
XXL: A Dual Approach for Building User Interfaces
Eric Lecolinet

Ecole Nationale Supérieure des Télécommunications (ENST)
46 rue Barrault

75013 Paris - France
Eric.Lecolinet@enst.fr

ABSTRACT
This paper presents XXL, a new interactive development
system for building user interfaces which is based on the
concept of textual and visual equivalence. XXL includes an
interactive builder and a “small” C compatible special-pur-
pose language that is both interpretable and compilable. The
visual builder is able to establish the reverse correspondence
between the dynamic objects that it manipulates and their
textual descriptions in the original source code. Interactive
modifications performed by using the builder result in incre-
mental modifications of the original text. Lastly, XXL not
only allows users to specify the widget part of the interface
but can also be used to manage various behaviors and to cre-
ate distributed interfaces.

KEYWORDS: User interface software, interface builders,
scripting languages, textual and visual equivalence, iterative
development, distributed interfaces.

INTRODUCTION
It is a well-known fact that user interfaces constitute an es-
sential part of software applications but still remain difficult
to conceive and to implement [4,5]. Besides the difficulties
inherent to the task of designing human-computer interfaces,
we still believe that a non negligible part of this complexity
also results from the design of available UI software tools
and that there is still room for improvement in this field. So,
we propose a new system called XXL that includes an inter-
active builder and a C compatible language and that is based
on the concept of textual and visual equivalence.

RELATED WORK
Interface Builders
As noted in [9], interface builders are intuitive and easy to
use but not expressive enough in the general case. These
systems are quite convenient to create standard objects such
as menus or dialog boxes but provide little support for creat-
ing application specific objects and specifying their behavior
(for instance a music editor, an image visualizer, graph rep-
resentations...). Besides, they are generally unable to process
variable amounts of data or data that changes at run time (for
instance a file manager, visualization of complex data com-
ing from a remote database server...).

Such limitations can in fact be considered as the intrinsic
consequence of “direct manipulation”. Moving and manipu-

lating widgets directly by using the mouse pointer is espe-
cially intuitive to novice programmers because of the
“concreteness” of such a process. But this concreteness im-
plies a corollary drawback: the inability to specify “immate-
rial” behaviors or parametrization in a simple and coherent
way (like for instance: the dynamic creation and positioning
of new objects, the creation and parametrization of variable
sets of objects, or the processing of complex events and the
related behaviors). Thus, these systems require writing
source code to specify complex or dynamic behaviors (and
in fact, certain systems even require writing callback func-
tions to program quite basic interactions).

Scripting and Special Purpose Languages
This category includes very different kinds of systems but
their common point is to facilitate and rationalize the textual
specification of user interfaces. A primitive example is UIL,
a special purpose language that provides a simpler interface
to the Motif toolkit than the usual C interface. However,
UIL is only able to represent the widget part of the user in-
terface (i.e. the graphical objects and their properties). In
contrast, Tcl/Tk [7] provides a scripting language that in-
cludes constructs that can also deal with the state and behav-
ior of the user interface at run time. Furthermore, Tcl/Tk
code is rather compact and (relatively) easy to understand.
This last point explains the success of this system and shows
that visual systems do not have the exclusivity of simplicity:
textual languages can also be pretty convenient to use if well
designed and well suited to the domain.
Amulet [6] is based on an object oriented language which is
written on the top of C++. Once again, this specialized lan-
guage provides simpler, better adapted and more powerful
specifications to program the Amulet toolkit than a classical
C or C++ interface would do. Furthermore, a major advan-
tage of this system lies in the fact that it is C++ compatible
and does not impose developers to deal with “exotic” lan-
guages that are difficult to integrate with the functional core
of the application.

Model-Based Systems
Model-Based Systems [8,9,10] can generate most of the pre-
sentation automatically from a high-level description of the
interface. These are rather text-based approaches (the inter-
face must generally be specified textually by means of a spe-
cial-purpose language). Some systems also include powerful
interactive tools [9], but most of them do not allow interac-
tive specification (or just allow for “cosmetic” little modifi-
cations in a separate stage). These systems rely on rather
complex tools and strategies that are beyond the goal of the
proposed approach which is rather oriented towards interac-
tive development. However, XXL provides abstraction ca-
pabilities that are connected to certain concepts of this type
of approaches.

PROPOSED APPROACH
It seems that most existing systems tend to be based either
on a visualor on a textual approach but provide poor inte-
gration capabilities between these two forms of representa-
tion. This is especially true for interface builders. They
allow intuitive and simple visual specifications, but at the
same time, they often require writing source code without
providing much help to simplify this code. Moreover, this
separation is increased by the fact that these systems are
usually based onunivocal source code production: the pro-
duced code consists in a very large number of quite illegible
lines of code and is not supposed to be modified - nor even
to be read - by the developer. So, any further textual modifi-
cation performed by the programmerwill definitively be lost
if the interface builder is used again. In other words, these
systems are not ableto take into accounttextual modifica-
tions performed by an external source (i.e. by another tool
or a programmer) to the code that they initially produced.
This is quite an important limitation and we believe it is the
cause of many difficulties in programming complex inter-
faces because:
• On the one hand these tools impose textual programming

to specify complex (and sometimes even simple) behav-
iors, but on the other hand they strongly limit how tex-
tual specifications can be done or modified,

• This results in a strong separation between the part of the
interface that can be specified visually (the widgets and
their appearance) and the part that must be specified tex-
tually (widget interaction and dynamic (time-varying)
behaviors).

The code that defines the interface components is thus locat-
ed in different files that can not be modified or reorganized
easily. For instance, such simple things as creating a vari-
able number of widgets may become complicated: should
the developer define this widget by means of the interface
builder, then try to find the corresponding code and modify
it (in which case he will not be able to reedit and modify this
widget visually by using the builder).... or had he better
write this code directly by using basic toolkit objects and
functions?

Textual and V isual Equivalence
The XXL system proposes adual approach that attempts to
integrate visual and textual programming into the same
framework. The key idea is to benefit from the advantages
of both textual and visual specifications and make them co-
operate in a powerful way. To achieve this goal XXL is
based on the following principles:
1. All interface components have adual representation: a

declarativetextual specification and an iconicvisual rep-
resentation. Interface components are not limited towid-
gets (the interactive objects of a graphical toolkit) but
also include objects for specifying widget appearance or
behavior and control statements.

2. All UI components can bemixed together, either by tex-
tual or visual programming, independently of the way
they were initially produced (i.e. textually or visually).

3. Programmers can alwayschoose the most appropriate
means to represent what they need. For instance, graphi-
cal objects can either be specified and configurated visu-
al ly or textual ly, depending on programmers’
preferences and their level of expertise.

4. The XXL visual builder is able to reedit and modify
interactively any legal XXL description. The builder is
thus able to establish thereverse correspondence

between the dynamical objects that it manipulates and
their textual descriptions in the originalC or C++ source
code (with no restriction on the location of these descrip-
tions in that source code).

The builder can thus deal withpre-existent C code and let
the user manipulate interactively the corresponding XXL
descriptions. This also means that C code resulting from
previous specification with the builder can be modified and
reorganized textually (by a programmer or another program)
and then bereedited and modified again by using the build-
er. Furthermore, the original source code is modified in an
incremental way by the builder and these modifications can
even be madewhile the application is running. A very im-
portant consequence of this approach is that it guarantees a
truly iterative development scheme whereas classical inter-
face builders often break this development loop.

Three View Edition
The XXL Builder provides three views of the interfaces that
are being developed: thetext view, thegraph view and the
widget view. The text view shows the corresponding de-
scriptions in the source code. The graph view is an iconic
representation that is equivalent to the text view. These two
views constitute the dual (textual and visual) "abstract"
specification of the UI while the widget view can be seen as
the “result” of this specification. These views are linked to-
gether and are incrementally updated whenever the UI is
modified interactively by using the builder. Interface com-
ponents can be selected in any view (when applicable) and
are then automatically highlighted in the other views.

This three-view model makes it possible not only to show
and control the resulting code but also to represent the “hid-
den part” of the UI. As said before, XXL components are
not limited to graphical widgets but can potentially specify
any kind of functionality or data specification (the set of
XXL components being extensible). This is a major differ-
ence with classical point-and-click direct manipulation in-
terface builders: XXL does not only provide a WYSIWYG
representation but is also able to represent non-widget com-
ponents. The graph view is not a mere widget tree (a feature
that is available in some commercial systems) but can also
represent objects that do not have a visible representation in
the widget view. So, this system can be considered as an at-
tempt to let the programmer see “what is behind the curtain”
and provide the kind of “indirect manipulation” defined in
[2] as the ability to “directly manipulate an abstraction that
controls the behavior or appearance of the actual objects”.

The XXL Specification Language
The XXL system is based on an underlying specification
language which is designed to be compact and reasonably
easy to understand. The main interest of this language is that
it is not “yet another programming language” (like for in-
stance Tcl or UIL): in spite of its very specific form, it is ac-
tually a subset of theANSI C language. This means that
XXL descriptions can be freely included into C or C++
functions or other constructs and can becompiled as any
other C statement. XXL interfaces can thus make use of the
whole power of a standard programming language. This
point is especially important when designing complex inter-
faces that deal with variable amounts of data or that evolve
dynamically at run time. To paraphrase a quotation from [9],
this means that we can both benefit from the intuitiveness -
but (relatively) low expressivity - of interface builders and
the low intuitiveness - but high level of expressivity - of
standard programming languages.

Other systems (for instance the Amulet [6] system) also pro-
vide a special purpose language written on the top of a stan-
dard language. But, as said before, XXL is not only a text-
based solution but also provides true equivalence between
textual and visual descriptions. Conversely, FormsVBT [1],
which is one of the few systems that are also based on a
mixed textual/visual paradigm, does not provide a C com-
pilable language. Moreover, these two systems rely on spe-
cific implementations of the widgets and do not provide the
same kind of interactive specification capabilities.

Run-Time Interpretation and Distributed Interfaces
In addition to the previous characteristics, XXL descriptions
can also be interpreted at run-time. The system ensures that
the resulting graphical interfaces will be the same in both
cases (compilation or interpretation) and will be manageable
in the same way by the Visual Builder. This feature leads to
the following possibilities:

Script Files. XXL descriptions can be located in Script
Files that can be run as usual Unix scripts. These files are
executed by means of the XXL Shell, a special-purpose in-
terpreter. Moreover, XXL provides simple mechanisms for
interacting with the standard Unix shell. This feature (which
is somewhat similar to the Tcl/Tk shell) can be used not only
to add simple UI to Unix commands (or other non-graphical
programs) but also to test new interfaces at the beginning of
the prototyping phase. Here, the major difference with Tcl/
Tk and other similar systems is that these descriptions can
then be directly included into C or C++ code without any
modification or translation and can then still be modified vi-
sually by using the Builder.

Such a scheme provides the advantages of both interpreta-
tion and compilation: interpretation speeds up the develop-
ment stage while compilation offers better performances at
run-time. Moreover, compilation avoids having to provide
the final user with source code (this can be useful for com-
mercial applications) and simplifies the installation of exe-
cutable programs (the binary files are self-sufficient and do
not require the installation of specific description files or
proprietary shell programs).

Run-Time Interpretation in C Code. Scripts files can also
be dynamically loaded from C programs, in which case the
included descriptions are interpreted at run-time. These de-
scriptions can access the call-back functions of the C pro-
gram and share static variables with this program.

Distributed Interfaces. XXL Interfaces can be exchanged
dynamically between separate (possibly remote) programs.
The corresponding descriptions are sent through the network
by using sockets and are interpreted at run-time by the re-
ceiving program. This mechanism can also be used for mod-
ifying widgets, updating variables or calling functions that
reside in remote programs.

THE XXL SYSTEM
XXL consists of an object oriented software layer which re-
lies on a pre-existent toolkit and windowing system. So,
XXL brings a better interface and new functionalities to
standard commercial widgets but does not implement truly
new widgets (all graphical objects provided by XXL are
mere encapsulations or combinations of the pre-existent
widgets of the underlying toolkit). Thus, programmers will
find the usual properties of well-known commercial widgets
again. The present version of the system has been written on
the top of the Motif toolkit and the X Window system.

However, its layered conception could make it possible to
implement it on the top of other toolkits.

XXL includes a set of predefined objects that constitute the
basis of the interface descriptions and a set of functions
which aim at facilitating the writing of callback (and other)
functions. There are four different types of objects:
1. Widget Objectsthat “encapsulate” the graphical widgets

of the underlying toolkit (these objects are instantiated
into Motif graphical widgets),

2. Objects for specifying control statements such as repeti-
tions or conditional evaluation,

3. Structuring objects whose aim is to decompose the inter-
faces into smaller components (called subinterfaces),

4. Property objects that specify the appearance and behav-
ior of the actual widgets.

New subclasses can be derived from these predefined class-
es in order to integrate into the XXL systems widgets other
than those primarily provided by the Motif toolkit. XXL al-
so includes the concept of pseudo-classes. Pseudo-classes
can encapsulate a subinterface of XXL objects and let the
developer manage it as if it was a single object. This encap-
sulation mechanism helps to structure the interface into ho-
mogeneous and reusable subparts. It allows one to construct
composite objects in a simple way without having to deal
with the inner functionalities of the underlying toolkit (for
instance, creating a new X Window widget is quite a com-
plex task that requires an extended knowledge of the imple-
mentation details of this system).

To each XXL object corresponds a textual and a visual rep-
resentation that depends on the metaclass of this object. As
user interfaces generally consist of trees (or sometimes of
graphs) of various objects, we have decided to adopt a list
formalism to represent the textual descriptions of XXL ob-
jects. So, each XXL object is represented by means of a list
whose first member indicates the class of this object. The
following members of the list depend on the metaclass of
the considered object. For instance, in the case of widget ob-
jects, the class name must be followed by the name of the
newly created instance and by the possible children of this
object (if any). The parenthood between XXL objects is thus
implicitly defined. Figures 1 and 2 show an example of an
XXL description and the resulting graphical interface. It
must be noticed once again that, despite its unusual form,
this textual description is strictly legal (i.e. compilable) AN-
SI C code (there is no specific pre-processing stage before
the C or C++ compilation and these descriptions do not re-
quire run-time interpretation). Fig. 1 illustrates several fea-
tures of XXL descriptions that are described in the
following paragraphs:

❏ The embedded list that describes the whole interface can
be decomposed into several sub-blocks that are referenced
by intermediate C variables (for instance, variable
open_dialog points to the description of a dialog box which
is then referenced in the description of the file_menu). This
decomposition has no functional effect and is only provided
as a way to make descriptions easier to read. The whole
description is encapsulated by a special object called Inter-
face that is purely virtual (it does not necessarily correspond
to a graphical widget) and that defines a new subinterface. It
is possible to define as many subinterfaces as needed which
can be embedded. So, all interfaces (or subinterfaces) can
themselves be made of several (and possibly reusable)
subinterfaces.

❏ The XXL specification of an interface does not produce
by itself the creation of any graphical widget. These are ac-
tually created by instantiating this formal description by
means of the XlBuild function. This function produces an
instance tree of Motif graphical widgets from the specifica-
tion tree (or graph) of XXL objects. XXL descriptions can
thus be considered as models that are instantiated into physi-
cal realizations. Moreover, these descriptions can be param-
eterized and can be multi-instantiated into actual widgets
(XXL taking care of all the necessary duplication of data
and other constructs to avoid unwanted interactions between
these independent instances).

❏ This example also shows how widget resources (i.e the
presentation properties, constraints and callback functions
which are attached to the widgets) can be specified. The
Args object specifies a list of attribute names and values that
are given to the corresponding widget at creation time. The
Set object shares the same syntax but is used to modify
these attributes dynamically (that is to say once the widget
has been created). Finally the Callback object specifies the
C callback functions that will be called when events occur
on widgets. These resource descriptions can possibly be
shared by several graphical objects. Furthermore, the “val-
ue” fields of these descriptions can either be textual strings
(that are automatically converted into an adequate internal
representation), numerical constants or refer to C variables.

void foo(Widget parent_widget)
{
/* This Dialog Box calls the OpenProc function when a file is selected */
XlObj open_dialog =
 (FileSelectionDialog, "open_dialog",
 (Args,XmNdialogTitle,"Open Image",o),
 (Callback,XmNokCallback,OpenProc,NULL,o),
 o);

/* File Menu: each button opens a previously defined dialog box*/
XlObj file_menu =
 (PulldownMenu, "file_menu",
 (Button, "New", new_dialog,o),
 (Button, "Open", open_dialog,o),
 (Button, "Save", save_dialog,o),
 (Separator,"",o),
 (Button, "Exit", exit_dialog,o),
 o);
 etc

XlObj menubar =
 (MenuBar, "menubar",

/* each button will open the corresponding pulldown menu */
 (Button, "File", file_menu,o),
 (Button, "View", view_menu,o),
 (Button, "Reco", reco_menu,o),
 etc
 (Button, "Help", help_menu,o),
 (Set, XmNmenuHelpWidget, ".Help", o),
 o);

XlObj browser_obj =
 (Interface, "browser",
 (VBox, "browser",
 menubar,
 (Label, "message", o),
 (ScrolledWindow, "scrollwin",
 iconbox =
 (HBox, "iconbox"

 /* this box will have a white background */
 (Args,XmNbackground, "white", o),

 o),o),o),o);

/* This function will create the actual Motif widgets */
XlBuild(parent_widget, browser_obj);
}

Fig. 1: C code specification of the UI shown in Fig. 2.
This UI contains a menu bar (that opens pulldown menus), a
message zone and an (empty) icon box located in a scrolla-
ble window. The description is instantiated into widgets by
calling the XlBuild function.

VISUAL BUILDER
The Visual Builder can manage the three views of all the in-
terfaces or subinterfaces that are contained in an application
(Fig. 2). The icons of the graph representation are all active
and can be handled directly in order to modify the corre-
sponding interfaces: icons can be moved, added or removed,
their parenthood (which is materialized by arrows) can be
changed interactively, etc. In any case, such modifications
have an immediate effect on the widget view (the “resulting
interface”) and on the corresponding textual description. All
forms of representations are thus modified at the same time
in an incremental way. XXL objects can be selected by
clicking in an appropriate way on any of their visible repre-
sentations (widgets have three representations while other
objects only have text and graph representations). Such se-
lection immediately highlights the other corresponding rep-
resentation(s). Objects can be edited and modified by means
of specialized editors that are accessible via their corre-
sponding icon (this icon and its associated behavior being
dependent on the metaclass of the corresponding object).
For instance the builder provides a complete Resource Edi-
tor (Fig. 3) that can show and modify interactively almost all
the properties of Motif widgets.

Unlike most interface builders, most interactions do not take
place on the “physical envelope” of the UI (the widgets) but
on its abstract iconic representation (the graph view). This
point implies the following properties:

❏ “Immaterial” objects such as conditions, repetitions, call-
back functions... can be represented in a homogeneous way
in the graph view. The effect of the corresponding actions
can be modified interactively by changing the links in the
graph view or by calling special-purpose editors.

❏ This principle also conceptualizes the way of designing
user interfaces as one generally deals with an abstract repre-
sentation that produces the resulting widget view rather than
with the widgets themselves. In other words, one can apply
icons representing various properties (for instance, geome-
try constraints) to icons that represent widgets and let the
system compute and show the physical result of this specifi-
cation (for instance, lay-out can be computed automatically
from such constraints). This difference between this para-
digm and the usual one is somewhat similar to the difference
between a sophisticated text processor (such as Latex) and a
simple typewriter: in the first case one defines generic oper-
ators and lets the system apply them, while in the second
case all settings have to be performed manually.

❏ Graph views are also quite convenient for re-designing
interfaces. It is for instance quite easy to select a subtree of
objects (selecting an object also selects all its children in the
graph view) and move this subtree to another part of the in-
terface or to another separate interface. The corresponding
widgets will first disappear from their initial location and
then reappear in their final location, all changes in geometry
being incrementally and automatically performed. Proper-
ties can also be applied to widgets in a direct manipulation
style (by editing the links in the graph view). Moreover, the
same property object can be applied to several widget ob-
jects, thus providing an abstract representation that can con-
trol the presentation or behavior of a group of widgets. This
partly solves a classical drawback that interface builders are
usually blamed for: they require taking decisions that fix the
presentation too early in the conception process [10]. The
XXL builder allows for “second thoughts” by letting pro-
grammers modify their initial decisions and deeply change

Fig. 2b: The Text View

Fig. 2: The three views of the main window of an image browser. Fig. 2a shows the graph view and the XXL Builder.
Fig. 2b shows the text view (same as Fig. 1) and Fig. 2c the resulting widget view. This application can display several
images that can be opened successively at run-time (it can thus process variable amount of data). Each image (right-
hand side of Fig. 2c) is displayed by means of a pre-existent XXL Object. An associated icon that shows a reduced
image is inserted into the "iconbox" of the browse (A C function for building such icons is shown at Fig. 6). Fig. 2d
shows the associated menu of a Widget Object in the graph view. All Icons are active and the graph can be modified
interactively.

Fig. 2c: The Widget View

Fig. 2a: The Graph View and the XXL Builder Fig. 2d: An active icon
and its associated menu

the structure, behavior or presentation of the UI at any stage
of the iterative design process.

❏ These descriptions actually constitute interface models
that can be instantiated several times. For instance, the three
icons that are included in the interface shown in Fig. 2 result
from three successive realizations of the same XXL sub-
interface (whose code can be seen in Fig. 6). The XXL de-
scription is actually mapped with its last widget realization
(so, clicking on the icon of a widget object in the graph view
will highlight the corresponding widget resulting from the
last instantiation of this representation).

The builder can simultaneously edit all the interfaces (and
subinterfaces) that are contained in a C application and in as
many XXL Scripts as wanted. Subparts of these descriptions
can be moved interactively from one interface to another
(and can possibly be moved from a Script File to the C ap-
plication and vice-versa). The builder also provides a set of
predefined “skeletons” (that are actually pre-existent
Scripts) that can be modified and integrated into any other
script or C application.

The builder also provides an effective way to visualize the
graph view. Any tree (or any part of them) can be minimized
(i.e. hidden) in order to economize on graphical space and
let the user focus on the part he is currently working on. All
icons have a “minimize” button. Clicking once on this but-
ton makes all child icons disappear and changes the visual
aspect of the selected icon. A second click will revert to the
previous state. This mechanism provides hierarchical encap-
sulation and allows users to visualize interfaces at various
levels of granularity (one can have a “global view” of the
main components or more specific views of the details of
some of these components).

Run-Time Editing
Finally, a rather uncommon property is that modifications
can be performed on the interface descriptions while the cor-
responding script or C program is running. Unlike classical
interface builders, there are no differentiated “creation” and
“testing” phases: the visual builder is started at the same
time as the application and can interactively modify it at
run-time. The visual edition of the (sub-) interfaces con-
tained in the application is totally dynamical. A notification
mechanism makes interfaces available to the builder when
created by a C function (and this creation process can take
place at any time). These interfaces can then be edited by
clicking on their name in a special-purpose menu (which is
automatically updated when a new interface is created) or by
clicking in an appropriate way on any of their widgets. The
builder will then create and show the visual representation
of the selected interface (the graph view) and establish the
correspondence between the graph of XXL objects and the
original source code that produced this interface. In other
words, the builder is able to find where the objects have been
defined and to establish the reverse connection between
these dynamical objects (i.e. created at run-time) and their
original textual description. The corresponding source files
can then be displayed, and, as said before, any modification
performed on the icon trees will then immediately take place
on these texts. Besides, texts are incrementally modified in
facsimile way: their content is actually changed on the spot
so that their original structure can be preserved (including
comments). This mechanism does not require any special
declarations by the programmer and does not depend on the
location of XXL objects (that can be defined at any place in
any of the files that constitute the C program). At the end of
this editing phase, it is just necessary to save the modified

files and then recompile the application. This application is
then ready to use, but can also be modified textually or visu-
ally again.

BEHAVIORS
XXL does not aim to provide very complex behaviors that
would require a highly specific and complicated language.
We believe that standard languages such as C or C++ are
perfectly well suited for that purpose and that defining call-
back functions for specifying complex actions is quite rea-
sonable (although it may be interesting to benefit from
higher-level functions than those of the original toolkit, as it
is the case here). On the other hand, real interfaces often
contain quite a large number of callback procedures that
only perform trivial tasks and that make the code look like a
“Spaghetti of call-backs” [3]. The main purpose here is to
provide simple ways to eliminate most of these unnecessary
callbacks. This can be done in the three following ways:
• implicitly
• by conditional evaluation
• by active values.

Implicit behaviors
Certain behaviors are automatically added by XXL when
combining certain objects. For instance, any dialog box or
pulldown menu that is specified as the child of a button will
be automatically popped up when this button is clicked.
Such behaviors are dynamically added (or removed) when
creating (or destroying) objects (for instance when (un)link-
ing objects in the visual builder).

Conditional Evaluation
Conditional evaluation offers a powerful and simple way to
specify many kinds of behaviors. Conditional evaluation
means that a subpart of an XXL description will be reevalu-
ated each time a certain event occurs on certain widgets. As
XXL descriptions can typically describe how to create,
modify and destroy widgets, conditional evaluation provides
a rather simple way to do the same thing dynamically.

Fig. 4 illustrates a basic example of this mechanism (see
code below). This interface changes the color and the label
of the two top widgets by reading a string that is entered by
the user in a text field. When the user clicks on the update
button, the sub-expression that is included in the Cond
statement is reevaluated. This sub-expression specifies an
assignment that gets the string value that was entered in the
entry widget, converts it to the appropriate types and chang-
es the labelString resource (the displayed label) of widget
newname and the background color of widget newcol.
(VBox,"vbox",
 (HBox,"",
 (Label,"newcol",o),
 (Label,"newname",o),
 o),
 (HBox,"",
 (TextField,"entry",o),
 (Button,"update",
 (Cond,"",
 (Set,
 "~*newname.labelString", "{~*entry.value}",
 "~*newcol.background", "{~*entry.value}",
 o),
 o),

Active Values
XXL also provides an active value data base. Active values
consist of internal variables that provoke some associated
actions when their value is changed. They can either be ac-
cessed from the interface descriptions or from any function
of the application, thus providing an efficient way to share

data and associated behaviors between the interface and the
rest of the application. They are also particularly well-suited
for dealing with multiple views and synchronizing the pre-
sentation with the functional part of the application. Possible
associated actions can be:
• the execution of a (generalized) call-back function,
• or the reevaluation of a subpart of an XXL description.
This mechanism can be used in a symmetrical way in the in-
terface and in the functional part (active values can for in-
stance be used to update widgets when data changes in the
functional part, or, conversely, a procedure defined in the
functional part can be called when a widget is activated). So,
active values simulate non-graphical events and generalize
the notion of call-back functions (see an example in Fig. 6).

Textual References
The previous example is made possible by the use of textual
references. Textual references can identify any widget (or
any widget resource) contained in the application. For in-
stance, the string: "~*newcol.background" identifies the
background resource of widget newcol. Prefix ~* specifies
that this widget must be found in the current instance of the
interface. More precisely, the ~ symbol represents the top
widget of the interface instance and the * symbol indicates
the valid “path” to access widget newcol in the widget tree
from ~ . Reference paths can also contain the names of in-
termediate widgets in order to restrict the scope and avoid
confusion with possible synonyms.

Widgets and widget resources can thus be seen as a hierar-
chical data base. It is important to notice that search scope
can be specified in a more or less precise way (i.e. by either
indicating the full pathname to reach a widget or wildcard
symbols such as *). Moreover, this mechanism is also able
to deal with multiple instances of a same interface: the ~
symbol ensures that a widget will actually be found in the
right instance, (that is to say the instance on which the event
actually occurred). In other words, if the interface shown in

Fig. 4 was instantiated several times, clicking on the update
button of one instance would modify the fields of the same
instance. This property is essential when decomposing an
interface into several subinterfaces because they can possi-
bly be reused by other components of the same application.

Implicit Type Conversion and Expressions
The previous example also illustrates the type conversion
mechanism. Widget resources have internal representations
which are all different (for instance a “size” will be repre-
sented by an integer, a “color” will be a numerical index in a
color map, a “string” may even be encoded by means of a
special purpose representation in order to take into account
various kinds of languages). XXL provides a double conver-
sion mechanism that is able to transform most resource val-
ues into standard ASCII strings and vice-versa. This single
feature can considerably simplify interaction between wid-
gets as it avoids having to write callback functions (whose
only role would be to convert resource values into different
types). For instance, in the following line:
 "~*newcol.background", "{~*entry.value}"
resource value contains an ASCII (entered by the user in the
entry widget) that is implicitly converted into an appropriate
internal type in order to change the background color of the
newcol widget. It must be noticed that these conversions
may involve complex allocation processes (for instance the
allocation of a new color in a color map). In case of failure
(for instance if the color name that was entered was incor-
rect), an error dialog would be popped up and the target re-
source would not be changed. Lastly, the { } symbols mean
that the enclosed string must be evaluated (i.e. all references
must be replaced by their actual value). These symbols can
take place either on the left or the right hand side. They can
also be nested, thus allowing double (or multiple) evalua-
tion. The enclosed string can also contain more complex ex-
pressions (as shown in the next example). The combination
of XXL expressions with the conditional evaluation mecha-
nism makes it possible to define formulas that can change
dynamically widget resources and other variables.

Fig. 3: The Resource Editor of the XXL Builder
Fig. 4: Conditional Evaluation (4a: widget view, 4b: graph view, 4c: text
view of a repetition statement) and Interaction with the Unix Shell (4d).

Fig. 4a

Fig. 4cFig. 4b

Fig. 4d

OTHER FEATURES
Interaction with the Unix Shell
Unix commands can be called from XXL descriptions and
their output can be used to set resource values. For instance,
Fig. 4d shows a simple interface that executes the "ls" ("list
directory") Unix command. Several parameters can be set
by the user (the directory to list, a filtering pattern and some
command specific options). The appropriate Unix command
is generated (by concatenating the entered arguments) when
clicking on the "Ls" button and the resulting output is dis-
played in a text widget. The principle followed here is the
same as in the previous example except for the backquote
characters whose effect is to send the generated string to the
Unix shell and replace this string with the output of the com-
mand:
 (Text,"result",o),
 (TextField,"options",o),
 (TextField,"dir",o),
 (TextField,"f ilter",o),
 /* button that generates and activates the Unix command */
 (Button,"Ls",
 (Cond,"",
 (Set,
 "~result.value",
 "`{ls ~options.value ~dir.value/~f ilter.value}`",
 o),o),o),

Application Specific Objects
XXL provides several means to help the programmer write
application specific objects. First, XXL includes an optional
library that includes functions and objects to manage imag-
es, icons, graphs and low-level graphical primitives (i.e.
lines, rectangles, circles, etc.). XXL provides objects that let
the user deal with simple graphical primitives as if they
were actual widgets. This library also includes functions that
can read and display images (Fig. 2c) and manage the color
tables in an appropriate way. Furthermore, it is also possible
to make widgets movable under certain conditions (for in-
stance, the active icons of the XXL visual builder can be di-
rectly moved by using the mouse pointer). The following
example shows how to specify a graph of movable icons.
These icons are linked by arrows that follow the icons when
they are moved interactively by the user (Fig. 5).
 XlObj icon =
 (Interface , "icon",
 (HBox, "%INSTANCE",o),
 (ArrowButton, "b", (Args, "background","Red",o),o),
 (Button, "%INSTANCE",
 (MoveHandle , o),
 o),o),o),

 XlObj canvas =
 (Canvas, "canvas",
 (Instance , "ico1", icon, o),
 (Instance , "ico2", icon, o),
 (Instance , "ico3", icon, o),

 (Set,
 "*ico1.x", 200, "*ico1.y", 50,
 "*ico2.x", 100, "*ico2.y", 100,

 o),
 (DLink , "ico1", "ico2", o),
 (DLink , "ico1", "ico4", o),
 (DLink , "ico4", "ico2", o),

Icons are generically specified by a single subinterface
which is instantiated as many times as needed by means of
the Instance objects (the %INSTANCEvariable contains the
name of the current instance). The MoveHandle object
means that its parent widget will provide a "handle" to move
the whole subinterface (in other words, the icon subinterface
can be moved interactively by pushing on this handle widget
and moving it). Finally, widgets are linked together by
means of DLink objects. DLinks are materialized by arrows
that are automatically redrawn when the attached widgets
are moved by the user.

Processing V ariable Amounts of Data
Mixing XXL descriptions and C constructs can be of great
help to process variable amounts of data, data that changes
at run time or to create specific objects. For instance, the im-
age browser shown in Fig. 2 can display several images si-
multaneously (each of them in a different window, which is
actually a pre-existent XXL library object). Each time an
image is opened, a corresponding icon (that shows a reduc-
tion of the image) is also created and inserted into the icon-
box widget of the browser. This icon actually results from
the multiple instantiation on an XXL subinterface that could
be coded in the following way:

void AddIcon (char* ima_name, XImage **xima)
{
 static XlObj icon_obj=nil;
 if (!icon_obj)
 icon_obj =
 (Interface ,"%iname",
 (VBox,"%iname",
 (Button,"iconpict",
 (Callback,"buildCallback", ShowPict, xima,o)
 (Cond,"", (Set,"% selected ","%iname",o),o),
 o),
 (Button,"iconname",
 (Args,"labelString","%iname",o),
 (Cond,"", (Set,"% selected ”,"%iname",o),o),
 o),
 o),
 o);
 XlBuildInstance (xlw(iconbox), icon_obj,
 "iname", ima_name, nil);
}

 Fig. 6: The C function that builds the icons of Fig 2c.

This function is called each time a new image is opened.
The returned icon is a combination of several widgets: the
iconpict button that shows a reduced image, the iconname
button that shows the name of the image and a box to con-
tain them. These widgets are produced by instantiating the
XXL description which is itself created at the first call of the
function. This description is parameterized by %iname, an
instance local variable that is used to store the name of the
corresponding image. The ShowPict function is called each
time a new icon is built in order to compute the reduced im-
age that will be displayed on the iconpict widget (C func-
tions can thus be encapsulated into XXL interface to
perform complex or specific functions). Clicking on the two
buttons would change the value of %selected , a global
XXL variable which can act as an active value if a behavior
is associated to it. For instance, the string displayed by the
message widget located in the main window of the browser
(Fig. 2) could be updated when clicking on an image icon by
modifying its description (bottom of Fig. 1) as follows:
 (Label, "message",
 (Cond, "% selected ",
 (Set, XmNlabelString, "{Image: % selected }", o),
 o),

Fig. 5: Movable icons with dynamic links.

The (Cond,"%selected",... statement means that the
enclosed sub-expression will be automatically reevaluated
each time the %selected active value is modified (that is to
say each time the iconname or the iconpict buttons are
clicked). The same mechanism could also be used to create,
open or delete widgets, to execute call-back functions, etc.
This formalism is especially convenient because it makes it
possible to specify simultaneously the objects and their as-
sociated behaviors (the message widget could also be di-
rectly modified by the AddIcon function, but nothing would
indicate in the description of this object that it is dynamical-
ly modified at run-time). This technique is thus very useful
when displaying several separate views of the same data as
behaviors can be specified separately for each view, thus al-
lowing a modular architecture.

Geometry Management
XXL simplifies the way to deal with the geometry manage-
ment capabilities of the underlying toolkit. In Motif interfac-
es, geometry is ensured by specialized widgets, called
Geometry Managers that can control dynamically the lay-
out of their children widgets in three different ways:
• Explicit geometry: the manager does not control the

geometry of its children. The positions of these widgets
are set by direct manipulation (i.e. by moving them with
the mouse when using the XXL Builder).

• Implicit geometry: the children widgets are automati-
cally aligned in a row, a column, or a matrix. Their size
is computed dynamically and their physical position
depends on their rank in the widget tree. The XXL
Builder ensures this correspondence dynamically (this
means that widget geometry is changed when the corre-
sponding icon is moved in the graph view).

• Constrained geometry: the children can be attached one
to another, or to a virtual and elastic grid. XXL offers a
special-purpose object to specify such constraints and a
specialized editor to configure them interactively in the
Builder. Such constraints are specified as follows:

 (Attach,
"menubar", "top:FORM, left:FORM, right:FORM",

 "message", "top:menubar, left:FORM, right:FORM",
 "scrollbox","top:message, left:FORM, right:FORM, bottom:FORM",
 o)

Each line specifies top, left, right and bottom attachments to
another widget, to a position or to the enclosing frame.

Distributed Interfaces
Textual references can not only identify widgets which are
contained in the current application but also widgets of (pos-
sibly remote) other applications. This is done by specifying
a symbolic name in the pathname of the widget reference
that identifies a connection with another application (this
connection being opened by means of an appropriate func-
tion using the socket mechanism). It is thus possible to spec-
ify and modify the resources of the widgets of other
applications in the same way as if they were local. This
mechanism is made possible by means of implicit conver-
sions between the ASCII and the internal values of the wid-
get resources: values are automatically converted to ASCII,
sent through the net and reconverted to the appropriate type.
As the same mechanism applies to active value, it is thus
also possible to execute callback functions located in remote
programs, to perform conditional evaluation of interface
sub-expressions or to update variables in a coherent way.
Finally, interfaces can be exchanged dynamically between
separate applications and interpreted at run-time (for
instance a “server” could answer a request from a “client”
by sending it an appropriate UI). Such interfaces can of
course be defined dynamically by C programs (by producing

and sending the adequate textual description). They can also
be generated by XXL descriptions by using the conditional
evaluation mechanism.

IMPLEMENTATION
XXL object instances control their own representation in the
text, graph and widget views. The first two views are of
course optional and are only displayed when creating or
modifying a graphical interface with the Builder. XXL ob-
jects consist in a (hidden) internal representation that is con-
trolled by a set of input and output methods. Input methods
control user interaction on the different views and the result-
ing modifications on the internal representation. These mod-
ifications in turn trigger the appropriate output methods in
order to ensure coherency between the different views. All
views are thus incrementally updated when the internal rep-
resentation is modified.

Script Interpretation and Textual Representation
The description parser follows the object oriented architec-
ture of the system. XXL classes include a specific method
that is devoted to the textual parsing of the corresponding
object instances. These methods are actually defined at the
metaclass level and are inherited by derived classes in order
to ensure style coherency between similar objects. This
modularized architecture makes it possible to define classes
with new textual styles without having to modify the code
for parsing the pre-existent classes.

Another noticeable feature is that the parser does not only
interpret the input text but also memorizes the locations of
object descriptions. The positions of the textual fields that
define a given object are stored in the internal representation
of this object instance. The textual representation can thus
be dynamically updated when object instances are modified
(for instance when an object is interactively modified by the
user in the graph view). Textual code is thus represented in
two complementary ways:
• A viewable text buffer (the text view) that is updated

incrementally when object instances are modified,
• An internal representation that is controlled by the corre-

sponding object instances.
This internal representation is hierarchical and only deals
with the relative locations of the object descriptions in the
text buffer. Each object instance is considered as a local ref-
erence frame that controls the lengths of the textual fields
that compose it (textual fields being the sequences of char-
acters separated by commas in object descriptions). Abso-
lute positions are computed by scanning recursively the
parent objects that effectively embed a given field. This rep-
resentation is quite efficient for on-line manipulation, and
especially when a group (usually a subtree) of objects is
moved interactively from one part to another part of an in-
terface or when it is exchanged between separate interfaces.

C Code Compilation and Reverse-Interpretation
It is first important to notice that XXL descriptions that re-
side in C or C++ code are effectively compiled. There is no
specific pre-processing stage before the C or C++ compila-
tion and these descriptions do not require run-time interpre-
tation except when using the Builder to modify them. More
precisely, the system works as follows:
• XXL descriptions figuring in C code are always com-

piled and executed as ordinary C statements in any case.
• But these descriptions are post-interpreted dynamically

by the Builder when needed (that is to say when modi-
fied interactively by the user).

This means that the system is able to post-interpret the C
source code from the internal representation of the objects
that have been previously created. We call this “reverse-in-
terpretation” as the parsing of the source code is guided by
the run-time process (which actually results from the compi-
lation of the same source code). In other words, XXL can be
seen as a (C compatible) compilable language that is able to
post-interpret its own source code dynamically at run-time
in order to establish the reverse correspondence between the
internal (i.e. binary) and external (i.e. textual) representa-
tions of the produced objects.

As a consequence, XXL objects can dynamically modify at
run-time their own external representation (i.e. their textual
description inside the C source code). This point explains
why XXL interfaces can be modified dynamically while the
application is running. The Visual Builder can be seen as a
tool interface that gives access to the XXL objects contained
in an application, these objects being able to control their
own representations when created, deleted or modified.

The following paragraphs detail the compilation, execution
and post-interpretation stages:

Compilation. XXL descriptions are transformed into nest-
ed variadic functions by the C pre-processor. ClassName
tokens expand to: “XlNew(XlcClassName ” whereXlNew
is the C function that creates a new object instance and
XlcClassName is a pointer to the hidden representation of
the class. The “o ” token expands to: “NULL) ” whereNULL
acts as a list terminator by indicating to theXlNew function
that no more arguments are to be read. For instance, the fol-
lowing description:
 (HBox, "mybox",
 (Label, "hello", o),
 (Button, "clickme", o),
 o),

would expand to:
 (XlNew(XlcHBox, "mybox",
 (XlNew(XlcLabel, "hello", NULL)),
 (XlNew(XlcButton, "clickme", NULL)),
 NULL)),

Omitting the “o ” terminator leads to unbalanced expres-
sions that can not be compiled. This avoids careless mis-
takes when writing C code directly. In the same way, it must
be noted that the homogeneity of XXL descriptions (almost
all arguments share the same C type) makes them fairly easy
to write while avoiding mistakes.

Execution. Executing a description just creates the internal
representations of the objects it contains and initializes the
parenthood between these objects (parenthood being implic-
itly defined by the level of embedding in the description).
No widget is created at this time: widgets are produced by
applying the XlBuild (or similar) function to the internal
representation of the whole interface once it is complete.
This scheme has several interesting properties:
• There is a clear separation between XXL objects (the

“abstract representation”) and actual widgets (the physi-
cal implementation).

• Textual descriptions can be read inside-out or outside-in
(the first case corresponds to C execution and the second
case to script interpretation) as the resulting widgets are
globally created at the end.

Finally, it must be noted that type checking between XXL
objects is performed at this stage or when modifying de-
scriptions dynamically with the Builder. Objects classes
contain a property that defines the list of the legible child
classes (or child superclasses) of this object.

Reverse-Interpretation. XXL applications can be compiled
in two different ways: an optimized mode is available for fi-
nal use, while the “development mode” should only be used
to edit interfaces with the Builder. In this second mode, de-
scriptions are expanded in a slightly different way than what
is shown above in order to provide object instances with the
file name and the line number where they are located in. Ob-
jects are then post-interpreted by parsing the source code at
the locations (file name and line number) stored at execution
time. Parsing is performed by means of the same interpreter
as for reading scripts except that no object is created (the
aim of reverse-interpretation being just to find the exact lo-
cation of the textual items that correspond to the dynamic
objects). XXL objects and descriptions can then be modified
dynamically by the builder once the correspondence be-
tween the source text and the resulting objects is obtained.

CURRENT STATUS
The XXL system has been implemented under the SunOS4
and SunOS5 operating systems. All Motif 1.2 widgets can
be manipulated through the XXL classes and it is thus possi-
ble to create the same kind of interfaces as would be done by
using this toolkit directly. Furthermore, the system also in-
cludes classes and library functions for dealing with images
and low-level graphical primitives and provides direct ma-
nipulation capabilities. A set of core objects is also provided
for dealing with repetitions, conditional evaluation, widget
presentation and behavior and for decomposing complex
UIs into smaller subinterface components. Finally, various
functions are available for dealing with distributed interfac-
es and for accessing and modifying widgets dynamically
with the same capabilities (textual references, implicit con-
versions, active values...) as in interface descriptions.

The XXL system has been tested and used for realizing var-
ious applications such as: several image processing and
pattern recognition tools, a visual interface with a sensitive
map for accessing a subway data base, a tool for editing hy-
pertextual links in book manuscript images and various
students’ projects. However, the best example of XXL ap-
plication may the one that is the object of this paper, that is
to say the XXL Builder.

ACKNOWLEDGMENTS
The author would like to thank François Tête for his contri-
bution to the implementation of the system.

REFERENCES
1. Avrahami G., Brooks K., Brown M., A Two-View Approach to Con-

structing User Interfaces. Computer Graphics, Vol. 23, No. 3, July 1989.
2. Morse A., Reynolds G., Overcoming Current Growth Limits in UI

Development. Communications of the ACM, Vol.3 6, No. 4, April 1993.
3. Myers B. Separating Application Code From Toolkits: Eliminating

The Spaghetti Of Call-Backs. ACM Symposium on User Interface Soft-
ware and Technology, pp. 211-220, Nov. 1991.

4. Myers B.A., Challenges of HCI Design and Implementation.. ACM
Interactions, Vol. 1, No. 1, pp. 73-83, Jan. 1994.

5. Myers B.A., User Interface Software Tools. ACM Trans. on Com-
puter-Human Interaction, Vol. 2, No. 1, pp. 64-103.

6. Myers B, McDaniel R., Mickish A., Klimovitski A., The Design for
the Amulet User Interface Toolkit.. Proc. Human-Computer Interaction
Consortium meeting, Feb. 1995.

7. Ousterhout J.K., Tcl and the Tk Toolkit. Addison Wesley, 1994.
8. Singh G., Green M., Automating the Lexical and Syntactic Design of

Graphical User Interfaces: The UofA* UIMS. ACM Transactions on
Graphics, Vol 10, No 3, July 1991.

9. Szekely P., Luo P., Neches R., Beyond Interface Builders: Model-
Based Interface Tools, proc. INTERCHI'93, April 1993, pp. 383-390.

10. Wiecha C., Bennett W., Boies S., Gould J., Greene S., ITS: A Tool for
Rapidly Developing Interactive Applications. ACM Transactions on Infor-
mation Systems, Vol 8, No. 3, July 1990.

