string const& firstname, std::string const& lastname,
 unsigned int age, Gender gender);

 void addPhone(std::string const& type, std::string const& number);

 void linkPartners(Contact* p) {
 partner = p;
 if (p) p->partner = this;
 }

 void linkChildWithParents(Contact* p1, Contact* p2) {
 parent1 = p1;
 parent2 = p2;
 if (p1) p1->children[firstname] = this;
 if (p2) p2->children[firstname] = this;
 }

 void print(std::ostream& out) const;

private:
 std::string firstname, lastname;
 unsigned int age{};
 Gender gender;
 std::list<Phone*> phones; // list of object pointers
 std::map<std::string, Contact*> children; // map of object pointers
 Contact *partner{}, *parent1{}, *parent2{}; // pointers MUST be initialized!
};

Importantly, pointers must be properly initialized (i.e. they should be null or point to a valid object);
the read() function may crash otherwise!

The registerClasses() function is similar except that we now have more members to register:

#include "jsonserial.hpp"
#include "jsonserial_list.hpp"
#include "jsonserial_map.hpp"
using namespace jsonserial;

5

eric lecolinet - telecom paris / ip paris

JSonClasses* registerClasses() {
 auto* classes = new JSonClasses();

 classes->addClass<Contact>("Contact")
 .addMember("firstname", &Contact::firstname)
 .addMember("lastname", &Contact::lastname)
 .addMember("gender", &Contact::gender)
 .addMember("age", &Contact::age)
 .addMember("phones", &Contact::phones)
 .addMember("partner", &Contact::partner)
 .addMember("parent1", &Contact::parent1)
 .addMember("parent2", &Contact::parent2)
 .addMember("children", &Contact::children);

 classes->addClass<Contact::Phone>("Phone")
 .addMember("type", &Contact::Phone::type)
 .addMember("number", &Contact::Phone::number);

 return classes;
}

Let's now create some parents and children and link them together:

 Contact* bob = new Contact("Bob", "Dûpontèle", 31, Contact::Male);
 bob->addPhone("home", "123 456-7890");

 Contact* alice = new Contact("Alice", "Dûpontèle", 33, Contact::Female);
 alice->addPhone("home", "123 456-7890");
 alice->addPhone("office", "211 1234-1234");

 Contact* karim = new Contact("Karim", "Dûpontèle", 9, Contact::Male);
 karim->addPhone("mobile","122 122-1222");

 Contact* susan = new Contact("Susan", "Dûpontèle", 11, Contact::Female);
 susan->addPhone("mobile","133 133-1333");

 bob->linkPartners(alice);
 karim->linkChildWithParents(bob, alice);
 susan->linkChildWithParents(bob, alice);

A list (or any other standard container) containing or pointing to these 4 objects can be (de)serialized
almost in the same way as in the previous example:

 std::list<Contact*> users{bob, alice, karim, susan};

 static JSonSerial js(registerClasses());

 if (!js.write(users, "data.json", true)) return; // last arg must be true!

 std::list<Contact*> users2;
 if (!js.read(users2, "data.json") return;
}

Importantly, the last argument of the write() function must be true because the graph is cyclic.

This option both avoids duplicating shared objects and infinite loops in the presence of a cyclic
graph. A @id field is then added to each user-defined object in the JSON file (see example of

6

eric lecolinet - telecom paris / ip paris
generated data below). The fields of the objects are written only the first time they are encountered,
then objects are referered by their id in the JSON file.

Note that this feature only works with user-defined classes (classes registered by calling
addClass()), but not with C++ strings or standard C++ containers.

Full source code

Generated JSON File:  

7

[

 {

 "@id": "1",

 "firstname": "Bob",

 "lastname": "Dûpontèle",

 "gender": 1,

 "age": 31,

 "phones": [

 {

 "@id": "2",

 "type": "home",

 "number": "123 456-7890"

 },

 {

 "@id": "3",

 "type": "mobile",

 "number": "703 221-2121"

 }

],

 "partner": {

 "@id": "4",

 "firstname": "Alice",

 "lastname": "Dûpontèle",

 "gender": 2,

 "age": 33,

 "phones": [

 {

 "@id": "5",

 "type": "home",

 "number": "123 456-7890"

 },

 {

 "@id": "6",

 "type": "office",

 "number": "211 1234-1234"

 }

],

 "partner": "@1",

 "parent1": null,

 "parent2": null,

 "children": {

 "@id": "7",

 "Karim": {

 "@id": "8",

 "firstname": "Karim",

 "lastname": "Dûpontèle",

 "gender": 1,

 "age": 9,

"phones": [

 {

 "@id": "9",

 "type": "mobile",

 "number": "122 122-1222"

 }

],

 "partner": null,

 "parent1": "@1",

 "parent2": "@4",

 "children": {

 "@id": "10",

 }

 },

 "Susan": {

 "@id": "11",

 "firstname": "Susan",

 "lastname": "Dûpontèle",

 "gender": 2,

 "age": 11,

 "phones": [

 {

 "@id": "12",

 "type": "mobile",

 "number": "133 133-1333"

 }

],

 "partner": null,

 "parent1": "@1",

 "parent2": "@4",

 "children": {

 "@id": "13",

 }

 }

 }

 },

 "parent1": null,

 "parent2": null,

 "children": {

 "@id": "14",

 "Karim": "@8",

 "Susan": "@11"

 }

 },

 "@4",

 "@8",

 "@11"

]

https://perso.telecom-paristech.fr/elc/software/jsonserial2/examples/cyclic_graph.cpp

eric lecolinet - telecom paris / ip paris

Inheritance and class polymorphism
This third example is similar to the previous one, except that Contact has a PhotoContact
subclass. Moreover PhotoClass also derives from Photo (multiple inheritance), which is an abstract
classs.

Contact is unchanged except that its print() method is virtual (and redefined in PhotoContact).

class Contact {
public:
 enum Gender {Unknown, Male, Female, Other};
 struct Phone {std::string type, number;};

 friend JSonClasses* registerClasses();

 Contact() = default;
 Contact(std::string const& firstname, std::string const& lastname,
 unsigned int age, Gender gender);

 void addPhone(std::string const& type, std::string const& number);
 void linkPartners(Contact* p);
 void linkChildWithParents(Contact* p1, Contact* p2);
 virtual void print(std::ostream& out) const; // this method is now virtual.

private:
 // as in second example...
};

class Photo { // Photo is an abstract class
public:
 friend JSonClasses* registerClasses();

 void setPhoto(const std::string& file);
 virtual void print(std::ostream& out) const = 0; // abstract method

protected:
 std::string file;
};

class PhotoContact : public Contact, public Photo { // Multiple inheritance
public:
 friend JSonClasses* registerClasses();

 PhotoContact() = default;
 PhotoContact(const std::string& firstname, const std::string& lastname,
 unsigned int age, Gender gender);

 void print(std::ostream& out) const override;
};

8

eric lecolinet - telecom paris / ip paris

The registerClasses() function is similar except that we need to register Photo and PhotoContact.

Note that:

- Because Photo is an abstract class, the addClass() function must be called with a second

argument that is nullptr. This means that this class cannot be instantiated.

- PhotoContact must specify that it derives from superclasses by calling extends(). Its template

argument is the superclass. As many superclasses as needed can be specified in this way.

- Superclasses must be registered before subclasses (otherwise a "undeclared superclass" error

will occur at runtime).

JSonClasses* registerClasses() {
 JSonClasses* classes = new JSonClasses();

 classes->addClass<Contact>("Contact")
 // as in previous example ...

 classes->addClass<Contact::Phone>("Phone")
 // as in previous example ...

 classes->addClass<Photo>("Photo", nullptr) // abstract class => nullptr
 .addMember("file", &Photo::file);

 classes->addClass<PhotoContact>("PhotoContact")
 .extends<Contact>() // inherits from Contact
 .extends<Photo>(); // inherits from Photo

 return classes;
}

A list (or any other container) pointing to both Contact and PhotoContact instances can then be
(de)serialized as in the previous (i.e. second) example.

The name of the class will be saved in the JSON file using a special @class field, which will allow
creating the same object when deserialing the file. Note however that this will work only if the class
is polymorphic, i.e. if it has at least one virtual method.

Diamond inheritance and shadowed variables
Diamond inheritance works as expected when using virtual class inheritance or if the shared
classes don't contain variables. It will be problematic otherwise as the class will contain several
(inherited) variables with the same name, i.e. shadowed variables.

The same problem occurs if a class declares variables that have the same name as in its superclass.
A simple solution just consists in giving them different UTF8 names when registering them by
calling the addMember() function.

Full source code

9

https://perso.telecom-paristech.fr/elc/software/jsonserial2/examples/inheritance.cpp

eric lecolinet - telecom paris / ip paris
Generated JSON File:  

10

[

 {

 "@class": "PhotoContact",

 "@id": "1",

 "firstname": "Bob",

 "lastname": "Dûpontèle",

 "gender": 1,

 "age": 31,

 "phones": [

 {

 "@id": "2",

 "type": "home",

 "number": "123 456-7890"

 },

 {

 "@id": "3",

 "type": "mobile",

 "number": "703 221-2121"

 }

],

 "partner": {

 "@id": "4",

 "firstname": "Alice",

 "lastname": "Dûpontèle",

 "gender": 2,

 "age": 33,

 "phones": [

 {

 "@id": "5",

 "type": "home",

 "number": "123 456-7890"

 },

 {

 "@id": "6",

 "type": "office",

 "number": "211 1234-1234"

 }

],

 "partner": "@1",

 "parent1": null,

 "parent2": null,

 "children": {

 "@id": "7",

 "Karim": {

 "@class": "PhotoContact",

 "@id": "8",

 "firstname": "Karim",

 "lastname": "Dûpontèle",

 "gender": 1,

 "age": 9,

 "phones": [

 {

 "@id": "9",

 "type": "mobile",

 "number": "122 122-1222"

 }

],

 "partner": null,

 "parent1": "@1",

 "parent2": "@4",

 "children": {

 "@id": "10",

 },

 "photo": "karim.png",

 "width": 75,

 "height": 50

 },

 "Susan": {

 "@id": "11",

 "firstname": "Susan",

 "lastname": "Dûpontèle",

 "gender": 2,

 "age": 11,

 "phones": [

 {

 "@id": "12",

 "type": "mobile",

 "number": "133 133-1333"

 }

],

 "partner": null,

 "parent1": "@1",

 "parent2": "@4",

 "children": {

 "@id": "13",

 }

 }

 }

 },

 "parent1": null,

 "parent2": null,

 "children": {

 "@id": "14",

 "Karim": "@8",

 "Susan": "@11"

 },

 "photo": "bob.png",

 "width": 75,

 "height": 50

 },

 "@4",

 "@8",

 "@11"

]

eric lecolinet - telecom paris / ip paris

Smart pointers
This example is similar to the second one except that std::shared_ptr and std::weak_ptr are used
instead of raw pointers.

There is no much to say except that the linkPartners() and linkChildWithParents() methods must be
written slightly differently as this if not a smart pointer (using shared_from_this() is another option).

using ContactPtr = std::shared_ptr<class Contact>;

class Contact {
public:
 enum Gender {Unknown, Male, Female, Other};
 struct Phone {std::string type, number;};

 friend JSonClasses* registerClasses();

 Contact() = default;
 Contact(std::string const& firstname, std::string const& lastname,
 unsigned int age, Gender gender);
 void addPhone(std::string const& type, std::string const& number);

 static void linkPartners(ContactPtr p1, ContactPtr p2) {
 if (p1) p1->partner = p2;
 if (p2) p2->partner = p1;
 }

 static void linkChildWithParents(ContactPtr child, ContactPtr p1, ContactPtr p2) {
 if (child) {
 child->parent1 = p1;
 child->parent2 = p2;
 if (p1) p1->children[child->firstname] = child;
 if (p2) p2->children[child->firstname] = child;
 }
 }

 void print(std::ostream& out) const;

private:
 std::string firstname, lastname;
 Gender gender;
 unsigned int age{};
 std::list<Phone*> phones;
 std::weak_ptr<Contact> partner;
 std::shared_ptr<Contact> parent1, parent2;
 std::map<std::string, std::weak_ptr<Contact>> children;
};

The registerClass() function is as in the second example, so as the source code for (de)serializing
the objects.

11

eric lecolinet - telecom paris / ip paris
Example of source code for creating the objects:

 ContactPtr bob =
 std::make_shared<Contact>("Bob", "Dûpontèle", 31, Contact::Male);
 bob->addPhone("home", "123 456-7890");
 bob->addPhone("mobile","703 221-2121");

 ContactPtr alice =
 std::make_shared<Contact>("Alice", "Dûpontèle", 33, Contact::Female);
 alice->addPhone("home", "123 456-7890");
 alice->addPhone("office", "211 1234-1234");

 ContactPtr karim =
 std::make_shared<Contact>("Karim", "Dûpontèle", 9, Contact::Male);
 karim->addPhone("mobile","122 122-1222");

 ContactPtr susan =
 std::make_shared<Contact>("Susan", "Dûpontèle", 11, Contact::Female);
 susan->addPhone("mobile","133 133-1333");

 Contact::linkPartners(bob, alice);
 Contact::linkChildWithParents(karim, bob, alice);
 Contact::linkChildWithParents(susan, bob, alice);

 std::list<ContactPtr> users {bob, alice, karim, susan};

Full source code

12

https://perso.telecom-paristech.fr/elc/software/jsonserial2/examples/smart_pointers.cpp

eric lecolinet - telecom paris / ip paris

Custom class/member registration
This example shows how to proceed when:

- The class does not have a no-argument constructor

- Adding a registerClasses() function as a friend is not possible

- The members must by read and written using their setters/getters or custom user-specific

functions.

Obviously, the simplest solution is to add the missing methods to the class, but this is not always
possible (e.g. because the class belongs to an existing library and can't be changed).

class Contact {
public:
 enum Gender {Unknown, Male, Female, Other};
 struct Phone {std::string type, number;};

 // NOTES:
 // - the class does not have a no-argument constructor
 // - registerClasses() is not declared as a friend, accessors will be used.
 // - there is no setChildren() method

 Contact(std::string const& firstname, std::string const& lastname,
 unsigned int age, Gender gender);

 void setFirstName(std::string const& name) {firstname = name;}
 std::string const& getFirstName() const {return firstname;}

 void setLastName(std::string const& name) {lastname = name;}
 std::string const& getLastName() const {return lastname;}

 void setGender(Gender value) {gender = value;}
 Gender getGender() const {return gender;}

 void setAge(unsigned int value) {age = value;}
 unsigned int const& getAge() const {return age;}

 void setPartner(Contact* p) {partner = p;}
 Contact* getPartner() const {return partner;}

 void setParent1(Contact* p) {parent1 = p;}
 Contact* getParent1() const {return parent1;}

 void setParent2(Contact* p) {parent2 = p;}
 Contact* getParent2() const {return parent2;}

 void addPhone(std::string const& type, std::string const& number) {
 phones.push_back(Phone{type, number});
 }

 void setPhones(std::list<Phone> const& phones) {this->phones = phones;}
 std::list<Phone> const& getPhones() const {return phones;}

 void addChild(Contact* child) {
 if (child) children[child->firstname] = child;
 }

13

eric lecolinet - telecom paris / ip paris

 std::map<std::string,Contact*> const& getChildren() const {return children;}

 void print(std::ostream& out) const;

private: // as in second example
 std::string firstname, lastname;
 Gender gender;
 unsigned int age{};
 std::list<Phone> phones;
 std::map<std::string, Contact*> children;
 Contact *partner{}, *parent1{}, *parent2{};
};

In this version of the registerClasses() function:

- A custom creator function is provided as a second argument to addClass() because the class

does not have a non-argument constructor. This function will instantiate the object when a
pointee needs to be created by JSonSerial.

- Note that this argument can be nullptr if there is no need to create pointees (which is not the case
in this example)

- Pointers to the setter and getter methods are provided to addMember() instead of pointers to
variable members. Thus, the variables' values will be set by calling these methods. Note that this
technique is less efficient (and can lead to problems in some tricky cases) because reading an
object from the JSON file then involves making a copy from a temporary variable.

- This example also shows how to write custom functions for reading and writing members.
This is needed here because the class only has an addChild() method but no setChildren()
method. Such functions typically call the JSonSerial readMember() and readMember() methods.

JSonClasses* registerClasses() {
 JSonClasses* classes = new JSonClasses();

 classes->addClass<Contact>("Contact",
 // a function is provided to create the instance
 [](){return new Contact("", "", 0, Contact::Unknown);}
)
 // pointers to setters/getters are provided instead of pointers to members
 .addMember(("firstname", &Contact::setFirstName, &Contact::getFirstName)
 .addMember("lastname", &Contact::setLastName, &Contact::getLastName)
 .addMember("gender", &Contact::setGender, &Contact::getGender)
 .addMember("age", &Contact::setAge, &Contact::getAge)
 .addMember("phones", &Contact::setPhones, &Contact::getPhones)
 .addMember("partner", &Contact::setPartner, &Contact::getPartner)
 .addMember("parent1", &Contact::setParent1, &Contact::getParent1)
 .addMember("parent2", &Contact::setParent2, &Contact::getParent2)

 // no setChildren() method => custom read/write functions are needed
 .addMember("children",
 // reads children from JSON
 [](Contact& c, JSonSerial& js, std::string const& value) {
 std::map<std::string, Contact*> children;
 js.readMember(children, value);
 for (auto& it : children) c.addChild(it.second);
 },

14

eric lecolinet - telecom paris / ip paris
 // writes children to JSON
 [](const Contact& c, JSonSerial& js) {
 js.writeMember(c.getChildren());
 }
);

 classes->add<Contact::Phone>("Phone")
 .addMember("type", &Contact::Phone::type)
 .addMember("number", &Contact::Phone::number);

 return classes;
}

While not illustrated here, it is also possible to provide a custom creator function to addMember(),
either to instantiate an object or an element of a container. This feature allows using different creator
functions depending on the member.

The previous example relies on lambdas, non-member or static functions could also be used.

The source code for (de)serializing the objects is the same as in the second example. Here is an
example of source code for creating the objects:

 Contact* bob = new Contact("Bob", "Dûpontèle", 31, Contact::Male);
 bob->addPhone("home", "123 456-7890");
 bob->addPhone("mobile","703 221-2121");

 Contact* alice = new Contact("Alice", "Dûpontèle", 33, Contact::Female);
 alice->addPhone("home", "123 456-7890");
 alice->addPhone("office", "211 1234-1234");

 Contact* karim = new Contact("Karim", "Dûpontèle", 9, Contact::Male);
 karim->addPhone("mobile","122 122-1222");

 Contact* susan = new Contact("Susan", "Dûpontèle", 11, Contact::Female);
 susan->addPhone("mobile","133 133-1333");

 bob->setPartner(alice);
 bob->addChild(karim);
 bob->addChild(susan);

 alice->setPartner(bob);
 alice->addChild(karim);
 alice->addChild(susan);

 karim->setParent1(bob);
 karim->setParent2(alice);

 susan->setParent1(bob);
 susan->setParent2(alice);

Full source code

15

https://perso.telecom-paristech.fr/elc/software/jsonserial2/examples/misc_registration.cpp

eric lecolinet - telecom paris / ip paris

Other features

Post processing
Sometimes, some operations need to be performed after reading or writing the members of an
object. In the next example, wasRead() and wasWritten() will be called after reading (resp. writing) a
Contact object.

class Contact {
public:
 void wasRead();
 void wasWritten() const;
 // ...
};

In the registerClasses() function, one should then write:

 classes->addClass<Contact>("Contact")
 .postRead(&Contact::wasRead) // called after reading an object
 .postWrite(&Contact::wasWritten); // called after writing an object

Global and sta2c variables
Global and static variables can also be serialized. In the ext example, globalStatus will appear in all
Contact instances in the JSON file. Note that there is no & sign before the variable in this case:

static int global_status = 1; // static or global variable

In the registerClasses() function:

 classes->addClass<Contact>("Contact")
 .addMember("globalStatus", global_status); // no & before variable

Primi2ve objects
Let suppose that Float is a class that embeds a float, Text a class that embeds a std::string, and
that these classes allow setting and retreiving their value using the = operator. While these classes
are not primitive types, they behave in a similar way. JsonSerial allows dealing with them as if they
were primitive types by writing:

namespace jsonserial {
template <> struct is_integral<Float> : std::true_type {};
template <> struct is_string<Text> : std::true_type {};
}

is_integral<> (resp. is_string<>) mean that the objects of this class will be treated as an integral
type (resp. a string) when (de)serialized by JSonSerial.

16

eric lecolinet - telecom paris / ip paris
The same technique can be used for making JSonSerial to treat subclasses of standard
containers as containers (by default they are considered as user-defined objects and must thus be
registered through addClass()):

class Books : public std::list<std::string> {};

namespace jsonserial {
template <> struct is_std_list<Books> : std::true_type {};
}

Books will then be serialized in the same ways as a std::list container.

When subclassing std::map or std::unordered_map the [] operator must also be defined:

class Library : public std::map<std::string, Books*> {
public:
 std::string& operator[](std::string& key) { whatever... }
};

namespace jsonserial {
template <> struct is_std_map<Library> : std::true_type {};
}

JSON syntax
By default, JsonSerial conforms to JSON syntax with some small differences:

•	 /* ... */ and // comments are supported

•	 Name/value lists and arrays can have trailing commas

•	 Values can be triple quoted (ex: """let \t it \n be""") in which case they can contain double

quotes, newlines and other control characters

•	 Names and values cannot start with @ as this symbol is used for specifying classes and IDs.

The JSON syntax can be relaxed (or not) by calling JsonSerial::setSyntax() with, as an argument:
•	 JsonSerial::Strict: strict syntax: no option is allowed (comments are disabled)

•	 JsonSerial::Relaxed: relaxed syntax: all options are allowed

or an ORred combination of:

•	 JsonSerial::Comments: allows comments (the default),

•	 JsonSerial::NoQuotes: names and values can be unquoted (when non ambiguous)

•	 JsonSerial::NoCommas: name/value pairs can be separated by a comma or by a newline

•	 JsonSerial::Newlines: values can contain newlines and other control characters.

17

eric lecolinet - telecom paris / ip paris

Error handling
By default, if an error is encountered when calling addClass(), read() or write() an error message is
printed on JsonSerial. Error messages can be processed differently by providing a printing function
to the JSonSerial and JSonClasses constructors:

 JSonSerial js(registerClasses(),
 [](JSonError const& error){ custom processing of error }
);

The variable members of the JSonError parameter are:

•	 the type of the error (an enum),

•	 arg (a string), an optional argument that is typically the name of the member,

•	 fname (a string), which is the filename, when available

•	 the line (an int) indicated the line where the error in the file (0 if N/A)

Limitations
JsonSerial:

- Requires a compiler that is C++11 compliant.
- Requires UTF8
- Does not support the JSON \u notation for specifying characters

- Names and values cannot start with @ as this symbol is used for specifying classes and IDs.

- Provides reasonable performance but was not developed for storing huge object collections.

- May be slow to compile as it relies on non trivial template processing.

JsonSerial been developed and tested on MacOSX using clang and compiled/executed on https://
rextester.com/ with gnu, clang and vc++ and on https://godbolt.org/ with gnu, clang and icc.

18

https://rextester.com/
https://rextester.com/
https://godbolt.org/

