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1 Introduction	
 
1968 saw the release of 2001, A Space Odyssey, a movie that stirred the audiences’ imagination with 
the character of HAL, an intelligent computer, who was able to converse freely with humans. 
Considering the tremendous progress in speech interaction and the rise of personal assistants, does this 
vision foreshadow the reality of tomorrow and, as a journalist recently asked me, "Will this kill the 
mouse?” Despite the merits of current graphical interfaces and the analogical1 model they are based 
on, still they involve drawbacks that are highlighted by the success of speech interaction, especially 
for small devices and large environments. The thesis defended below is that gestural interaction could 
provide an efficient means for solving some of these drawbacks, but only if certain conditions are met. 

Current graphical user interfaces (GUIs) rely on the idea that using metaphors from the real world 
makes user interfaces sufficiently 'intuitive' to make them usable by non-experts. As stated by Jef 
Raskin, "intuitive equals familiar" [Raskin94] and, because GUIs resemble something the user has 
already learned, they can leverage "readily transferred, existing skills". Indeed, this idea was 
tremendously successful and allowed billions of people to use computing devices.  

However, while analogical interfaces and direct manipulation [Shneiderman83, Hutchins85] provide 
many advantages, they also involve various drawbacks that were pointed out by the same authors (e.g. 
reduced generality and flexibility, insufficient support for repetitive operations, potentially misleading 
representations, excessive space occupancy, etc.). In particular, analogical interfaces are not very well 
suited for repetitive tasks, and thus for expert users. Moreover, because of limited screen space, most 
UI objects cannot be continuously displayed. Thus, such interfaces rely on many transient objects such 
as menus, tab bars, dialog boxes, or items in file or web browsers. Accessing these items requires a 
substantial number of additional interactions, not mentioning that the user must remember where these 
items are located. Thus, not only is it impossible, in current interfaces, to provide a continuous 
representation of all objects of interest and mediator objects that manipulate them, but transient objects 
also decrease the degree of indirection [Beaudouin-Lafon00]. 

Leveraging users' knowledge 

While analogical interfaces are efficient for discovering commands and data, they are not very 
efficient in taking user expertise into account. Users of a specific piece of software typically perform 
the same actions hundreds or thousands of times, meaning that any user eventually becomes an expert 
in performing certain actions. But still, users will have to interact in the same way as novice users, 
although they already know the commands or data items they need to interact with. In that sense, 
analogical interfaces fail to efficiently employ the knowledge that users gained by using their favorite 
applications. 

This problem comes from the fact that, due to their nature, analogical interfaces rely on recognition. 
As stated by Hutchins at al. [Hutchins85], manipulating representations of objects that behave like the 
objects themselves provides the feeling of directness of manipulation. But this implies that, in order to 
interact with these objects, the user must at least 1) search for them, 2) recognize them, 3) point at 
them. Performing these actions involves a non-negligible cost, especially when objects are transient. 

In contrast, a major advantage of speech-based interfaces is that they rely on the recall of prior 
knowledge. Ideally, they should be capable of understanding whatever the user says, i.e., leveraging 
already existing skills. But even if this is not the case and the user must first learn keywords or specific 

                                                        
1 (Analogy) 1.1 A correspondence or partial similarity. 1.2 A thing which is comparable to something else in significant respects. ‘works of 
art were seen as an analogy for works of nature’ (https://en.oxforddictionaries.com/definition/analogy) 
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sentences, at least the user will then have direct access to data and commands. The same advantage 
applies to command-line interfaces [Scarr11] and other techniques leveraging the lexical (and possibly 
syntactical) richness of language. 

Keyboard shortcuts 

Current GUIs also provide a mechanism based on recall, namely keyboard shortcuts or hotkeys. But 
this mechanism has various drawbacks:  

• Hotkeys are disconnected from the logic of the analogical model because a different input 
modality is used. As a consequence, explicit learning is required [Grossman07], meaning that a 
voluntary action of the user is needed to learn the expert mode. 

• Hotkeys offer limited expressivity because the Roman alphabet contains only 26 letters. This 
small size not only limits the number of possible hotkeys but leads to name collision as many 
commands are likely to start with the same letter. Using other letters or modifier key combinations 
involves limited semantic relationship and/or manipulation difficulties, as multiple keys must be 
pressed simultaneously. 

• Customizing hotkeys is not an easy task for users. It generally requires system knowledge, and this 
task is error-prone because new hotkeys often conflict with already existing ones (which is a direct 
consequence of the previous drawback). This means that most users will not attempt to customize 
their environment to their own personal needs because of the extra effort this involves 
[Mackay11]. 

Therefore, keyboard shortcuts do not comply with at least two of the rules stated by Scarr et al. 
[Scarr11]: they do not maximize the likelihood that users switch to using them and they do not 
minimize the cost of doing so. This may explain why, as shown by previous research [Lane05], 
hotkeys are largely underused although they provide better efficiency. Moreover, hotkeys are 
unavailable on small and large devices because such devices usually have no keyboard (or using one is 
inconvenient). This is especially unfortunate as these devices present a wider range of interaction 
problems than PCs.  

Small and large devices 

The limitations of analogical interfaces are amplified on small mobile devices and large displays both 
for common (the lack of a keyboard, thus of a shortcut mechanism) and different reasons:  

On small (or very small) mobile devices, reduced screen real estate not only limits the number of UI 
objects that can be simultaneously displayed (thus increasing the number of transient objects), but 
presents occlusion and accuracy problems [Vogel07, Vogel09, Wang09]. These constraints strongly 
limit applications, which usually only provide a very limited subset of the features they offer on their 
desktop version (for instance, Adobe Photoshop offers 648 menu commands on a PC and only 35 on a 
tablet [Wagner14]). Considering that tablets are almost as large as extra small laptops, this may 
explain why the tablet market has been decreasing for several years2. These limitations are emphasized 
on smartwatches, both because of their particularly small size and because interactions techniques tend 
to be directly adapted from those used on smartphones [Singh2018]. 

Conversely, the size of large (or very large) displays, such as interactive whiteboards or wall-sized 
displays, requires users to constantly walk and/or perform large arm movements to reach UI objects. 
In fact, some of them (e.g. top-located menu bar items) may be quite hard or even impossible to reach. 
Smart TVs or smart home environments are another interesting case. In the first case, the user may 

                                                        
2 https://www.statista.com/statistics/272070/global-tablet-shipments-by-quarter/ 
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have to point at UI objects displayed on the TV using a gyroscopic remote control or a vision-based 
system such as a Kinect, but mid-air interaction may be tiring [Hincapié-Ramos14, Jan17]. In the 
second case the system may not even have its own display. 

Gestural interaction 

Gestural interaction offers a valuable solution to provide recall-based shortcuts. First, compared to 
speech interaction, gestures are generally faster to perform and do not present privacy problems. They 
can be performed discreetly (e.g. in a meeting) and, possibly, eyes-free, for instance when the user is 
walking, driving, etc. As mentioned above, they are especially useful for small and large devices 
because they provide a shortcut mechanism. They also offer a way to save screen space on small 
devices (by displaying fewer UI objects) and to improve accuracy, as they are less error prone than 
pointing, especially when objects are small [Yatani08, Roudaut09]. For the same reason (pointing 
accuracy), gestures may be easier to use when interacting with a remote control or moving the arm in 
the air. They can also serve as an alternative or a complement to hotkeys on the PC. Gesture 
expressivity not only has fewer limitations than hotkeys but gestures also offer a large space for 
customization, as they are scarcely used on current systems. 

However, gestures (and gesture/command associations) need to be learned. It is thus of critical 
importance to make it easy for users to discover, learn and remember gestures. Unfortunately, in HCI 
these last two aspects may have not yet received the attention they deserve. While numerous studies 
have proposed novel gestural techniques in the last decades, only a limited number of them have 
focused on the aspects of learning and remembering, which in our opinion is unfortunate. 

First, psychology research has shown that human capabilities in this area are remarkable. Some 
researchers even believe that they are (almost) unlimited [Baddeley13]. These capabilities result in a 
large part from evolution: without them, no mammal could find its way back to its burrow, birds 
would be unable to fly thousands of kilometers to migrate, etc. Such strong capabilities provide a 
powerful reservoir of resources that could be utilized to create better user interfaces.  

Second, there are large differences in 'gesture memorability' (by this term, we refer to the 
memorization of gestures as well as command/gesture associations). Gesture memorability depends on 
various factors such as structure, visual and semantic hints, spatial memory, the way they were learnt, 
etc. [Bower69, Nacenta13, Scarr13b]. More research is certainly needed to better understand these 
factors and their impact on performance. 

Third, gestural interaction will actually only become useful, and gain popularity if it provides efficient 
ways of learning and memorizing gestures and gesture/command associations. Despite its promises, 
gestural interaction is only implemented in limited ways in current interfaces and there is no hope this 
will change if these aspects are not better taken into account. As stated by Norman [Norman10], "Most 
gestures are neither natural nor easy to learn or remember. Few are innate or readily predisposed to 
rapid and easy learning". Studies about 'user-defined gestures' [Wobbrock09] usually show that few 
commands elicit gestural agreement, especially if they are of an abstract nature.  

To summarize, our argument is twofold. First, it is important to develop and study gestural techniques 
to increase the expressivity of gestures in order to provide a large reservoir of possibilities. These 
gestures should be quick and easy to perform, and should not conflict with usual operations (pointing, 
dragging) whenever possible. Second, providing mechanisms for better ways of discovering, learning 
and memorizing gestures is of primary importance, otherwise gestural interaction will remain mostly 
limited to zooming and rotating images in commercial systems. 
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Reinventing interaction  

Because gestural interfaces rely on an alternate means of interacting, they offer an almost blank space 
for creating new ways of interacting with applications and data. In current user interfaces, applications, 
commands and data are dealt with in very different ways [Fruchard17]. For instance, keyboard 
shortcuts can activate application commands, but on most systems they can neither activate 
applications nor open files or web pages3. The Apple Dock (or the Windows equivalent), desktop 
icons and their equivalent on mobile devices involve other yet similar constraints. Why should the user 
care whether he wants to activate an application, trigger an application command, open a file or a Web 
page, etc.?  

For instance, users are likely to use their computer to work on different projects simultaneously, but 
may also use it to plan their vacations, work on their hobbies, buy personal goods, manage photos, 
videos, music, etc. This involves performing various actions (that often provide no shortcut 
mechanism) for triggering or opening applications, commands, data or combinations of them. We 
propose enabling the user to perform any type of action through gestural shortcuts and to let the user 
organize them depending on their needs. In an attempt to reduce the traditional distinction between 
applications, commands and data items, we define an action as whatever operation the user can 
perform, or a combination of them. 

This idea was experimented in the MarkPad project [Fruchard17, MarkPad]. MarkPad is a gestural 
technique that provides a large number of simple gestures that can trigger various actions. MarkPad 
also implements a 'gluing mechanism' that allows interacting with applications and data in various 
ways. The gestural actions can be freely organized in groups or subgroups by means of an integrated 
direct manipulation tool. A preliminary longitudinal user study showed this idea was well appreciated. 
Interestingly, users used the system in a wide variety of ways, and used groups for either different 
activities and/or other purposes.  

This system has also been using for about two years by two of the authors. Interestingly, some 
unexpected needs and usages emerged. For instance, the system was adapted for switching 
applications, organizing windows, copying and pasting text without style, storing text and keywords 
(notes, emails, telephone numbers, passwords, etc.). Even though gestural shortcuts are generally 
considered appropriate for frequent commands, some of these actions are not very often performed. 
This is because MarkPad provides a means to retrieve actions that the user needs occasionally and thus 
tends to forget. Since actions are grouped in a way that is meaningful to the user (and both leverages 
semantic and gestural similitude), he can quickly find a related action he often uses, which then leads 
to the more rarely used action. This example highlights that, because of the freedom they provide, 
gestural interfaces can provide new ways of interacting, and that benefits are not only about making 
interaction faster. 

Organization of the document 

Although I have been working on various subjects with my PhD students and my colleagues, this 
document will mainly focus on gestural interaction. Apart from the next section, the first sections 
describe studies (or parts of studies) that were dedicated to the development of new gestural 
interaction techniques. Section 7. is focused on the learning and the memorization of gestures and 
gesture/command associations. Studies related to both topics appear in two sections but describe 
different aspects. For the sake of brevity, the studies I was involved in are summarized, leaving out 
some aspects which are covered in the corresponding papers. Finally, Section 8 concludes this 
document by summarizing these contributions and discussing directions for future work. 
                                                        
3 This may be achieved through hacking or by using custom applications but this is not targeted to the average user.  
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2 Gestures	and	gestural	interaction	
 
The terms gesture and gestural interaction are commonly used, but given various meanings. In the 
HCI domain, the word interaction refers to the interaction between a human and a computing system. 
If this interaction is intentional, meaning that the user is aware that he is controlling a system by 
making gestures, this de facto excludes gestures that only relate to communication between people, 
e.g., the movements of the hands and arms when people talk. However, such gestures, and body 
signals of various natures, might be taken into account in domains such as affective computing, 
embodied interaction or whole-body interaction, which attempt to analyze human activity and generate 
appropriate feedback. In this document, we only consider the case of intentional gestures for selecting 
commands and, in some cases, their parameters. 

As noted by Wobbrock et al. [Wobbrock09], most existing gesture classifications are either dedicated 
to specific subdomains (e.g. pen gestures [Long99], cooperative gestures [Morris06], gesture in virtual 
environments [Vatavu05], etc.), or have been developed for human discursive gesture (e.g. [Efron41, 
Kendon88, McNeill92, Cadoz94]). Karam et al. [Karam05] attempted to propose a taxonomy better 
adapted to the field of human-computer interaction. Their work, which is based on previous research 
in the field, categorizes gesture-based interactions according to four major elements: the gesture style, 
the application domain, the input and output technologies. Gesture styles include: deictic gestures 
(pointing), manipulative gestures (which control some entity), semaphoric gestures (communicative 
gestures based on a stylized dictionary), gesticulation (typically used in combination with speech), 
language gestures (linguistically based as in sign languages). 

Wobbrock et al. [Wobbrock09] followed a different approach. Their taxonomy, which is devoted to 
surface gestures, is based on an elicitation study. The authors were concerned with the fact that 
gestures created by system designers were not necessarily reflective of user behavior. Their approach 
consisted in using a guessability study methodology presenting the effects of gestures to non-technical 
users and then asking users to perform the gestures causing these effects. They classified the resulting 
gestures according to four dimensions: form, nature, binding and flow, which are described in  
Figure 1. 

 

Figure	1:	Taxonomy	of	Wobbrock	et	al.	(from	[Wobbrock09])	
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Compared to previous studies, the form dimension of this taxonomy puts more emphasis on how the 
gesture is performed and the binding dimension adds the notion of a frame of reference. It also 
attempts to qualify the nature of gestures depending on their level of analogy with the physical world. 

Ruiz et al. [Ruiz10] used a similar methodology for proposing taxonomy of motion gestures for 
mobile interaction. Among other differences, this classification takes into account some physical 
characteristics of 3D gestures (related to kinematics, DoFs, etc.). At about the same period, Baglioni et 
al. proposed a design space on the same topic [Baglioni09] and Scoditti et al. taxonomy for gestural 
techniques using accelerometers [Scoditti11] that covers the semantic, syntactic, lexical, and 
pragmatic issues of interaction. Cockburn et al. also proposed a design space for air pointing 
interactions that we will briefly describe in Section 6 [Cockburn11]. Some studies also considered the 
difficulty or perceived difficulty in performing gestures [Cao09, Vatavu11, Rekik14]. 

Finally, Zhai et al. [Zhai12] provided a state-of-the-art review on stroke gestures. Their design space 
relies on five dimensions: analogue vs. abstract, commands vs. symbols, order of complexity, visual-
spatial dependency, aspects related to the implementation and sensor type. 

Nature vs. analogue-abstract 

Interestingly, in this article, the nature dimension of Wobbrock et al. is replaced by an analogue-
abstract dimension, which the authors consider as a spectrum. Analogue is defined as "analogous to 
what a stroke gesture would do in the physical world or according to a cultural convention" and 
abstract is the opposite in their classification. While the dimensions nature and analogue-abstract are 
supposed to capture similar characteristics, this may not be completely true. 

To start with, the fundamental problem with the nature dimension is that it is not an intrinsic property 
of gestures because it depends on the prior knowledge of the user. A Chinese character or a 
mathematical symbol may be abstract for one user and symbolic for another. Similarly, is the "X" 
gesture (Reject/Delete) symbolic (Windows-like) or metaphorical (cutting with scissors)? Moreover, 
sliding gestures that scroll the window content (an object that has "no real existence") physical or 
metaphorical 4?  

As stated by Zhai et al. "The more analogous gestures are to the user’s prior experience, the easier they 
are to learn". But "physicality" is only one aspect among others of prior experience. The nature 
dimension is related to the degree of analogy with the real world, but the analogue-abstract dimension 
is more general as it considers the analogy with previous knowledge. These two notions thus refer to 
different concepts, so that the word analogue may be somewhat misleading in the second case. The 
analogue-abstract dimension seems in fact related to what Raskin would call familiarity [Raskin94], a 
term that might be more appropriate because it does not convey the (false) idea that 'naturalness' is an 
intrinsic, user-independent, property of gestures. 

Moreover, while the level of familiarity is a key aspect for defining a common set of gestures for a 
specific population of users, this does not mean that abstract/arbitrary gestures are necessarily less 
useful. On the contrary, they provide freedom for users and application designers to define 
gesture/command associations that will not conflict with prior experience. Over time, users will have 
performed certain commands such a large number of times that these gestures may become just as 
overlearned [Shiffrin77], thus 'natural', as the words, symbols and other knowledge that people acquire 
in school and throughout their whole life. 

 

                                                        
4 not having real existence but representing some truth about a situation or other subject  
(https://dictionary.cambridge.org/dictionary/english//metaphorical) 
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Guessability studies and the fallacy of 'natural" gestures 

Whatever the merits (or problematic assumptions [Tsandislas18]) of guessability studies, a common 
problem of such studies is that only a few commands achieve a high level of gestural agreement (for 
instance only 7 actions had higher than 40% agreement scores in [Wobbrock09]). Moreover, as noted 
by Zhai et al., the actions that received "high" agreement were similar to their physical effects, i.e., 
these were analogue (aka familiar) gestures. In real applications, users have to deal with tens or 
hundreds of abstract commands that do not necessarily evoke any particular gesture (or will evoke 
different gestures for each user).  

Another important point is that, in many cases, users do no need to trigger a 'command' but an 
application and/or a command and/or one or several data item(s). For instance, one of the most 
frequent actions that people perform is opening certain (user-specific) web pages. They may also need 
to open certain applications (calendar, contacts, tasks, etc.) or certain files or directories, or send 
emails to certain persons, or retrieve certain phone numbers, passwords, codes, memos, etc. On a 
mobile device, they may want to control their own home environment (e.g. switch on a certain light or 
TV or Web channel), which requires specifying a specific application, command and data item. 

In other words, gestures and other alternate interaction techniques are only useful for actions that users 
cannot easily perform with current interfaces, and these actions tend to be user-specific. Why would 
anyone need new interaction means for actions that are already well supported (e.g. 'move-a-little', 
'zoom-in', 'next') or that they seldom perform ('close', 'reject')? New interaction means must provide 
net added value to have a chance to be adopted [Mckay91]. For instance, speech-based interfaces are 
mostly used in cases where analogical interfaces provide insufficient efficiency or comfort 
(e.g. personal assistants for interacting with the home environment). While gestural interfaces cannot 
leverage the richness of language, they can enable performing more complex actions than just simple 
common 'commands'. 

However, this requires changing the current paradigm that gestures should be 'natural', hence easily 
discoverable by a large number of people. In many cases, gestures are in fact useful for performing 
specific user- or application-dependent tasks. As stated in the introduction, this requires developing 
techniques that help to discover, learn and memorize gestures and command/gesture associations. 

Discovering gestures 

One important advantage of pointing-activated menus is that they are easy to understand and to use, 
notably because direct manipulation ensures an excellent level of stimulus-response compatibility 
[Fitts53]: the 'response' to the display does not require the user to perform any arbitrary encoding 
operation. However, they present various drawbacks that are described in the introduction, especially 
when using small and large devices. 

Marking menus (Figure 2) [Kurtenbach91, Kurtenbach93a], which are themselves an improvement 
over Pie menus [Hopkins91], provide a remarkably straightforward solution for discovering and 
learning gestures: 1) In novice mode they work almost the same way as standard menus, and thus have 
the same advantages; 2) Expert mode relies on performing (almost) the same gestures as in novice 
mode, so that gestures are learned implicitly through the force of repetition. This combination of 
factors makes gestures both easy to discover and to learn.  

Moreover, Marking menus (MM) rely on a simple but clever mechanism to differentiate between the 
novice and expert modes. While the expert mode is immediately available (which makes it faster to 
use), the novice mode is triggered after a small delay. Using the novice mode thus involves a cost. 
This cost is small and therefore acceptable to users. But still, this feature is likely to encourage users to 
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learn the expert mode [Grossman07]. Furthermore, once users remember which menu item they want 
to trigger, they 'naturally' point to it faster, which has the magical effect of performing the action in 
expert mode. In other words, the user "seamlessly switches between novice and expert behavior" 
[Kurtenbach94]. 
 

            

Figure	2:	Hierarchical	Marking	menus	and	Octopocus	
	(from	[Kurtenbach93a]	and	[Bau08])	

As mentioned by Bau & Mackay [Bau08], this approach, which takes advantage of novice users’ 
hesitation when they are unsure of a gesture or command, offers an excellent compromise between 
learning and efficient use. The same authors proposed OctoPocus [Bau08], which extends this 
approach for any type of single-stroke gesture. As Marking menus, OctoPocus provides a dynamic 
guide that combines feedforward (to show the available gestures) and feedback (to indicate if the 
gesture was properly recognized). However, OctoPocus is not limited to stroke gestures and provides 
more sophisticated feedforward by rendering the gesture path using translucent colors (for the 
remaining part) or variable thickness (for indicating the state of the recognition process). This 
approach has also been adapted to multi-touch [Freeman09, Ghomi13] and 3D gestures [Delamare16] 
and a design space of guiding gestures has been proposed by Delamare et al. [Delamare15]. 

Memorisation and performance impact of hierarchical structures 

Marking menus rely on straight radial gestures starting from the activation point, which make them 
similar to the pointing gestures used in novice mode. Usually, only the direction of these gestures is 
taken into account. A consequence of this design is that a single Marking menu can hardly contain 
more than eight commands (12 at the price of decreased performance [Kurtenbach93]). As shown in 
[Bailly08], menus of current applications tend to contain more elements, with an average breadth of 
more than 12 items and about 45% (resp. 25%) containing more than 14 (at least 16) items. 

Hierarchical (Compound) Marking menus [Kurtenbach93a] offer a solution to provide more items 
(Figure 2). But compensating limited breadth by a greater depth entails several disadvantages. First, 
for reasonably large breadths (e.g. about 8 items), this makes the resulting gestures (which are a spatial 
combination of elemental gestures) less accurate and longer to perform, as can be seen in Figure 3 
[Kurtenbach93, Zhao04]. Moreover, some gestures (among which, unfortunately, are some of the 
simplest ones) are ambiguous and are therefore not available for N-level menus if N > 2 (e.g., a 
submenu located on the main menu's right side cannot have a right directed gesture).  

Second, in many cases breadth is preferable to depth [Kiger84, Norman91, Jacko96, Cockburn09]. 
Deep menus may make it harder to discover commands, find them again, and thus learn them. 
Moreover, the limited breadth of each submenu does not allow for organizing commands in an optimal 
way [Zhao06]. Groups of related commands may have to be split into several submenus. Conversely, 
unrelated commands may have to be placed in the same submenus to save space and avoid increased 
menu depth. While the effects of menu organization may disappear with practice [Card85], these 
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constraints are likely to impair learning because the structure does not properly reflect the semantic 
relationships [Mandler67, Bower69, Wagner14].  

 

Figure	3:	Response	time	and	percentage	of	errors	(from	[Kurtenbach93a])	

Multi-stroke (aka Simple) menus [Zhao04] were proposed as a solution to improve the performance of 
hierarchical Marking menus. They consist in breaking down the compound gestures into elementary 
parts that are drawn independently (the mouse is released after each mark). However, this may conflict 
with the idea that chunking [Buxton86] should help performing and memorizing commands. This 
remains an open question, as the memory performance of both variants of hierarchical Marking menus 
has not been formally compared. Moreover, Multi-stroke menus do not provide a solution for 
increasing the breadth and thus do not solve the other above-mentioned problems. 

A possible solution to increase the breath consists in using symbols [Li10, Lu11, Roy13] or more 
complex gestures [Appert09], but this makes it difficult to design multi-level menus. In the next 
section we propose several approaches that rely on simple gestures and address this problem, as well 
as other limitations of Marking menus. 

3 Stroke	gestures	
This section presents several techniques that have been developed to augment Marking menus or to 
solve some of their limitations: Flower menus allow increasing the menu breadth, MicroRolls provide 
an alternative to sliding gestures that do not conflict with standard interactions on a touch screen, 
Control menus enable selecting a command and controlling its parameters in a single gesture. In 
addition, CycloStar leverages geometrical attributes and kinematic analysis for panning and zooming a 
view in a continuous manner. 

3.1 Curved	gestures:	Flower	and	Leaf	menus	

Flower menus [Bailly08a] (which were developed by Gilles Bailly, whose PhD thesis was co-directed 
by Laurence Nigay) provide a solution to the limited breadth of Marking menus by using a broader 
vocabulary of shapes (Figure 4). Flower menus rely on simple curved shapes to make them easy to 
perform (and, possibly, to memorize): Aside from using the direction, this technique also takes the 
curvature of the gesture into account. More precisely, it uses both the curvature and the curvature 
direction relative to the direction of the gesture. These two attributes can be seen as a single one with 
the convention that curvatures can have a negative value. This new resource significantly increases the 
expressiveness of Marking menus, and therefore the total number of possible commands. For instance, 
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56 commands were available in [Bailly08]: 8 directions x 7 curvatures (one = 0, three ≤ 0, three ≥ 0; 
see Figure 4, right). 

 

  

 

Figure	4:	Flower	Menus	

The performance and the accuracy of Flower gestures was evaluated in an experiment were 14 right-
handed participants performed all possible gestures. In theory, performance in expert mode should be 
the same for straight gestures for both Flower and Marking menus, but it should increase with 
curvature, as stated by Viviani's two-thirds power law [Viviani82]. In practice, total time was about 
500ms for straight gestures and (respectively) 40%, 65% and 85% longer for curved gestures. The 
success rate, which was obtained by using a K-nearest-neighbors classifier [KNN] with a separate 
training and testing set of gestures, was high enough to ensure sufficient performance: 99% of correct 
gestures for the first 24 commands (curvature 0 and ±1), 96.5% for the first 40 commands (curvature 
0, ±1, ±2) and 93% for all gestures. 

The completion time was a bit longer than in some other experiments. However participants were not 
asked to draw similar gestures in sequence but to alternate gestures with different curvatures. While 
this procedure may lower performance, it also provides a more realistic estimate, as users are unlikely 
to perform long sequences of similar gestures in real-life situations. Considering that curved gestures 
require an increased amount of time, and that only a small number of commands are very frequently 
used, frequent commands should be associated with gestures with null or small curvature, as in Figure 
4 (left), which shows an adaptation of the File menu of Microsoft Word 2003 for Windows. 
"Dangerous" commands can be associated with the most curved gestures to prevent involuntary 
activation.  

As shown in Figure 4, another advantage of this technique is that it highlights the relationship between 
items. Each direction corresponds to a group of related items, which makes it possible to reintroduce 
inner groupings of items, a well-known feature of linear menus that was lost in the original Marking 
menu design. Such groupings help structure the menu by placing semantically related commands close 
to each other. This feature should help novice users to find and retrieve commands [Norman91] and to 
learn gesture/command associations, since related commands usually correspond to related gestures 
[Bower69, Wagner14]. This feature also inspired the name for this technique because the arborescent 
structure evokes plants or flowers. 

In a second part, we compared the memorization performance of Flower menus vs. standard linear 
menus and Polygon menus [Zhao06] in a study that will be described in Section 7.  

Adaptation to small screens: Leaf menus 

Flower menus have been adapted to mobile devices (smartphones) under the name of Leaf menus 
(Figure 5) [Roudaut09]. Marking menus pose specific problems on mobile devices. One of them is 
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that they may (partly) lie outside the screen limit when used as context menus because of the two 
following reasons. First, they are more than twice as large as linear menus. Second, linear menus 
incorporate a mechanism that places them to the left or the top of the activation point (or shifts them 
vertically) when there is not enough space to display them entirely. Such a mechanism is not easily 
adaptable for use with Marking menus because they need to be centered around the activation point to 
make gestures unambiguous. 

 

Figure	5:	Leaf	menus	

For these reasons, and also to stay close to user habits, Leaf menus are linear menus. However, they 
integrate an expert mode based on Flower menus (Figure 5, left). While Leaf menus do not rely on 
performing the same gestures in novice and expert modes, the same input modality is used in both 
cases. Moreover, expert mode gestures and the menu items to which they correspond are made clearly 
visible in novice mode. 

To ensure compatibility with linear menus, Leaf menus provide only one quadrant of a Flower menu. 
This quadrant is mirrored (its X or Y axes are inverted; Figure 5, right) when the linear menu is placed 
on the left or the top of the activation point (the linear menu is not shifted to allow performing Flower 
gestures properly).  

A preliminary study showed that this unusual property did not seem to disturb users. Participants were 
quickly able to use the expert mode (both modes could be activated at the user's choice), especially 
when using straight gestures (25% during the first block = 4 repetitions). More surprisingly, they were 
also able to draw gestures that they had only seen in a mirrored representation. Combined with user 
comments, this observation suggests that mirrored gestures can provide an efficient way of solving the 
lack of space problem on mobile devices. Finally, as already observed in [Yatani08], the error rate was 
almost 5% lower when making gestures than when pointing at (Window Mobile-like) menu items. 

To summarize, the added dimension provided by curvature offers a simple and reasonably efficient 
means of enriching the vocabulary of commands. In particular, it allows to overcome a limitation of 
Marking menus that makes them difficult to adapt to current applications. 

Related study: Wave menus 

Wave menus [Bailly07a] were developed to provide a novice mode to Multi-stroke menus [Zhao04]. 
Because Multi-stroke menus are based on a temporal (rather than spatial) combination of straight 
strokes they require less space than hierarchical (Compound) Marking menus [Kurtenbach93]. This 
property makes them especially interesting for mobile devices. Wave menus work the same way as 
Multi-stroke menus in expert mode. Their novice mode relies on an original layout (Figure 6, left) 
where menus are represented as circular rings that expand to reveal submenus within their parent. This 
layout is compatible with the expert mode as stroke gestures always correspond to the submenu that is 
currently displayed in the center. Another advantage is that parent menus may go out of the screen, but 
the most important submenu for interacting remains visible, as it is located in the center. 

However, this unusual 'inverted' representation was a bit puzzling to some users. Therefore, we 
proposed an improved version, named Wavelet menus [Francone10], which rely on a stacking 
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metaphor (Figure 6, center and right). An animation technique gives the feeling to the user that the 
submenus are stacked, which is in fact an illusion as the current submenu depends on the parent menu 
item that was selected. A qualitative evaluation showed that this simple illusion reinforces the 
perception of the hierarchy and helps the user to understand how the technique works. Another 
experiment showed that participants could use Wavelet menus eyes-free while walking. 

         

Figure	6:	Wave	and	Wavelet	menus	

Survey and design space 

A design space of menu techniques was also developed during this study [Bailly07b]. This design 
space is organized according to usability criteria (speed & accuracy, learnability and memorization, 
satisfaction) and applicability criteria (adequation with the application, with the platform, with the 
task), which are inspired from [Shneiderman86a]. An interactive web version was also made available 
[MenUA].  

This eventually led to the publication of a literature review paper that was published in ACM 
Computer Surveys [Bailly16]. This article presents a taxonomy of menu properties, which is organized 
along three dimensions: Menu System, Menu, and Item. Each menu property is illustrated by various 
menu techniques of the literature. This survey also focuses on menu performance through a list of 
criteria and discusses under-researched areas and some open research questions. 

3.2 No-friction	rolling	gestures:	MicroRolls	

Rolling gestures [Benko06, Bonnet13] can provide an interesting alternative to sliding gestures such as 
those used in Marking menus. Under certain conditions, these two kinds of gestures can be 
differentiated, which can be advantageous for touch screens. One of the major problems of such 
devices is their reduced number of interaction states compared to computers. A computer mouse (or an 
equivalent device) enables at least three states [Buxton90] depending on whether 1) no button is 
pressed (tracking state, for pointing and mouse hovering), 2) the left button is pressed (for selecting 
and dragging), 3) the right button is pressed (for menuing). In fact there is also a fourth state, i.e., 
when the mouse is in the air (for clutching and when no interaction is performed).  

With a touch screen, the first and third states do not exist which leads to several limitations. Pointing is 
then essentially performed in the air (4th state). It is thus less accurate and necessarily ends with a 
selection (2nd state). Moreover, mouse hovering is not supported (no 1st state), and neither is menu 
activation (no 3rd state). 

On touch screen devices, menu must thus be opened using more or less convenient alternatives, such 
as a delay or a double click. This makes common operations (e.g. cut and paste), longer and more 
tedious to perform than on a PC. Moreover, user interfaces for touch screens generally rely on drag 
gestures to scroll pages. As they use the same type of gestures, Marking menus thus conflict with 
standard interactions. The absence of a 3rd state, which could be used to distinguish Marking menu 
gestures, complicates this problem. This makes it problematic to use Marking menus on touch screens, 
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thus on mobile devices (a delay is already used for activating the novice mode; a double click would 
complicate and slow down the interaction). 

Because rolling gestures do not involve friction, they can be physically distinguished from 
sliding/dragging gestures5. While dedicated hardware can be used, a simpler solution consists in 
detecting the very specific form of these gestures, or, more precisely the form of the signal that is 
captured by the touch screen. 

         

       

Figure	7:	MicroRolls	(and	other	tested	gestures)	

This idea was presented and evaluated as part of Anne Roudaut's thesis, in collaboration with Yves 
Guiard [Roudaut09a]. Specifically, we assessed the ability to differentiate between 16 types of 
gestures, which were performed by 10 participants during the same experiment. We thus tested: 

• Six MicroRoll gestures (the proposed technique): 4 straight gestures in all cardinal directions 
and 2 circular gestures (clockwise and counterclockwise); 

• Four Drag gestures 
• Four Swipe (aka Flick) gestures [Geißler98] 
• Two Rubbing gestures (diagonal to-and-fro movements of the finger proposed in [Olwal08]). 

Each of the 16 gestures was performed four times, using the thumb, at nine screen locations covering 
the screen real estate. They were recognized using a KNN recognizer [KNN] and a set of 10 features 
adapted from Rubine's algorithm [Rubine91]. The overall recognition rate was more than 95%. 

MicroRolls performance was compared with two common interaction techniques, tool bars and 
context menus, using buttons of two different heights (either sized as Windows Mobile items or 
iPhone-like icons) in a copy and paste task. Tool bars, which involve the drawback of occupying 
permanent space, were used as a baseline. MicroRolls were significantly faster than tool bars and 
menus containing items (resp. 5.8s, 8.1s, 10.1s) and not slower than tool bars and menus containing 
(rather large) icons. 

The MicroRolls technique provides a novice mode (RollMark menus) inspired by Marking menus and 
it was also combined with a zooming technique called TapTap [Roudaut08] for selecting small targets. 

                                                        
5 More details are provided in [Roudaut09] 
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This combined technique, named TapZoom, was about twice as fast as tool bars (containing items for 
zooming in and out) in a copy and paste task. 

3.3 Command	selection	and	control	in	a	single	gesture:	Control	menus	

Gestures can serve not only to select commands but also to control discrete or continuous parameters 
of these commands. We investigated this idea in an interaction technique called Control menus 
[Pook00a, Pook00b, Lecolinet02a] developed in the context of the PhD thesis of Stuart Pook.  

A Control menu (Figure 8) works like a Marking menu except that, as soon as the pointer (or the 
finger) has been moved a given distance from the center of the menu, the selected command enters a 
mode that enables controlling its parameters by moving the pointer. The operation ends when the user 
releases the mouse button (or lifts his finger). This design allows users to proceed directly from 
command selection to direct manipulation without interruption. As with Marking menus, a user that 
has learnt the position of the desired command does not have to wait to see the menu and can move the 
pointer immediately. In all other respects, the gesture is the same.  

      

Figure	8:	Control	menu	(left),	zooming	operation	(right)	

Controls menus have first been introduced as a mechanism for zooming and panning Zoomable User 
Interfaces (ZUI) [Pook00b]. Figure 8 (right) shows the mouse movements to choose the Zoom 
command and to then control the zoom level. Once the Zoom command (right menu item) is selected, 
the cursor changes on the screen (and the menu is closed in novice mode). From this moment until the 
mouse button is released, mouse movements to the right (movements 2 and 4) zoom in and 
movements to the left (movement 3) zoom out. 

The feedback is immediate: the view changes as the user moves the mouse. The user releases the 
mouse button once the desired scale has been obtained. During the zoom operation, the user can undo 
the zoom by moving the mouse up or down a large distance, and then release the mouse. Undo 
operations are only possible for commands that have only one parameter, i.e. when only one of the X 
or Y directions is used. 

Similarly, a Control menu can select and control commands with two parameters, e.g. a two-
dimensional Pan (top menu item). During the operation the view is scrolled according to mouse 
movement. This type of interaction is appropriate when the two parameters are integral [Jacob92], i.e. 
when these attributes are combined to form a single composite attribute in the user’s mind. A diagonal 
mouse movement has a simple meaning in this situation (e.g. panning the view diagonally). Finally, 
Control menus can also support commands with discrete parameters. In this case, a linear (or tabular) 
menu is displayed as soon as the command is triggered.  

Control menus can also serve to provide additional commands on touch screen interfaces while (to 
some extent) preserving standard interactions. For instance, if the Pan operation is triggered as 
described above, seven other commands are still available. A drawback of this solution is that users 
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must perform a small movement (towards the top the screen in our example) before the pan operation 
is started, which may be disturbing for novice users (however the pan operation then works as usual). 
By replacing the Zoom command with a Text Selection command, text selection could be done in the 
same way. For this, the user would place his finger before the first letter to be selected and then 
perform a gesture along the X and Y directions to select the text. Copying and pasting could then be 
done using other gestures instead of depending on delays and popup menus. 

Because Control menus rely on an activation distance (a small distance that is empirically chosen) to 
delimit the selection of the command and the control of its parameters, they are conceptually related to 
crossing interfaces [Accot02, Appiz04]: The second step of the operation (parameter control) is started 
as soon as an (invisible) line is crossed. This feature enables merging both steps (selection and control) 
in a single operation but may make this technique inconvenient for introspection or fine tuning 
[McGuffin02] as the parameter value changes as soon as the line is crossed. Additional feedback (e.g. 
displaying the value) or using a dedicated widget as in [McGuffin02] would then be helpful. 

This technique was evaluated by Guimbretières et al. [Guimbretière05] in a study that compared a 
standard tool palette, a Toolglass [Bier93], a Control menu and a Flow menu [Guimbretière00]. Flow 
menus are another type of radial menus that share some similarities with Control menus and were 
introduced almost simultaneously. The main difference is that Flow menus require leaving and 
reentering the central rest area in specific directions to select menus, which enables more complex 
interactions but also makes this technique more difficult to learn [McGuffin02].  

With all these techniques, except tool palettes, selection and direct manipulation can be merged. And 
all of them are one handed, except Toolglasses. With Toolglasses, users use their non-dominant hand 
to manipulate a translucent tool palette and their dominant hand to select commands and perform 
direct manipulation tasks. 

Participants were asked to perform a sequence of operations that consisted in selecting a color and 
defining the endpoints of a line. Results show that Control and Flow menus are faster 6 than 
Toolglasses, which are faster than tool palettes. Control menus are faster than Flow menus in the 
selection of commands (no difference for the entire task) and Toolglasses are less error prone than the 
other techniques. 

These results highlight the appeal of techniques that can fluidly mix command selection and direct 
manipulation. For instance, the Toolglass technique was 22% faster than the tool palette for the tested 
task. However, differences in performance and preferences across interaction techniques may depend 
on the task, as pointed out by Mackay [Mackay02]. This study also shows that two-handed techniques 
are not necessarily faster for all tasks. This result has some practical implications as two-handed 
techniques 1) may be difficult to use on small devices (lack of space, one hand holds the device), 2) 
require additional hardware when using a PC and, in this latter case, 3) require users to switch both 
hands between the keyboard and the pointing devices. 

3.4 Gestures	as	trajectories	in	space-time:	CycloStar	

With kinematic analysis, which does not only consider geometrical paths but space-time trajectories, 
yet more information can be extracted from the input flow. For any particular path traced by the finger 
on a tactile surface, the user may have produced an infinite number of different velocity profiles. 
Kinematic analysis thus exploits a larger proportion of the information conveyed by gestures than does 
geometric analysis [Williamson04]. 

                                                        
6 In this paragraph and the following one "faster" means significantly faster, "less" significantly less. 
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A well-known instance of a kinematics-based technique is flicking (or swiping), a scrolling technique 
now widely available in commercial systems. A flick and a drag are easy to distinguish kinematically: 
at release, finger velocity (and acceleration) are typically positive for a flick and close to zero for a 
drag [Aliakseyeu08]. Another example is Rub-Pointing [Olwal08], which relies on diagonal to-and-
fro movements of the finger (see section 3.2). This technique allows a zooming progression to be 
controlled in closed loop by a modulation of the oscillation frequency, each reversal of the rubbing 
gesture resulting in a doubling of viewing scale. Depending on the amplitude of the gesture, the 
movement is either interpreted as a rubbing or a dragging gesture.  

Oscillatory gestures are of special interest because it is quite easy for humans to perform oscillations 
and keep them stable, in particular with the hand [Kugler87]. The parameters of the oscillatory motion, 
which the user can modulate at every single instant, can be used as controls. This idea was generalized 
within the context of the PhD thesis of Sylvain Malacria, in a study conducted in collaboration with 
Yves Guiard. This approach, named CycloStar [Malacria10], focuses on elliptic oscillatory gestures 
and, more specifically, on straight and circular periodic gestures (i.e. ellipses with an eccentricity of 0 
and 1, respectively).  

Such gestures have several interesting properties. First, they make it theoretically possible to control 
up to seven mathematically independent variables. An ellipse has five geometrical degrees of freedom 
(DoFs) in the plane, which may be described as: (1) major axis orientation relative to the X axis, (2) 
amplitude along its major axis, (3) eccentricity (the minor/major axis amplitude ratio), (4) and (5) X/Y 
ellipse location. Provided the approach is kinematic, we have another two DoFs, (6) frequency and (7) 
drawing direction (clockwise or counterclockwise). Indeed, it would be unreasonable to expect users 
to be able to vary all these variables orthogonally (some preferred couplings are known to exist, e.g., 
between amplitude and frequency in walking [Danion03]). Nevertheless, elliptic control offers an 
abundant set of DoFs for designing novel techniques for interaction on sensitive surfaces.  

We derived two techniques from this principle. CycloPan was designed for panning large documents. 
Like Rub-Pointing-Click [Olwal08] it relies on to-and-fro oscillatory gestures but exploits more DoFs. 
CycloPan exploits stroke orientation φ (panning direction), stroke amplitude A and frequency F 
(F = 1/ 2*(T2-T1) where Ti stands for time as shown in Figure 9). F controls the gain, in a similar 
fashion as mouse pointer ‘acceleration’, which enables panning faster when long distances must be 
covered (details in [Malacria10]). 

                                      

Figure	9:	CycloPan	

Finger motion during the first stroke of a CycloPan oscillation has the same effect as a standard drag 
gesture, but the view continues to be panned in the initial direction after the first direction reversal.  
Then direction correspondence is restored after the second reversal, and so on. Contrary to standard 
drag, which requires clutching, no movement in motor space is wasted as both back and forth strokes 
contribute to the pan. Panning can thus be performed for large distances without releasing the finger. 
Moreover, the panning speed can be increased by controlling the frequency (thus the gain). These two 
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properties make CycloPan well adapted for long displacements without requiring specific hardware (as 
for instance RubberEdge [Casiez07], which also avoids clutching but requires extra equipment). 

Importantly, CycloPan is compatible with standard interaction techniques like drag and flick. A drag is 
just a degenerate case of a CycloPan gesture where no reversal occurs and a flick gesture can be 
detected in the usual way. To avoid triggering CycloPan involuntarily, it is activated only if the mean 
speed of the first stroke exceeds 50 pixels/sec (and if a direction reversal occurs), and deactivated if 
the finger stops moving for a 300ms delay (or if it is lifted). 

CycloZoom combines zoom and pan. It is also compatible with standard interactions, and with 
CycloPan. CycloZoom is triggered when the user performs approximately circular gestures. This 
means that the eccentricity of the elliptic movement is used to trigger either CycloPan or CycloZoom. 
Once triggered, five DoFs are then used to control CycloZoom (Figure 10): 

• The drawing direction (clockwise or counterclockwise) controls zooming (resp. in and out), 
• The frequency (i.e., the velocity) controls the gain: the faster the angular velocity of the finger, 

the faster the zoom progression,  
• The circling radius indirectly controls the level of accuracy because it affects the velocity (so-

called Vernier effect). When zooming too fast or too slow, users can use the radius as an 
adjustable gain parameter. This parameter may be easier to control for small adjustments than 
the velocity (or both can be controlled simultaneously), 

• The center of the circular gesture (X, Y position) corresponds to  the expansion or contraction 
focus. This enables panning and zooming simultaneously, and thus makes it possible to 
always keep the region of interest visible when zooming. 

In summary, CycloZoom makes it possible to zoom and pan simultaneously, while controlling the 
scale with a dynamically adjustable level of resolution.  

                

Figure	10:	CycloZoom	

CycloPan was compared with Drag and Flicking in a path-following task (see [Malacria10] for 
details). Performance was fastest with CycloPan and slowest with the Drag technique (about 30% 
slower). Differences were significant between CycloPan and Drag, but not between CycloPan and 
Flick. However, contrary to Flick, CycloPan offer continuous control over panning speed, which can 
be advantageous for certain tasks (but not for the tested task).  

CycloZoom was compared with Rubbing and Drag for navigating on a map. We resorted to the multi-
scale pointing paradigm proposed in [Guiard04], using a fairly high index of difficulty (ID = 15). For 
example, on Google Earth such an ID would correspond to the task of reaching a 500m target (say, a 
stadium) on the opposite side of the planet. CycloZoom was significantly faster for zooming out 
(33.5% time saving) and fell short of significance for zooming-in (11.3% time saving) but non-
parametric tests were significant. This difference may be due to the fact that the gain factor was higher 
for zooming-out than for zooming-in, because pilot tests showed that this last operation was harder to 
control. Finally, both techniques were well appreciated by users, especially CycloZoom. 
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As a conclusion, this study shows that it is possible to derive a rather large number of variables 
(seven) from gestures (including kinematic dependent variables) and that users are able to perform 
gestures appropriately to control these parameters. CycloPan and CycloZoom are not meant to replace 
well-known and well-tried techniques such as flicking or basic drag (with which they are compatible) 
but rather to enrich the users’ resources for input expression.  

3.5 Interacting	with	small	devices:	WatchIt	

Because the small screen of smartwatches suffers from visual occlusion and the fat finger problem, we 
investigated the use of the wristband as an available interaction resource (PhD of Simon Perrault, co-
supervised by Yves Guiard). WatchIt [Perrault13] is a prototype device that extends interaction 
beyond the watch surface to the wristband (Figure 11). It can also be used as a simple input device, on 
a bracelet without any screen, or on a watch with a non-tactile screen. 

WatchIt consists of a 2-cm wide (0.79”) wristband that is composed of four resistive potentiometers, 
two for each band. These potentiometers are attached to a cloth wristband with a circular-shaped piece 
of plastic in the middle to simulate the watch bezel. The potentiometers (position sensors) consist of 
thin bands with enough flexibility to be used around the wrist. Not only does WatchIt use a cheap, 
energy efficient and invisible technology, but it also involves simple, basic gestures that allow good 
performance after little training. 

 

Figure	11:	WatchIt:	(a)	pointing,	(b)	sliding,	(c)	with	two	fingers,	(d)	experimental	prototype	

WatchIt can be used in two different ways. First, it can serve to perform analog continuous gestures, 
for instance for scrolling a list (Figure 12, left). This considerably increases the input surface by 
extending it from the touch screen to the wristband. This not only avoids the drawback of screen 
occlusion by the finger, it also evokes the metaphor of a moving band whose content is revealed when 
it reaches the screen. Second, this device can be used for interacting eyes-free.  

 

Figure	12:	Mockup,	First	and	final	prototypes	(with	Arduino	Fio,	BlueeTooth	shield	and	battery)						

WatchIt offers a total of 15 gestures: five gestures on each of the two bands of the wristband and five 
double-band gestures with one finger touching the inner band and another finger touching the outer 
band. These five gestures consist of two sliding gestures (either towards the bezel or towards the 
clasp), and three pointing gestures (a brief press of the fingertip on the band, which is divided into 
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three areas). For double-band gestures, the presence of a second finger on the external band is seen as 
an all-or-nothing modifier (the reverse combination was not considered to avoid ambiguities). 

These 15 gestures were tested in two experiments (12 and 8 participants). The first experiment 
evaluated their performance in eyes-free interaction. The success rate was particularly high for one-
band pointing gestures (> 97%), and a bit lower for the other gestures (above or close to 90%). The 
second experiment compared these gestures with an audio menu technique [Zhao, Asbrook11]. The 
audio menu was slightly more accurate than the gesture technique (93.83% vs. 91.25%) but it was 
substantially slower (3.19s vs. 2.69s).  

In a last experiment (12 participants) we compared sliding gestures and absolute pointing on the 
wristband with pan and flick on the tactile screen for list scrolling. We considered different list sizes 
(15, 60 and 240 items) and asked participants to reach one particular item located at various distances 
in these lists. Participants were allowed to interact on the tactile screen at any time in all conditions 
(e.g. for fine tuning). Absolute pointing was the fastest technique (4.82 vs 7.50s vs 5.47s), especially 
for small lists (15 items) where it was nearly twice as fast as pan and flick on the tactile screen. Sliding 
gestures on the wristband was the slowest technique because it was hampered by the fact that the 
sensors we used (resistive potentiometers) could not support flick gestures, a limitation that could be 
solved with more advanced technology.  

Finally, it is interesting to note that, although participants could use the tactile screen at any time, they 
tended to stick with scrolling on the bracelet. They all agreed that absolute pointing was the best 
technique, but half of them explained that they liked scrolling on the bracelet, despite its lower overall 
performance. 

3.6 Interacting	collaboratively	with	large	devices:	CoReach	

Multi-touch wall-sized displays afford collaborative exploration of large datasets and re-organization 
of digital content. However, standard touch-based interactions, such as dragging to move content, do 
not scale well to large surfaces and were not designed to support collaboration, such as passing an 
object around. This study introduced CoReach [Liu17], a set of collaborative gestures that combine 
input from multiple users in order to manipulate content, facilitate data exchange and support 
communication (Figure 13). This study was conducted by Can Liu during her PhD, which was co-
supervised by Michel Beaudouin-Lafon, Olivier Chapuis and myself. 

 

Figure	13:	CoReach:	Cooperative	gestures	on	wall-sized	displays	

To draw inspiration for the design of cooperative gestures in this context, we first conducted a study to 
observe how people collaboratively manipulate physical objects and understand the dynamic 
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exchanges among users within their workflow. Based on the findings in this study, we then designed a 
set of cooperative gestures to facilitate data-centric collaborative tasks on large interactive surfaces.  
This set of gesture involves multi-touch "Hand" gestures that are performed using at least three 
fingers. Other gestures are performed using one or two fingers: 

• Throw and Catch: The action initiator throws an item towards the action follower with a Hand 
Swipe gesture. The item flies in that direction with a friction effect. The action follower can 
then catch the item with a DoubleTap gesture anywhere. The item then flies over to this 
position.  

• Preview: The action initiator performs a Hand Dwell gesture (more than 600ms) on an item. A 
temporary copy of the item appears under the hand of the action follower if she performs the 
same gesture. She can then get the real item by performing a DoubleTap on the copy before 
the action initiator releases her hand. 

• Shared Clipboard: A Hand Tap on an item adds it to a virtual clipboard. Such items are high- 
lighted with a thick green border. A Hand DoubleTap collects all selected items. A second  
Hand DoubleTap moves them to this new location. A Finger Zigzag gesture cancels the 
selection. 

These multi-touch gestures depend on temporal and spatial criteria and require different levels of 
synchronization between users (respectively, modest, strong or no synchronization).  

A first experiment compared CoReach gestures with standard gestures. All the participants preferred 
performing the task with CoReach gestures. This study shows that CoReach gestures reduced physical 
fatigue and facilitated collaboration. A second experiment compared using CoReach gestures on the 
wall-sized display only vs. on the wall-sized display and on tablets (with minor adjustments to the 
gestures to accommodate the tablet). This experiment showed that users were able to blend direct and 
indirect interaction on different surfaces, using a variety of strategies. 

4 Multi-finger	gestures	
 
By taking advantage of the rich dexterity of our hands, we can obtain large sets of postures and 
gestures [Olafsdottir14]. Multi-finger or two-handed gestures thus provide many possibilities for 
increasing the interaction bandwidth. However, current technology (e.g. capacitive input sensors) 
provides limited information about the user’s hand posture, i.e., mostly the number and position of 
finger touches, but not the finger’s identity. In this section we present several techniques that leverage 
the multitouch capabilities of touch screens, which either consider the relative positions of fingers or 
just how many of them touch the surface. In addition, we also investigated whether finger 
identification might help users invoke commands on touch screens. 

4.1 Finger-Count	shortcuts	

A simple solution to activate commands consists in using zero-order gestures (i.e. postures) and just 
count the number of fingers touching the sensitive surface. This idea, which relies on the human 
ability to code numbers with fingers, was proposed in a study conducted with Gilles Bailly [Bailly10, 
Bailly12]. The Finger-Count technique was initially developed to provide gestural shortcuts for 
interacting with a standard menu bar displayed on a multitouch table. It makes use of both hands: the 
non-dominant hand selects the Nth menu (where N is the number of fingers of this hand touching the 
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surface) and the dominant hand selects the Mth item in this menu. Each hand can select up to five 
menus or items, for a total of 25 items.  

Finger-Count is thus compatible with a standard menu bar system, except that the number of fingers 
needed for activating a certain menu or item are displayed on the right side of this element (instead of 
the associated keyboard shortcut), as shown on Figure 14. Not all menus or items are required to be 
associated with a finger-counting shortcut, so that the menu bar system can contain an arbitrary 
number of menus and items. A short study, showed the feasibility of the technique, with a success rate 
of 91.4% (versus 93.8% when pointing on menu items in the usual way).  

       

Figure	14:	Finger-Count	menus	

This technique has several advantages: 1) it provides a simple substitute to keyboard shortcuts, 2) 
contrary to Marking menus, it does not conflict with standard interactions (as previously said, on touch 
screens dragging gestures are often used for scrolling content), 3) it does not require identifying 
fingers, a non-trivial problem as explained below. However, using more than one finger increases the 
perceived difficulty, but this effect decreases with familiarity [Rekik14]. Moreover, this technique 
requires differentiating the dominant and non-dominant hand. In this study this was just done by 
splitting the sensitive area of the multitouch table in two vertical parts (one for each hand) but this 
simple solution is not appropriate in all contexts (e.g. multi-user interaction). This technique was later 
adapted to mid-air interaction, as will be explained in Section 6. 

4.2 Multi-finger	chords	

Considering chords provides an additional means to extend input expressivity. However, not only 
might it be difficult for the average user to produce chords (and also, to distinguish them without 
ambiguity and to remember them), but they also require the identification of fingers. Existing solutions 
have resorted to clumsy external hardware such as gloves or cameras [Ramakers12] or built-in table 
cameras. Another solution, which is compatible with standard capacitive touch screens and does not 
require additional hardware, consists of using registration gestures [Au10, Lepinski10]. However, as 
explained in [Wagner14] these solutions require additional time and may require visual attention (e.g. 
[Au10]) or be challenging to perform (e.g. Lepinski10]).  

Arpège [Ghomi13] also focuses on static chording gestures. This technique, which relies on 
geometrical features based on an initial calibration of the user’s hand, guides the user step by step by 
extending the Octopocus technique [Bau08]. Arpège also proposes guidelines based on studies of the 
motor abilities and biomechanical constraints of the human hand. Results suggest that users prefer 
relaxed to tense chords, chords with fewer fingers and chords with fewer tense fingers. 

In a study conducted with Julie Wagner and Ted Selker [Wagner14], we proposed a method for 
recognizing a set of Multi-Finger Chords that relies on generic hand-shape characteristics. This 
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technique can thus be used on standard capacitive tablets and does not require a calibration procedure. 
Users do not have to spread or flex their fingers, thus to perform tense chords, and only perform three-
fingers chords. Similar to playing piano-chords, some fingers touch the surface while some are lifted 
up, so that fingers remain extended in a relaxed position.  

Multi-Finger Chords rely on three families of simple postures based on the observations of human 
hand-shape characteristics [Missile84] and provide simple ways of measuring them. These 
measurements are based on relative measurements, which make them insensitive to variations in the 
size of users’ hand. These three families (detailed in [Wagner14]) rely on: 

1. The relative distance between neighboring fingers (ratio D1/D2 on Figure 15) 
2. The relative length of fingers (angle 𝛼) 
3. The order of the fingers (relative position P) 

      

 

Figure	15:	Multi-finger	chords	(neighboring	finger,	thumb-index	base	&	thumb-pinky	basis	families)	

Each family provides three different gestures. The nine resulting gestures can be unambiguously 
distinguished using two-step postures. Steps are rapidly performed in sequence (≈ 150ms apart); 
contrary to [Lepinski10], the second step requires holding down only one finger.  

An experiment with 20 users (9 gestures x 5 replications) with different hand sizes showed the 
feasibility of the approach. A KNN classifier was used for recognizing the postures in a way 
simulating three different usage cases: (1) private use, (2) a device shared by a small group of users, 
(3) a public setup. Depending on these cases, recognition was trained and tested: (1) with trained 
gestures (TG) of the test user (for all users, then results were averaged), (2) with TG of all users 
including those of the test user, (3) with TG of all users excluding those of the test user. An m-fold 
cross validation procedure was used so that a tested gesture was never part of TG (e.g., in case (1) 
different gestures of the same user were used for testing and training). The overall recognition rates 
were, respectively, 98.5%, 95.2% and 91.5%. These results suggest that this technique provides 
sufficient efficiency in the first two cases, which are also the most common usage scenarios for tablets. 
Recognition rates could probably be improved in the third case by using a more sophisticated 
recognizer, and/or complementary attributes. In a second part, this study investigated memorization 
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performance depending on random vs. categorized gesture-command mappings. These results will be 
described in Section 7.1. 

4.3 MTM	menus	

MTM menus (Gilles Bailly) [Bailly08b] is a one-handed multitouch technique that combines Marking 
menus and finger postures. The palm heel is used to trigger this technique, which avoids relying on 
delays, etc. (as touch screens do not offer a menuing state as already explained). Because of its specific 
shape, a touch with the palm heel can be easily distinguished from a touch with a finger if the device 
provides basic information about the contact surface (e.g. the size of its two main axes).  

Touching the screen with the palm heel also makes it possible to display and orient the menu (Figure 
16) according to the position of the palm. The thumb can then control a Marking menu that selects a 
submenu. This submenu consists of a double range of buttons that appear close to the expected 
positions of the four other fingers, taking into account the position of the thumb and the (previous) 
orientation of the hand heel. This technique makes it possible to select a relatively large number of 
items (8 menus x 2 x 4 buttons = 64 items) using one hand. Even more commands (64 x 8 = 768) can 
be made available if each item controls a circular menu. While MTM is more complex and involves 
more steps than the previously described techniques, it suggests that quite a large number of gestures 
can be performed with only one hand. 

 

Figure	16:	MTM	menus	

4.4 Finger-dependent	buttons	

In the Glass+Skin study [Roy15] (PhD thesis of Quentin Roy, who was codirected by Yves Guiard), 
we tried to better understand how interaction techniques relying on finger identification might help 
users invoke commands on touch screens, especially on mobile devices where the screen real estate is 
limited. For this purpose, we conducted a user study (14 participants) comparing the performance of 
finger-dependent buttons (Glass+Skin condition) with traditional buttons (Glass condition) for various 
sizes of the command vocabulary (Figure 17, left).  

The target area was displayed as a horizontal layout extending over the complete width of a 
representation of an iPhone screen (59 mm) simulating the common toolbars/docks of smartphones. 
Button height was a constant 0.90mm (as on an iPhone) and button width depended on the number of 
buttons. Finger-dependent buttons triggered different command depending on which finger was used 
(one of the five fingers of the dominant hand of the participants). They were five times larger than 
traditional buttons so that the total number of commands was the same in both cases. In other words, 
finger-dependent buttons involved the added difficulty of choosing the proper finger, but this was 
compensated by the fact that they were larger. The goal of the study was thus to learn when it becomes 
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beneficial to use finger identification, provided that this allows using larger buttons without 
consuming more space.  

       

Figure	17:	Sizes	of	the	command	vocabulary	and	visual	cues	

 
 

   

The results show that time, and more particularly errors, increased at a slower pace with finger-
dependent buttons as vocabulary size was raised (Figure 18), so that, the larger the input vocabulary, 
the more promising the identification of individual fingers. We also analyzed the data in terms of a 
throughput measurement, which enables combining speed and accuracy information into a single 
quantity. As shown on Figure 19, the maximum is reached for a larger size of the vocabulary (higher 
entropy) with Glass+Skin (green curve) than with Glass (red curve). In addition, we proposed visual 
cues to communicate this novel modality to novice users (Figure 17, right) 

 

Figure	19:	Throughput	for	Glass	(red)	and	Glass+Skin	(green)		

Figure	18:	Total	time	and	error	rate	vs.	the	number	of	commands 
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5 Combining	attributes	and	modalities	
 
As shown in the previous sections, various information can be extracted from the input flow: for 
instance, up to seven attributes were used in the CycloStar technique. Taking into account multiple 
attributes provides a powerful means to increase the expressivity of gestures, not only for controlling 
the parameters of a command, as in CycloStar or Control menus, but also for increasing the number of 
commands a gesture menu can support. This idea was already used in the Flower menu technique, 
which relies on using both the direction and the curvature of gestures. In a similar fashion, Zhao 
proposed the ZoneMenu technique [Zhao06], which relies on using both the position (for detecting a 
zone in the screen), then the direction of a straight gesture that depends on this position. 

In this section we describe two techniques that leverage combinations of gesture attributes and another 
modality. BezelTap combines bump and taps detection, or bumps, taps and straight gestures. 
MarkPark leverage the position, the direction and the length of straight gestures and also makes use of 
a supplemental modality (tactile feedback). In addition, both techniques rely on bezel gestures and do 
not conflict with standard interactions. 

5.1 BezelTap	menus	

This study (developed by Marcos Serrano with the help of Yves Guiard) introduced a new type of 
hybrid gestures, called BezelTap gestures [Serrano13], which allows performing micro-interactions7 
[Ashbrook09, Ashbrook11] on mobile devices. As noted above, a limitation of mobile devices is that 
they provide little support for quick commands because they lack keyboard shortcuts. This problem is 
exacerbated when they are used to control other devices (TV and multimedia devices, home 
equipment, etc.) because mobile devices constantly switch to sleep mode to save energy. Interaction is 
thus hampered by the need to reactivate them whenever they have gone to sleep, typically by pressing 
a physical button and sliding a widget on the screen. In addition, the user must then select the proper 
application and the proper command.  

While gestural shortcuts can offer a solution to the first problem (activating an application and a 
command), they provide no help for solving the second problem (reactivating the device quickly). This 
technique provides a way of triggering all necessary actions by performing a single gesture. Instead of 
relying on gestures only, it uses a combination of input modalities. Hence, BezelTap gestures consist 
of two input events in close succession: a tap on the bezel of the device (i.e. a bump), which is 
detected by the accelerometer, and a tap (or two taps or a sliding gesture, as explained later) on the 
touch screen. This technique requires little visual attention and can even be operated eyes-free.  

While the idea of using the bezel was proposed in previous studies for activating commands 
[Hinckley10, Bragdon11] and opening menus [Hinckley11, Jain12], BezelTap gestures offer several 
additional advantages. First, they do not interfere with common interaction techniques (including 
Bezel gestures), because they rely on a supplementary input resource (a tap on the bezel). Second, this 
tap enables waking up the device just in time to make it possible to detect the gesture on the touch 
screen. The accelerometer must thus be running constantly, which is not a problem as such devices 
consume low energy (or very low energy, e.g. accelerometers used in biofeedback devices such as the 
Fitbit wristband). 

                                                        
7 “interactions with a device that take less than four seconds to initiate and complete” [Ashbrook09] 
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Figure	20:	BezelTap	gestures	

A first study showed that there was very little risk of an accidental activation of the technique, a 
problem that would have impaired its usability. A second study (12 participants) evaluated the 
performance of basic BezelTap gestures (one tap on the bezel, one tap on the screen) in terms of speed 
and precision. The second tap had to take place on an item of a menu bar adjacent to the bezel. The 
menu bar either contained 4, 5, 6 or 7 items and was located either on the top, bottom, left or right side 
of the device.  

The position of the second tap (on the screen) is used to determine which item is selected. The first tap 
(on the bezel) is generally performed close to the first tap, as this reduces distance, but its position is 
(mostly) unknown because it is detected by the accelerometers (two accelerometers are used to ensure 
perfect tap detection on all sides). The technique was tested in expert mode, meaning that the menu bar 
was not displayed (the screen of the tablet was completely black). A Samsung Galaxy Tab 10.1 tablet 
was used for the experiment. 

Selection time is reasonably short (about 1.5s), which makes this technique appropriate for micro-
interactions. The number of items has little or no influence on selection time but impacts accuracy 
(about 96.5% for 4 or 5 items and 90.5% for 6 or 7 items, see Figure 21). There is no consistent effect 
of the location (although left and right menu bars are smaller due to the aspect ratio of the tablet) and 
no consistent interaction between the number of items and the location. This experiment suggests that 
an odd number of items is preferable and that 5 items seems to be an optimal size on a tablet. 

 

Figure	21:	Error	rates	for	4,	5,	6	and	7	items	

A last study (12 participants) evaluated two variants of the technique relying on menus for increasing 
the number of available commands (Figure 22). The first variant, BezelTap3 (BT3) involves three 
taps: one tap on the bezel and two taps on the screen. The second tap selects a semi-circular menu 
containing 5 items and the third tap an item in this menu (except for items located in the corners, 
which directly trigger a command to make the technique easier). The second variant, BezelTap Slide 
(BTSlide), is similar except that the two last taps are replaced by a sliding gesture. The starting 
position and the direction of the gesture are used simultaneously to select the menu and the item in this 
menu respectively. 



 30 

Both variants can support up to 64 items (Figure 22): 4 items in the corners + 60 menu items (4 sides x 
5-2=3 menus x 5 items). They were compared with an extension of Bezel Gestures [Bragdon11] that 
allowed selecting the same number of items. While all techniques support a novice mode (using a 
delay as with Marking menus) they were tested in expert mode (black screen). BezelTap gestures 
(BT3 and BTSlide) are more accurate than Bezel Gestures (resp. error rates: 5.2%, 4.5% and 8.7%) but 
slower (about 1.6s vs. 1.12s for Bezel Gestures). However, as mentioned above, BezelTap gestures do 
not require additional interactions to reactivate the device.  

 

Figure	22:	BezelTap	menus	(BezelTap3	and	BTSlide) 

Considering Ashbrook's definition of micro-interactions [Ashbrook09], this technique thus seems 
appropriate for this usage, especially in cases where a mobile device serves to control other equipment, 
as for instance a multimedia or a smart home system. 

5.2 MarkPad				

MarkPad [Fruchard17] was developed by Bruno Fruchard during his PhD thesis (co-directed by 
Olivier Chapuis). As noted in the introduction, MarkPad allows creating a very large number of 
gestural shortcuts that the user can spatially organize as desired. Our initial goal was twofold: (1) 
explore the limit of gestural techniques using straight gestures, (2) offer a maximum of flexibility to 
the user for organizing gestures (and commands) in his personal workspace. The touchpad8 of a laptop 
was used in this study but the technique has also been adapted, with some modifications, to mobile 
device touchscreens. 

As noted above, straight gestures offer the double advantage of being especially fast and easy to 
perform. Curvature or complex shapes reduce speed [Bailly08, Cao09] and may also involve making 
more errors. However, the expressivity of straight gestures is limited if just using their direction. A 
first solution consists in taking into account both their position and their direction as in ZoneMenus, 
Bezel menus or BezelTap [Zhao06, Bragdon11, Serrano13]. Using bezels provides two advantages 
compared to ZoneMenus: 1) the number of zones that can safely be used is larger because the bezel 
(and its corners) provides visual and tactile feedback (e.g. at least 4 sides x 5 zones on a tablet with no 
indications on the screen [Serrano13]); 2) bezel-gestures do not conflict with ordinary pointing or 
dragging operations which are started outside the border area.  

Straight gesture expressivity, visual and tactile marks 

Nonetheless, the number of possible gestures remains relatively limited (e.g. 64 in BezelTap). More 
radical solutions are thus needed to significantly increase expressivity. We therefore explored the last 
attribute that characterizes a straight-line stroke, its length. As explained below, this solution 
considerably increases the number of possible gestures (680 in our experiments). However, as stated 
by Kurtenbach and other authors [Kurtenbach93, Zhao06, Nancel08], length is difficult for people to 

                                                        
8 We also considered using the touchpad for performing commands in a previous study [Berthellemy15] 
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precisely control, especially without visual feedback, and this is why Marking menus are scale-
independent.  

We investigated a simple solution that consists in using visual or (passive) tactile marks for guiding 
the user (Figure 23, left and center). Such marks only involve small modifications that do not require 
specific skills and cheap materials can be used (e.g. plastic sheets, paper stickers, adhesive tape, 
marker paint). Visual marks can consist of small unobtrusive landmarks. Tactile marks can be almost 
invisible, for example by using transparent adhesive tape directly stuck onto the touchpad. Moreover, 
tactile marks enable "eyes-free" interaction, in the sense that the user may not need to look at the 
touchpad for performing gestures. Previous studies have shown that physical buttons, the bezel or the 
device border could help users to interact with a smartphone [Bragdon11] or with the back of a mobile 
device [Corsten 14]. 

 

Figure	23:	Two	examples	of	tactile	marks	and	MarkPad	novice	mode	

MarkPad gestures and menus 

A MarkPad gesture consists in a straight line starting from a (rectangular) zone located in the touchpad 
border and ending in any other (rectangular) zone, including a zone in the border. A gesture is thus 
defined by two X,Y positions (and a X,Y tolerance), or, roughly equivalently, by a position, a 
direction and a length. All zones can be predefined or customized by the user according to his 
preferences (an integrated editing tool is provided for this purpose). A zone typically corresponds to 
the presence (or the absence) of a tactile or visual mark, but the user can choose not to put marks in 
certain areas (Figure 23, center). A starting zone corresponds to a menu that includes all the gestures 
starting from this zone. The technique also supports 2-level menus (thus, compound gestures), in 
which case the starting zones of the submenus can be located anywhere on the touchpad. 

The novice mode is triggered by touching a menu zone (i.e. its starting zone) with a certain delay (e.g. 
0.5s). The corresponding menu appears in transparency over the current applications on the computer 
screen  (Figure 23, right). Pressing a predefined key combination (e.g. Fn-Ctrl) displays all menu 
zones, but does not open the menus. Touching/releasing a menu zone then opens/closes this menu. 
This feature allows quickly previsualizing menus. Once a menu is displayed on the screen, the user 
can switch to the editing mode and change its content by pressing another predefined key (e.g. Shift). 

Performance experiments 

The goal of these experiments was to assess the feasibility of the technique when using visual or 
tactile marks. We considered an extreme case (680 possible gestures) in order to test the limits of the 
technique. Because, marks (especially tactile marks) may make the interaction less pleasant for 
pointing or dragging tasks, we considered also cases where marks were only present on the border area 
of the touchpad. We thus considered six different cases: 

1. No marks (Exp. 2) 
2. Visual marks everywhere (Exp. 1) 
3. Tactile marks everywhere (Exp. 1 and 2) 
4. Tactile marks on the borders, visual marks elsewhere (Exp. 1) 
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5. Tactile marks on the borders, no marks elsewhere (Exp. 2) 
6. Visual marks on the borders, no marks elsewhere (Exp. 2) 

Because not all conditions could be performed in a single experiment, we conducted two experiments 
(Exp.1 and Exp. 2) with different participants. Condition 3 (Tactile marks everywhere) was performed 
in both experiments. As all 680 gestures could not be tested, we chose a representative subset of 42 
gestures (Figure 24, left; details in [Fruchard17]). A grid of 7 × 5 = 35 zones was used for both 
experiments. Twenty of them were in the border area (7 x 2 + 5 x 2 - 4) and used as starting zones. 
Therefore, the total possible number of MarkPad gestures was 20 × (35-1) = 680. Compound gestures 
(2-level menus) were not tested in this experiment. Results show that accuracy is: 

• Insufficient (less than 72%) without marks (Condition 1).  
• Sufficient (about 95%) with marks everywhere, whatever their type (Conditions 2, 3 and 4). 
• Acceptable (about 90%) with marks only on the borders (Conditions 5 and 6). 

Contrary to our expectations, the type of marks had very little or no impact on accuracy (no significant 
difference between Conditions 2, 3, 4 and between Conditions 5, 6). However participants seemed to 
slightly prefer tactile marks and they spend slightly more time looking at the touchpad with visual 
marks (but this did not affected the total task duration). In fact, tactile marks may require longer 
training time (thus more user confidence) to demonstrate their potential. 

Task duration, which is approximately 2s in all cases (execution time about 1s), is in line with other 
techniques supporting a large (although lower) number of commands (e.g. 3 × 8 hierarchical Marking 
menus, 6 × 16 Zones or Polygons menus). Note however that time performance is likely to depend on 
the number of gestures. For instance, Bezel menus, which can roughly be seen as a special case of 
MarkPad menus with large areas, provide an execution time of 382ms for trained users [Jain12]. 

These experiments show that quite a large (and in fact unrealistic) number of gestures can be 
performed with sufficient accuracy when using either tactile or visual marks. They also suggest that 
the technique can work properly with marks only on the border provided that larger zones are used 
elsewhere. Another possibility would be to use dynamic tactile marks that are activated after the user 
initiates a gesture from the borders, by using technologies that provide tactile feedback in real time 
[Bau10, Casier11]. Finally, visual marks could be displayed on computers equipped with a 
"screenpad" as the Asus Zenbook 15 Pro  (Figure 24, right). This could also enable making marks 
more informative, thus helping the interaction. 

              

Figure	24:	Evaluated	gestures	(left),	Gesture	detection	(center),	Screenpad	(right)	

Unintentional activations 

Because MarkPad relies on gestures starting from the touchpad border, it uses the touchpad as an 
absolute pointing device (using its internal API). The touchpad is thus both used as an absolute device 
(for MarkPad) and a relative device (for other interactions). Hence, MarkPad does not conflict with 
interaction techniques such as active borders or hidden toolbars (or methods improving them 
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[Schramm16]) that trigger commands or display menus when the mouse cursor reaches the corners or 
the borders of the screen.  

However, MarkPad gestures would conflict with ordinary gestures starting from the border area of the 
touchpad. Our assumption is twofold: 1) users will avoid willingly touching this area when using the 
technique, 2) they rarely touch the border area involuntarily [Malacria16], especially on now common 
large touchpads. We conducted a study to verify this hypothesis. We logged the gestures of 12 
Macbook participants (unaware of the MarkPad technique) using their own computer during one 
week. A "gesture" consisted of any sequence of events between a touch and a lift event. 

We then analyzed this data by considering a combination of constraints. A gesture was identified as a 
MarkPad gesture (Figure 24, center) if it 1) started in the border area (W constraint), 2) was longer 
than L, 3) ended sufficiently far from the border area (G constraint). Results are provided for various 
values of these constraints in [Fruchard17]. For instance, the detection rates were, respectively, 0.22%, 
0.61%, 1.54% for W = {1, 5, 10mm}, with L = 5mm and G = 10mm.  

In practice, W can be as small as 3mm without causing possible misdetections because of a too small 
border size. Moreover, a valid MarkPad gesture must end in a given zone, not just somewhere outside 
the border as in this study. This means that, with a reasonable number of zones that are properly 
located (as explained below), the number of involuntary activations can be quite low. 

Actual use 

The MarkPad prototype, which runs on MacOSX, has been used for about two years by two of the 
authors (here called "expert users"). A preliminary longitudinal study of 1 to 2 months has also been 
performed with six participants (3 students in ergonomics, 2 students in HCI, 1 researcher in HCI). 
The two expert users used tactile marks only on the border of the touchpad. The six participants used a 
simplified version without marks and had regular meetings with an ergonomics researcher about every 
two weeks to understand how they used the system, and to help them if needed. They were provided 
with an initial configuration with 5 menus that they then modified according to their needs. 

At the end of the study, four participants used 5 menus (except one, 4 menus) and between 12 to 36 
gestures (mean 23). Unfortunately, the last two participants experienced problems because of an 
erroneous initial menu configuration, and thus used only 11 and 6 gestures. All participants 
customized their menu configurations, both for changing the menu layout and for specifying their own 
favorite actions. They used an average of 17.8 different gestures and were able to perform 88% of 
them in expert mode, meaning that they could easily learn and remember gestures.  

In comparison, the two expert users use up to 10 menus and more than 100 gestures. One of them uses 
about half of them in expert mode. However these results cannot be directly compared because, 
contrary to the expert users, the participants did not use the technique with marks. The technique can 
thus efficiently work without marks, but at the cost of a much smaller number of gestures, as already 
suggested by the previous experiments. 

Most of the actions were used by the participants for opening user-defined Web pages (33%), favorite 
applications (27%), or for zooming in and out the current application window (18.5%). One user 
connected MarkPad with another application that allows performing complex combinations of 
commands. Thus, in most cases, participants did not use MarkPad for performing application 
commands but actions that have no hotkey equivalent (except for zooming but this command requires 
a three key combination).  

Most participants liked the fact that they could group arbitrary actions according to their needs. For 
instance one participant created a "PhD" menu. Another participant organized his gestures as if they 
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belonged to cascaded menu (although 2-level menus were not yet available). The two expert users also 
created groups that were either related to their different activities or other sorts of thematic 
relationships. While both used a large number of gestures, the associated actions and the way they 
grouped them were quite different and user-specific. 

Unintentional activations were the main problem faced by the participants when they started using the 
technique (especially the two already mentioned participants). This is because, the menu (i.e. starting) 
zones must be located according to the hand movement of the user. Thus, for right-handed users, the 
left side of the touchpad is "safe", but the right side is not. Similarly, the bottom side is "safe" for most 
users but not the top side because they may involuntary touch it when using the keyboard. The pattern 
is opposite for some other users because their palm heel tends to touch the bottom of the touchpad. 
These interesting differences would merit a dedicated study to understand how users place their hands 
and their fingers when interacting with a laptop. Anyway, for all of our 8 users, two sides of the 
touchpad were safe while the two others needed to be used with care (e.g. only for gestures parallel to 
the bezel side or ending sufficiently far from it). Provided that these rules are followed, involuntary 
activations then become negligible. 

In summary, MarkPad can be used in various ways: with marks it can provide a large number of 
gestures for expert users, without marks if can still be used efficiently for activating a smaller set of 
actions. Participants used most gestures in expert mode, which suggests that the technique helps 
learning and remembering them, presumably because it flattens the hierarchy of commands and 
leverages spatial memory [Scarr12, Gutwin14]. By enabling users to group arbitrary actions according 
to their own needs, it provides an alternate way for interacting with computing devices, which 
leverage semantic relationships instead of forcing users to rely on functional categories. Finally, it is 
worth noticing that PageFlip, a technique that relies on corner-command mappings has been recently 
proposed for interacting with a smartwatch [Han18]. PageFlip gestures also take into account the 
angle and the distance, which shows that this approach can be effective even with very small surfaces. 
 

6 Three	dimensional	and	body	gestures	
 
Taking advantage of the popularization of gyroscopic sensors and vision-based technologies such as 
the Kinect, I contributed to several studies devoted to the use of 3D gestures. These studies took place 
in the context of Gilles Bailly's postdoctoral fellowship and of the theses of Dong Bach Vo and 
Mathias Baglioni (which were both co-supervised by Yves Guiard). These studies focused on two 
different application frameworks: mobile device augmentation and remote interaction with an 
interactive display. Before describing them, I present some general considerations about the types of 
3D gestures, input delimiters, 2D interaction and body-relative gestures.  

Different types of 3D gestures can be considered depending on their interaction dimensions. Cockburn 
et al. [Cockburn11] proposed a framework for air pointing interactions with five dimensions: the 
reference frame for the air pointing technique, the scale of input control, the input degrees of freedom, 
the feedback modality, and the feedback content. Considering the reference frame, this framework 
distinguished between spatial locations that are absolute (i.e. relative to the world), relative to an 
external object, relative to the body, relative to the device, or hybrid combinations.  

This classification can also be applied to non-pointing gestures. For instance, when performing 
directional gestures with a gyroscopic device (e.g. a smartphone or a remote control), these gestures 
are relative to the world. However, when performing the same kind of gestures with a Wii Remote or a 
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Kinect to control a TV set, they are rather relative to this external object as the device (or the arm) may 
have to point towards the vision sensor to ensure proper detection. 

It is important to remark that gestures with a device (i.e., by rotating or translating it) are not relative 
to the device, but to the world or to an external object. Gesture that are actually relative to the device 
can be performed on the device (2D interaction) or around the device (3D interaction). In the first 
case, the interaction can take place on the touch screen, on the back of the device [Baudisch09], on its 
sides, etc. In the context of on-body interaction, body parts such as the arm can play the role of a 
"device" that serves as a sensitive surface [Harrison10, Xiao18] for the other arm. 

3D gestures and delimiters. A major obstacle with 3D gestures is that they are generally 
indistinguishable from everyday motions [Ruiz11a]. An input delimiter is thus needed to avoid false 
positives. This delimiter can be a specific gesture such as, for instance, tense positions of the hand 
[Baudel93], opening or closing the hand [Bailly12] or a DoubleFlip gesture [Ruiz11a]. In this context, 
we developed JerkTilts, a technique that provides self-delimited gestures, which is presented below. 

2D gestures is not 2-dimensional.  In contrast, 2D gestures do not (necessarily) require delimiters 
because the third, "unused" dimension serves to detect whether the user wants to interact. In fact, 2D 
devices such as a mouse or a touch screen leverage all three possible translations, the one 
perpendicular to the surface being used to activate the device (by touching the screen or pressing the 
mouse button). Strictly speaking, there is thus no such thing as a '2D interaction': while 2 DoF devices 
capture a 2D signal, they require 3D movement. Hence, following a terminology used in the graphics 
domain, 2D½ interaction may be a more appropriate name. 

Body-relative gestures  can involve some subtle problems, as will be illustrated below in a study that 
investigates gestures on the belly. Such gestures are susceptible to ambiguity and symmetry problems 
may arise since the user can interpret the information in a mirrored way.  

6.1 JerkTilt	self-delimited	gestures	

JerkTilt gestures [Baglioni11] were developed by Mathias Baglioni during his PhD thesis. The 
purpose of this study was to provide fast gestural 3D shortcuts for the smartphone. As explained 
above, a major problem of such gestures is that they require a delimiter because they are often 
indistinguishable from everyday motions. But using delimiters complicates interactions and slows 
them down. In an attempt to solve this problem, we investigated whether certain gestures could have a 
signature that would allow to distinguish them from ordinary movements. This study on self-delimited 
gestures led to the development of the JerkTilt technique. 

JerkTilt gestures are quick back-and-forth tilting gestures that combine device pitch and roll. Because 
these gestures consist of abrupt back-and-forth movements they have a very specific kinematic 
signature so that inadvertent activations are unlikely. Using rotations also has practical advantages 
when using a mobile device such as a smartphone. Device translations are often impractical in public 
situations, but a rotation of the device about itself requires minimal space. Moreover, provided that 
angular amplitudes are moderate, the screen of a rotating device may remain visible for users, enabling 
them to receive output information. Using tilt gestures also has the advantage that they can be 
performed one-handedly. This is an important factor in the context of mobility since the second hand 
is often reserved for an alternate use (carrying a bag, holding the subway handrail, etc.) Finally, 
JerkTilt gestures can be performed eyes-free. 
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Figure	25:	JerkTilt	back-and-forth	tilting	gestures		

One important characteristic of a JerkTilt gesture is that it consists of one complete cycle of to-and-fro 
movement (Figure 25, right): the device is tilted in a certain direction and immediately brought back to 
its initial rest position thanks to the natural elasticity of the wrist. The return phase of such movements 
is quite automatic, the mechanical energy stored as elastic potential energy in the antagonist muscles 
of the forearm during the initial tilt being converted back into kinetic energy during the return to rest 
[Guiard93]. Hence, the execution of this sort of movement should take little time and cost little effort. 

As eight-item angular selections were shown to be easily differentiated in Marking menus, we chose 
the same number of different directions. A first experiment (12 participants) asked about the 
discriminability of tilting directions. A KNN recognizer [KNN] was used for this purpose. The 
kinematics attributes used by the recognizer are detailed in [Baglioni11]. The accuracy was 
sufficiently high (95% or more, depending on conditions).  

In a second experiment (12 participants) we compared, on an eyes-free task, the performance of 
JerkTilt and Marking menus. In both cases, participants were interacting using only one hand (and the 
thumb in the latter case). Performance accuracy was similar (91.0% vs. 92.6%). JerkTilt gestures 
required about 30% more time, but unlike Marking gestures they do not conflict with standard 
pointing gestures.  

Finally, a last experiment evaluated the workability of JerkTilt in the context of real-life mobility. For 
this purpose, we developed a logging system for evaluating whether accidental accelerations of the 
device could lead to false identifications of JerkTilt gestures. On average we found less than one false 
detection a day per user (14 participants), which suggests that JerkTilt gestures are suitable for 
everyday use. Several applications were developed (copy and paste, music control, application 
switcher, etc.) to illustrate the utility of the technique (Figure 25, left). 

 

Figure	26:	TimeTilt	lenticular	metaphor	

In addition, we also investigated the use of smooth gestures for switching between multiple windows 
on a mobile device. This technique, called TimeTilt [Roudaut09c], relies on a lenticular metaphor that 
enables the user to see different images depending on the orientation (as with certain gift postcards, 
see Figure 26). 
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6.2 Controlling	a	remote	display	

We conducted two studies on this topic, in the context of smart TV control. Because remote controls 
with many buttons tend to be confusing, we investigated whether gestures could make this task easier. 
The first study considered how a basic gyroscopic remote control could be used for this purpose. The 
second study relied on "in the air" gestures inspired by the FingerCount technique.  

 

Figure	27:	Controlling	a	TV	set	with	a	gyroscopic	remote	control		

In the first study [Bailly11a], we considered the case of a remote control with a very limited number of 
buttons (a Wii Remote). The goal of this study was to investigate which gestures users would prefer to 
perform and if this would allow sufficient expressivity for controlling a complex system. A first 
experiment showed that users favored rotational gestures in this context.  

A second experiment showed that participants could accurately select (more than 95%) up to 5 items 
with eyes-free rolling gestures. This result contrasts with the study of Rahman et al. 
[Rahman09] where users were able to select 16 items by rolling a smartphone. But a major difference 
was that in their study, visual feedback was provided, whereas in our experiment, this was not the 
case. We chose this setup based on our assumption that when users are interacting with a remote 
display, they would probably prefer not to continuously have to switch between their main focus of 
interest, the remote display, and the tool for controlling it.  

Finally, this study evaluated the combination of two input techniques among (four) directional buttons, 
pitch+yaw and rolling gestures. Button/button and button/pitch+yaw gestures where slightly faster and 
more accurate than button/roll and pitch+yaw/pitch+yaw gestures. 

 

Figure	28:	In-the-air	FingerCount	gestures	

In the second study [Bailly11b, Bailly12], the FingerCount technique (see Section 3.1) was adapted to 
free-hand interaction. A Kinect device was used and the user performed selections by exhibiting the 
appropriate number of fingers of the non-dominant hand to select a menu and of the other hand to 
select an item in this menu. This technique was compared with linear menus and Marking menus. 
Results showed that in-the-air FingerCount was as fast and accurate as the other two techniques. 
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Interestingly, while FingerCount and its in-the-air counterpart share the same concept, in practice, 
users did not use the same fingers in both cases [Bailly12]. Moreover, they were not aware of which 
fingers they used. Unsurprisingly, in-the-air FingerCount gestures involved more physiological and 
cognitive limitations than when touching a screen, which makes them appropriate for the considered 
use case (smart TV control), but not for intensive tasks. 

6.3 On-body	gestures	

On-body interaction has several advantages: (1) body parts are by essence always available, (2) they 
offer a convenient surface for gestural interaction, and (3) they provide tactile feedback, not only from 
the body part acting as an interactive surface but also from the limb which is interacting with it 
[Serino10]. Moreover, because of proprioception, users can sense the position and the orientation of 
their limbs without looking at them, meaning that they can interact eyes-free [Lin11]. 

On-body gestures can thus ease interaction in usage contexts where users are engaged in activities that 
would suffer from interruptions. For example, users devote a large part of their attention to avoid 
obstacles when they are walking or running. Such situations make it difficult to interact with mobile 
devices, especially if the user must look at them, and thus lead to undesired interruptions. 

Various efforts have been devoted to exploring new ways to capture on-body touch (e.g. [Harrisson10, 
Nakatsuma11, Zhang16, Xiao18]). The forearm is generally considered as particularly appropriate 
[Lin11] as it is easy to access, but some studies investigated using other body parts as an input surface 
to trigger actions [Angeslevä03, Guerreiro08, Wagner13] or to store information [Chen12]. In 
particular, interactions on the shoulders, ribs, and hips were evaluated positively [Karrer11, 
Wagner13]. In addition, natural (e.g. knuckles or birthmarks [Bergstrom17]) or artificial [Weigel15, 
Weigel17] landmarks can be exploited to enhance the recall of items. 

In a study conducted during the PhD thesis of Dong-Bach Vo, we investigated how belly interaction 
can serve to facilitate interaction [Vo14]. While [Wagner13] reported that the abdomen should be 
suitable for interacting, no exploratory study had been conducted so far. The abdomen surface has 
several interesting advantages in comparison to other body areas: it offers a large and relatively stable 
area (even when walking and running), enables easy access from both hands and does not require 
tiring movements because hands do no need to be moved far from their rest position. The abdomen 
seems especially appropriate for interacting while moving because its surface is remarkably stable. As 
noticed in [Karrer11], with a range of motion between 2 to 17.5° across all planes during gait, this part 
of the body is particularly well suited for interacting while walking or running. It should also be less 
prone to interpersonal or accidental touch compared to other body parts such as the arms. 

 

Figure	29:	Belly	gestures	

Contrary to usual vertical interactive surfaces the belly is not located in the user’s field of view but in 
the body mid-coronal plane. Because of this spatial configuration, proprioceptive information from the 
hands, arms and their contacts with the abdomen are essential to interact with the belly. However, as 
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noticed in [Cockburn11], gestures relative to body locations are susceptible to ambiguity and it is 
unclear to which extent the abdomen’s spatial configuration might influence the users’ spatial mental 
representation, especially when interacting eyes-free.  

We thus conducted an experiment to investigate how users perceive their belly as an interactive 
surface. The nature of the stimulus was either a directional stroke or a digit in the (0-9) interval, which 
was displayed on a screen in front of the participant. Moreover, the stimulus was shown either as a 
graphical representation (with a starting point and a direction to draw) or as a textual representation 
(without hints relative to the orientation). 

Inversions relative to the horizontal axis gathered 17.5% of all samples across all conditions. 
Inversions were more frequent for digits (resp. 19% and 24.5% for graphical and textual 
presentations) than for directional strokes (about 13%). This result somewhat contrasts with previous 
results in psychology literature that suggest that spatial representation of up/down direction is relative 
to the perception of gravity and through sight [Mergner98]. In fact, some participants reported 
performing gestures while picturing themselves watching their abdomen.  

There were fewer inversions relative to the vertical axis (13.5%), and almost all of them occurred 
when digits were shown textually (42.9%). Some participants emphasized the difficulty to select a 
unique representation and changed their spatial mental representation during the experiment. 
Unsurprisingly, reaction time was significantly longer for digits than for strokes (about 27%). 

This study highlights that simple gestures should be preferred, as mental representations are more 
likely to change with more complex gestures such as digits. Moreover, performing digit gestures was 
cognitively more demanding. We also analyzed directional gesture traces and found that they were fast 
and efficiently done.  

Finally, this study addresses the question of social acceptance [Rico10, Ahlström14]. The appearance 
of gestures are influencing social acceptance in public spaces and familiar gestures should thus be 
more socially acceptable in this context. Belly gestures fall into two categories. Digits require space 
and relatively large movements of the arm, which are noticeable in public spaces. These gestures are 
thus more suited for private spaces such as the living room. Conversely, directional gestures only 
require simple and small movements and should hence be usable in public spaces. They are as fast as 
scratching the belly since only a direction has to be determined. This makes them hardly noticeable 
especially when used as command shortcuts.  

In addition, in a more recent study [Fruchard18], we compared an on-body interaction technique 
named BodyLoci to mid-air Marking menus in a Virtual Reality context. As this study focuses on 
command memorization, we will present it in Section 7.5. 

6.4 Head	gestures	

In the physical world, humans use head and eyes movements to control what they see, and limbs 
movements to manipulate objects. In contrast, interactive systems generally require using the mouse or 
the keyboard to manipulate the viewpoint. The same modality (hand gestures) is thus used to both 
control what users see and to manipulate it. As a result, when a task requires frequent changes of the 
point of view, the user must continuously switch between his main task, which is his actual focus of 
interest, and the manipulation of the viewpoint. 

In a study [Jacob16] performed during the PhD of Thibaut Jacob (co-supervised by Gilles Bailly) in 
cooperation with Gery Casiez, we investigated the use of head movements as an additional input 
channel to control the viewpoint. This study took place in the context of the development of a 3D 
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sound editor. In such a situation the user must draw a large number of overlapping curves in the 3D 
space, so that the representation can quickly become confusing. In many cases, quickly and 
temporarily changing the viewpoint permits to disambiguate the view. But this comes at the cost of 
many manipulations, which made the proposed solution especially appropriate. 

    

Figure	30:	Head	yaw/roll	rotations	(left)	and	experimental	task	(right)	
    
In several studies, head movement has been used to improve the feeling of immersion in Virtual 
Reality environments [Cruz-Neira93, Qi06]. But this approach has seldom been investigated for 
desktop workstations [Harrison08], although such an approach can be implemented at little cost as 
many computers have an integrated webcam. In this study, we investigated how to best define head-
camera couplings to favor both comfort and efficiency [Bowman04]. We focused on orbital control 
because this type of camera motion is frequently used in 3D software (Blender, SketchUp), especially 
in 3D room-planning applications (e.g. IKEA Home Planner). We focused on screen desktop 
environments because they are still the most used for 3D editing. 

We first investigated the widest angles at which users can rotate the head on yaw and roll axes while 
maintaining a high level of physical and visual comfort. Results show that, when taking into account 
both criteria (using a desktop workstation), larger head angles can be performed for roll (35◦) than for 
yaw (26◦). A second study showed a useful resolution (the smallest movements that can be 
intentionally executed by users [Aceituno13]) of 1° could be achieved at a 95% success rate for both 
head yaw and roll. We then designed a transfer function for controlling orbital camera motion with the 
head, either using roll or yaw rotations. An evaluation showed that participants performed better using 
roll and preferred it to yaw.  

Finally, an experiment (10 participants; Figure 30, right) comparing head roll rotations with a well-
known standard technique (using the mouse and the keyboard as in the Blender application) showed 
that roll rotations were (significantly) 14.5% faster. In a post-experiment where participants were free 
to use either technique or a combination of them. Most participants (8 out of 10) chose to combine roll 
rotations with either the mouse (2/10) or the keyboard (6/10) and the total time was lower than in the 
previous roll vs. mouse/keyboard experiment. 

In summary, head roll is an efficient input modality for head-camera coupling and participants are 
faster and more accurate with roll head movements and prefer them when interacting with a screen. 
Moreover, users liked combining different techniques because they offer complementary advantages. 
For instance some participants used the keyboard for performing large imprecise rotations and the 
head for precise adjustments, while others used both simultaneously to perform even faster. 
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7 Gesture	memorization	
 
As advocated in the introduction, providing mechanisms for better ways of learning and memorizing 
gesture/command associations is needed for allowing a large spectrum of useful interactions. The next 
subsections present several studies considering this topic. These studies focus on the following 
aspects: the efficiency of directional radial gestures, the automaticity of overlearned gestures, the 
categorization of gestures and commands, mnemonic devices and the combined use of memory 
components, and the efficiency of body gestures. Some of these studies suggest that a large number of 
gestures can be learnt and recalled with little difficulty, provided that certain conditions are met. 

7.1 Directional	radial	gestures	

Rather than inciting users to invent new gestures that evoke their associated functions, as in the user-
defined gestures approach, Marking menus are based on the opposite hypothesis: the vocabulary of 
gestures is simple, "abstract", and defined a priori. When these menus are hierarchical, the gestures 
can be composed to provide a larger set of gesture/command associations. With expertise, low-level 
details are performed automatically [Card83] and users develop an ability to perform larger chunks 
[Miller56, Buxton86], which should make compound Marking gestures memory efficient. This can be 
seen as a syntactic approach where a simple syntax enables creating gesture sequences that are 
eventually considered as a single entity by the user. 

Since their introduction by Kurtenbach, Marking menus have been presented as a technique that "helps 
users make a smooth transition from novice to expert" [Kurtenbach91]. While this statement makes 
sense, other factors affect the learning of gestures and gesture/command associations. For instance, 
user-defined gestures are believed to be easier to memorize [Nacenta13] and techniques that increase 
the mental effort of interaction tend to increase retention [Ehret02, Cockburn07, Anderson13, 
Scarr13b, Scarr14] because this effort aids memorization. Moreover, it encourages users to transition 
to expert mode [Grossman07]. In this section we consider another aspect, which is whether some 
techniques make it inherently easier to learn gesture/command associations. Moreover, we investigate 
whether using direction (as in Marking menus) or position affects gesture learning. 

Marking and Flower menus 

In the Flower menu study [Bailly08a], which was partly presented in Section 3.1, we compared the 
memory performance of the expert mode of linear menus (i.e. hotkeys) and of the Flower and Polygon 
menus techniques. As Flower menus are an extension of Marking menus (Flower gestures with a null 
curvature are identical to 8-item Marking menu gestures; Figure 4), their performance provides a 
rough estimate (i.e., a lower baseline) of the performance of Marking menus. 

Polygon menus [Zhao06] are a variant of Marking menus that was designed to increase the number of 
available commands (Figure 31, center). Unlike Marking menu, they do not rely on radial gestures. 
Instead, users must draw strokes corresponding to edges of an N-sided polygon and the command 
depends on the direction in which the stroke is drawn. Thus, the breadth of an N-sided Polygon menu 
is 2N. 

We chose these three techniques because 1) linear menus are widely used and thus serve as a baseline, 
2) all these techniques support a sufficient number of commands without resorting to multi-level 
menus. While comparing 2-level Marking menus could be an interesting option, this adds an 
additional factor, as not all items are simultaneously visible in this case, which might decrease 
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memorization. Moreover, as said above, we found it interesting to compare menus with different 
designs. 

The experiment was performed with 16-item menus, both because the breadth of a Polygon menu is a 
multiple of 2 and because this size should be sufficient for most applications. An informal analysis of 
six popular applications [Bailly08] showed that, on average, their first-level menus contained 12.4 
items, and that this number was between 10.6 and 14.2 for half of these applications and equal to18 for 
one of them (Photoshop).  

 

Figure	31:	Flower	menus,	Polygon	menus	and	Linear	menus	with	hotkeys.	

Contrary to some studies, we did not use a Zipfian distribution, but a uniform target frequency. The 
first reason is that memorization may depend on various factors, such as the ordering of items in linear 
menus or their orientation in Marking menus. Results may thus depend on where the most frequent 
items are laid out in the menu, a factor which is difficult to control. A second reason is that the number 
of repetitions is considerably smaller in a controlled experiment than in real life. Thus, some items 
might not be presented sufficiently often to make it possible for the participants to learn them, 
especially for large vocabularies (conversely, some other items might be presented unnecessarily 
often). This may "flatten" results compared to what would be obtained in a real situation, or require 
performing very long experiments. Finally, time experiments are generally performed using a uniform 
distribution, thus implicitly considering real life situations where the user has been practicing for a 
long time. It seems reasonable to make the same hypothesis for memory experiments. 

The experiment was performed with 18 participants (using a within-subjects design) in a single session 
with a typical menu configuration (Figure 31, details in [Bailly08a]). The participants were asked to 
learn as many commands as possible. As expected, this experiment showed that Flower menus provide 
much better recall performance than linear menus (81% vs. 35% memorized items), but also, more 
surprisingly, than Polygon menus (40%). Completion time was also significantly shorter for Flower 
menus than both linear menus and Polygon menus (2.4s vs. 3.5s. vs. 3.8s.). As they do not require 
performing gestures, we expected hotkeys to be the fastest technique, but reaction time was much 
longer than for Flower menus (almost twice as long). Flower menus were also the most appreciated 
technique by all participants except one. 

Conclusions 

The first conclusion of this study is that Flower menus, and consequently Marking menus, are actually 
efficient for memorizing gesture-command associations. To the best of our knowledge, we are not 
aware of previous studies that formally compared their memory performance with linear menus. 

Another interesting conclusion is that differences in design can lead to large differences in 
performance. In addition to the fact that the 'learning by repetition' principle may not be sufficient to 
make a technique memory efficient, it is reasonable to think that there are specific reasons why 
Marking (and Flower) menus are efficient. 
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First, radial directional gestures may be especially efficient because of human directional abilities, 
which may even be innate [Wills10]. Such gestures could be treated as egocentric gestures 
[Klatzky98], as if the user were moving in space. Moreover, in most cultures, the eight cardinal and 
intermediate directions (and the clock layout) are learned since childhood. In one of their experiments, 
Kurtenbach et al. [Kurtenbach93b] already observed that response time and accuracy do not only 
depend on the menu size, but that certain menu sizes (4, 8 and 12 items) facilitate performance when 
no menu is displayed, presumably because some layouts are more familiar than others. This 
phenomenon is likely to also affect memorization.  

Incidentally, this also raises the question of whether Marking menus follow the law of the 'Magical 
Number Seven' of George A. Miller [Miller56]. In this famous article, Miller observed that most of us 
can identify about seven different values plus or minus two for (most) given dimensions when 
performing an absolute judgment. Considering that Marking menu items depend on one dimension 
(their angle), performance should be significantly better with 8 items rather than 12. While this seems 
to be true for multi-level menus (Figure 3 in Section 2), the difference in performance is more modest 
for 1-level menus, presumably because of the familiarity of the clock layout. 

In the same article, Miller also stated that, for multidimensional judgments, the addition of 
independently variable attributes increases the channel capacity. This may explain the efficiency of 
Flower menus as they use a combination of dimensions (direction, curvature, curvature direction 
relative to the direction of the gesture) that have a small number of values. While this statement is 
about absolute judgment, not memorization, the ability to recognize values of on one or several 
dimensions is likely to affect memorization.  

More research is needed to confirm these hypotheses. First, it would be interesting to compare 
Marking and Flower gestures with other types of gestures, as for instance those proposed in 
[Appert09], for memorizing gesture/command associations. Similarly, Flower menus could be 
compared with hierarchical Marking menus to investigate the respective advantages of a flat vs. a 
hierarchical representation. Finally, it would also be worth testing long-time retention, which was not 
evaluated in this experiment. 

Directions vs. positions  

Fast command selection can indeed rely on gestures, but also on touching/clicking positions when 
spatially stable arrangements of items are used [Gutwin14, Scarr12]. When items are laid out around a 
central point, pointing "gestures" are then somewhat similar to directional Marking gestures. We were 
interested in finding out if and how these techniques affect learning. 

In a recent study [Fruchard18b] conducted by Bruno Fruchard (whose PhD thesis is co-supervised by 
Olivier Chapuis) we compared the effect of using positions vs. directions on command memorization 
and studied the strategies that users elaborate. In both cases, participants had to memorize a set of 16 
items (out of a total of 32 possible commands), placed hierarchically in menus containing 8 items, for 
each of these two modalities. The study took place over three sessions. The first and second sessions 
were composed of learning phases and recall phases (Figure 32). The second session was performed 
one day later and the third session, which consisted of a single recall phase, one to two weeks later. A 
within-subject design was used and 16 participants took part in the experiment. 

 

Figure	32:	Learning	(L)	and	recall	(R)	phases	in	the	three	sessions	
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The two techniques both rely on a two-step selection mechanism. The direction technique is similar to 
MultiStroke (aka "Simple") Marking menus [Zhao04] (Figure 33, right). The position technique 
associates each command with a unique position in space as in FastTap [Gutwin14] or in current user 
interfaces that do not involve transient objects (or that are "flattened" to make them spatially stable as 
in [Scarr12]). A menu is represented by a rectangular area (Figure 33, left) containing the commands, 
which are placed close to spatial/graphical cues (the corners and edges of the menu) in order to help 
memorization [Scarr13b, Uddin17]. To select a command, the participant first selects a menu by 
clicking within its interaction area, then on the desired item. In both cases, learning phase trials start in 
expert mode and the user must touch the surface for one second to enter the novice mode and see the 
labels of the commands. A Samsung Galaxy tablet (13.6×21.8cm) was used. 

  

Figure	33:	Positions	and	directions	techniques	

The mean values of the recall rates were higher for positions  (Figure 34, left) but the differences were 
not significant (p’s > 0.1). For instance, at the end of the first session the recall rate was 77.5% for 
directions and 83.3% for positions. As expected, recall rates were lower after 24 hours (56.2% vs. 
62.1%), but not much lower (53.6% vs. 57.1%) after a period of one to two weeks. These mean values 
may suggest a possible advantage of positions, but this would need to be confirmed with a larger 
number of participants. 

There were also some interesting differences. First, in the learning phases, the participants used the 
novice mode less often with positions than with directions. The difference was consistent and 
significant (L2: 72.5% vs. 83.8% activations; L3: 53.3% vs. 64.2%; L4: 55.8% vs. 66.7%). Moreover, 
when the participants used the novice mode, this was for a shorter amount of time with positions 
(Figure 34, right). The difference ranged from 1.70s to 1.25s depending on the phase (p’s < 0.001). 
Subjective opinions, gathered in a questionnaire based on the NASA TLX model, also pointed to the 
same direction for cognitive (p = 0.014) and physical (p = 0.014) loads. Finally, nine out of 16 
participants preferred using positions. 

 

Figure	34:	Left:	recall	rates;	Right:	display	time	in	learning	phases	

While these results need to be confirmed by further research, they seem to indicate that positions 
requires less training to encode information in memory. Moreover, recall rates are not lower (in fact 
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they are not significantly higher) for positions although shorter training time usually involves lower 
retention. These differences are intriguing and may have several explanations.  

First, directions (MultiStroke menus) may require more attention from the user, for instance because 
he must continuously touch the surface. Second, positions may leverage spatial memory more 
efficiently than directions because rectangular menus provide more spatial and graphical cues 
[Scarr13b]. This would mean that the layout of Marking menu is not optimal and that other graphical 
representations (for instance using a rectangular or orthogonal layout [Ahlström10]) may be 
preferable. A last possible reason may be that directions and locations are not exactly encoded in the 
same way in memory. Navigating through environments and remembering object locations are 
different classes of tasks with only partial correlations in spatial ability [Scarr13b]. If directions are 
associated with egocentric movement, as hypothesized above, they may be related to the first class. 
However, we are not aware of studies addressing this specific aspect. 

Finally it is interesting to observe that participants developed various strategies in both conditions, 
such as forming (mental) groups of commands to facilitate memorization. Categorization has been 
shown to improve memorization [Bower69] and similar strategies have been observed in other studies 
(e.g., [Bergstrom-Lehtovirta17]). Participants formed groups of items according to their position 
(spatial patterns) or their meaning. For instance, many of them created sentences such as "the eagle is 
up because it flies" or "the bacon goes down into the belly" to remember gesture/command 
associations, a strategy which was also observed in other studies [Appert09, Ghomi12, Perrault15]. 
These observations highlight the importance of the positioning of commands in an interface, including 
their relative positions. We will come back to these aspects in the next sections, with some 
experiments showing that such strategies can be surprisingly efficient. 

7.2 Overlearning:	Augmented	letters	

While the previous section showed the efficiency of Marking menus (and derived techniques such as 
Flower menus) for learning gesture/command associations, the user must still learn them. A solution 
for avoiding this learning stage (or making it easier) consists of using symbolic gestures that have a 
direct non-ambiguous relationship with the desired command. However, as already seen in Section 2, 
few gestures have an obvious meaning for all users. One exception is letters, numbers, and ideograms 
(in Asian cultures), because they have been learned since childhood. 

The simplest way to create a straightforward semantic mapping between gestures and commands 
consists in using their first letter as a gesture. Unfortunately, this is generally not possible because of 
name collisions (multiple commands can start with the same letter). One solution then consists of 
writing the next starting letters (or even the entire command name), as proposed for instance by Lü 
and Li [Lü11]. However, because they contain curves and corners, letters take more time to write than 
straight gestures [Viviani82, Cao07]. Moreover, the number of starting letters that need to be drawn to 
avoid ambiguities may depend on commands, or be relatively large. For example, distinguishing the 
commands "Save" and "Save As" may require writing five letters, not mentioning that the latter 
contains a space, which may be another source of confusion. 

Augmented Letters, which were developed by Quentin Roy during his PhD (co-supervised by Yves 
Guiard), propose a hybrid strategy to solve this problem. This technique combines a unistroke letter 
with a Marking menu (Figure 35). The letter is the initial letter of the corresponding command, which 
simplifies command memorization and should reduce cognitive load. This letter is augmented with a 
tail that can be oriented in up to eight directions, so as to handle conflicts amongst commands that 
share the same initial. The tail is spatially combined with the unistroke letter so that that the entire 
stroke can be drawn in a single gesture. This can be seen as a syntactic approach, as with hierarchical 
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Marking menus, except that the first level of the menu is not an abstract but a symbolic gesture, which 
has a direct relationship with the command. 

In theory, this design makes it possible to define up to 26 x 8 = 208 different commands. In fact there 
are a few conflicts, e.g. a left tailed C is similar to a left tailed G (tail length does not matter). We 
counted about six of them depending on the recognizer, leaving 208 - 6 = 202 different commands. 

 

Figure	35:	Augmented	Letters	

This technique supports a novice mode. If the user does not know the tail, he can write the letter and 
then wait for a delay (500ms) while touching the screen. The corresponding Marking menu is then 
displayed so that the user can see all existing tails for this letter. As with Marking menus, the same 
gestures invoke the same commands in either mode, so that this technique also allows a fluid transition 
from novice to expert mode. 

However, the user may not know the names of the available commands and whether they have an 
associated shortcut. A solution consists of using cheat sheets, or linear menus. Menu items then show 
the corresponding tail instead of a keyboard shortcut, as with the FingerCount menus described in 
Section 4.1. 

Overlearning and gesture automaticity 

This technique capitalizes on the fact that the various skills that constitute the human language are 
considerably overlearned [Saussure16]. In the literate adult, owing to a considerable amount of 
sustained practice, naming, reading, typing, and handwriting are remarkably automatic, despite the 
arbitrariness of the linguistic signs.  

As expressed by the Hicks-Hyman law [Hyman53], choice reaction time increases linearly with the 
logarithm of the number N of alternatives. But the slope of that linear dependency strongly depends on 
training. For instance, Fitts and his colleagues [Brainard62] have shown that the slope of the Hicks-
Hyman law virtually zeroes out if the task is to utter the name of visually presented characters: the 
duration of such a reading reaction is not just short, it is hardly affected by the size of the stimulus set. 
Considering the design of gestural input vocabularies, in general, the larger the set of possible 
commands, the more difficult the choice. Yet if the memory link has been trained to the point of 
becoming automatic, the number of alternatives no longer matters.  

This point also illustrates that the nature dimension of Wobbrock et al. [Wobbrock09] and even the 
analogue-abstract spectrum of Zhai et al. [Zhai12] are relative concepts (cf. Section 2 and Figure 1). 
For instance, a digit is abstract in the sense that there is an arbitrary relationship between its graphical 
representation and its meaning (i.e., its corresponding value). But it is also symbolic, because the 
meaning of this graphical representation has been overlearned by billions of people, and analogue, 
because it refers to cultural conventions. Finally, the mapping between a digit gesture and its meaning 
is so well known that it may be more obvious to users, and thus involve less cognitive load, than 
physical or metaphorical gestures.  

Hence, again we claim that the degree of familiarity [Raskin94] is the most pertinent dimension 
because it can take into account all cases without considering low-level considerations that can lead to 



 47 

possible ambiguities. Moreover, and very importantly, familiarity is evolving and contextual. Not only 
does it depend on users' culture but also on which tools they use, as humoristically depicted in the 
"Modern Times" movie by Charlie Chaplin where the character cannot help performing some gestures 
automatically. 

 

Experiment 

We evaluated the performance of Augmented Letters with respect to Marking menus. The commands 
had 5 different starting letters and up to 4 tails. A two-level Marking menu was used, with 8 items at 
the first level and one of them opening a submenu also containing 8 items. This design, which enables 
selecting 15 commands, was chosen in order to avoid complex menus. The experiment had 3 learning 
blocks (with 3 repetitions for all tested items) alternating with 3 testing blocks for each technique. 
Twelve participants participated in the experiment. They could use either the novice or the expert 
mode in the learning blocks. 

The recall rate was significantly higher with Augmented Letters than with Marking menus and reached 
85.4% vs. 63.2% in the last testing block (Figure 36). The completion time was similar with both 
techniques (about 3.8s). Interestingly, the execution time was higher for Augmented Letters (as 
expected, because gestures are more complex), but the reaction time was lower. This finding is 
consistent with the view that Augmented Letter benefits from familiarity. Moreover, in the learning 
blocks, the spontaneous use of the expert mode was more frequent with Augmented Letters (66.0%) 
than with Marking menus (43.8%). 

          

Figure	36:	Recall	rate	of	Augmented	Letters	vs.	Marking	Menus	

This study suggests that language (and syntax), which tends to be an under-exploited resource in 
graphical user interfaces, can provide a way to make interaction more efficient for expert users: The 
larger the set of commands, the greater the benefit that can be expected from the over-learned skills of 
language such as drawing letters.  



 48 

7.3 Structure	and	memorability:	Multi-finger	chords		

Structure has been shown to improve memorability [Mandler67]. Previous findings in psychology 
have demonstrated that people can recall more items if those items are grouped by category [Bower69, 
Gollin88]. Indeed, participants spontaneously used such strategies in the Directions vs. Positions study 
(Section 7.1). 

Inspired by this finding, we investigated whether a categorical structure can facilitate learning and 
long-term retention of gestures. This work was performed in the context of the Multi-Finger Chord 
study [Wagner14], conducted by Julie Wagner, Ted Selker and myself, which was presented in 
Section 4.2. As a reminder, this technique allows recognizing a set of nine multi-finger chords by 
taking into account hand-shape characteristics. It relies on three families of simple postures, each 
providing three different gestures (Figure 37).  

 

Figure	37:	Examples	of	gesture/command	associations	

Our goal was thus to investigate whether users would 1) learn the gesture-command mappings faster 
and 2) remember those mappings more accurately in mind over a long period of time, if the gestural 
language was structured in a way that reflects the menu-structure of commands. For this purpose, we 
performed an experiment with 18 right-handed participants who were randomly assigned to two 
groups, which were taught categorical or random associations respectively. We used a between-
subject design to avoid a carryover effect from one condition to another. All participants were 
instructed to learn nine commands organized in three categories (Figure 37).  

The experiment was divided into two sessions (Figure 38). The calibration phase consisted in training 
the recognizer (private tablet setup in section 4.2). The command and the corresponding gesture were 
shown to the participants in the training phase (2 blocks of 9 trials). Only the gesture, and feedback 
about errors, was shown in the memorization phase. This phase ended when the participants could 
(criterion A) successfully reproduce all gestures twice in sequence and (criterion B) decided that they 
were trained enough. Then they watched a 10-minute cartoon and short-term retention was tested 
(phase 5). Finally, long-term retention (phase 6) was tested 6 or 7 days later (details in [Wagner14]). 
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Figure	38:	The	different	phases	of	the	experiment	in	two	sessions	

Results 

Participants learned the mappings significantly faster in the categorical group according to criterion A 
(7 vs. 11.5 blocks), but no significant difference was observed for criterion B (10.3 vs. 12.7 blocks). 
There was no significant difference9 for short-term retention (0.11 vs. 0.22 errors) but a significant 
difference in favor of the categorical group for long-term retention (0.56 vs. 3.4 errors). Moreover, the 
same pattern was observed for completion time.  

These results confirm that a structured mapping leads to less error-prone long-term memorization. 
This is also supported by the fact that participants in the categorical group did not mix up mappings 
between gesture families and menu categories and did not perform completely wrong gestures. They 
also highlight that participants can efficiently learn abstract gestures and their corresponding 
commands provided that they are organized in a meaningful way. Finally, they show the importance of 
long-time retention tests since some effects on memorization might first show up after some time has 
passed [Anderson13, Nacenta13]. 

7.4 Memory	devices	and	multiple	memory	components:	Physical	loci	

While handling a few shortcuts may be easy for most people, as suggested by the Multi-Finger Chords 
study, increasing the number of shortcuts makes the recall harder, therefore limiting the applicability 
and effectiveness of gestural shortcuts.  

In this study [Perrault15] (mainly performed by Simon Perrault during his PhD thesis, who was co-
supervised by Yves Guiard) we introduced a novel way of memorizing gestural shortcuts inspired by 
the method of loci [Yates92, Higbee01]. This method is an ancient memory technique that dates back 
to the time of Aristotle and offers impressive learning capabilities. We proposed a practical 
implementation of this method, called Physical Loci, for interacting with a smart home environment, a 
context of use that is well suited to this technique.  

Method of Loci 

The method of loci is a method of memory enhancement that uses images and spatial learning to 
organize and recall information. “Loci” refers to locations. The user of this classic technique first 
memorizes the layout of certain spatial structures that have a number of discrete locations, such as a 
building, or shops on a street, and then the user mentally 'walks' through these loci and assigns an item 
to each of them by forming an image of the item and any distinguishing feature of that locus. The 
retrieval of items is achieved by 'walking' again through the loci, which activates the desired items.  

The efficacy of this technique has been well established in psychology [Briggs70, Crovitz69, 
Higbee01]. Most of these studies, which were generally conducted with students, were designed for 
remembering lists of 20, 40 or 50 words. The method of loci has also been used by memory contest 
champions to recall large amounts of faces, digits and lists of words. Some people have been known to 
achieve amazing performance, such as remembering thousands of digits [Maguire03, Raz09]. 

                                                        
9 A non-parametric Mann-Whitney test on the number of errors was used in this case because of non-normality. 
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In the classic technique, creating loci involves two steps. First, users must memorize mental images of 
familiar locations in some natural or logical order. Next they will associate a visual image of each item 
to be remembered with a location in the series. The first step is by far the most demanding but it needs 
to be performed only once since the same series of locations can be used for different lists of items 
with little interference [Bower70]. However, this constraint makes it difficult to apply the technique to 
HCI in its original form. A technique requiring too much initial effort is unlikely to be adopted by 
users.  

Another constraint is that this method relies on a spatial configuration and positioning of loci that is 
specific to the user. This can be problematic in the context of HCI as several people may need to 
interact with the same system and use the same set of shortcuts. Moreover, this mental representation 
is not supposed to change, which means that loci are not meant to move. 

Memory components 

Human memory has been extensively studied in the field of psychology (i.e., Baddeley's survey 
[Baddeley13]). In their Working Memory model Baddeley and Hitch illustrate the distinction between 
verbal and visuospatial information. Further, neuropsychological and neuroimaging studies place a 
distinction between visual object and visual spatial information. We examine this distinction below.  

Object/image memory involves processing features of an object or material such as texture, color, 
size, and orientation. In the case of the method of loci, object memory plays a role in remembering 
precise details of the room. Yates [Yates92] and Briggs et al. [Briggs70] showed the importance of 
imagery in such memory techniques because the more stunning, disturbing, or noticeable the mental 
images are, the better items will be memorized. More generally, landmarks have been shown to be 
especially important for the development of spatial memory [Allen78, Scar13b]. 

Spatial memory is another key component of the loci method, as users must mentally "place" the items 
they want to remember in different locations. This aspect is specific to the loci technique, as opposed 
to other mnemonic devices. Spatial memory has garnered much attention in psychology (e.g., 
[Jones86, Andrade93, Maguire03]) and, to a lesser extent, in HCI (e.g., [Ark98, Robertson98, 
Scarr13b]). Partly because spatial learning occurs automatically, even without focused attention 
[Mandler77, Andrade93], spatial memory can help users remember large numbers of items 
[Baddeley13]. Maguire et al. [Maguire03] found that most of the champion memorizers they observed 
used a spatial learning strategy. Using functional neuroimaging they also noted this strategy engaged 
specific brain regions such as the hippocampus, which are critical for memory (and spatial memory in 
particular). 

The utility of spatial metaphors has been shown since the development of HCI [Bolt80]. An interesting 
example is Data Mountain, which used a spatial 3D representation and thumbnails to help users 
organize, store, and retrieve 100 Web bookmarks [Robertson98, Czerwinski99]. This technique was 
shown to be faster than Internet Explorer's bookmark tree and remained effective after several months. 
However, this technique did not require users to recall the exact locations of bookmarks (whose names 
were visible on demand) but rather helped them find their location faster. Command selection was 
considered in ListMaps [Gutwin06], which illustrated the efficiency of grid interfaces for experts. 
Spatial memory was used in CommandMaps [Scarr12], in combination with hierarchy flattening, to 
improve GUI performance and in FastTap [Gutwin14] to allow faster command selection on tablets. 
Finally, Virtual Shelves [Li09] relies on spatial awareness and kinesthetic memory, but has only been 
studied in terms of pointing accuracy, not for the memorization of commands. 

Verbal/semantic encoding also occurs in the method of loci. First, items were clustered into categories 
in our experiments, as in most actual user interfaces. As explained in the previous section, structure is 
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known to improve memorability [Bower69]. Not only do people recall more items if they are grouped 
by category [Mandler67, Baddeley13] but long-term retention increases when the structure of a set of 
gestural shortcuts reflects the structure of the corresponding command set, as seen in the previous 
subsection. Moreover, mental images used with the loci method can involve stories [Yates92] such as 
a painting, a place related to an historical event, etc. 

Combinations and complementary processes: Combining spatial memory with other cues has been 
shown to improve performance in terms of memorization [Jones86]. According to Pavio's Dual 
Coding Theory [Paivio71] one can expand on learned material through verbal associations and visual 
imagery. Visual and verbal information are processed differently, along distinct channels, which 
increases the chance of remembering a given item compared to when the stimulus is coded in a single 
way. Moreover, imagery potentiates recall of verbal material and vice-versa, so that both channels 
should reinforce each other. Finally, elaborative encoding [Anderson79], which is the process of 
actively relating new information to knowledge that is already in memory, may also improve long-
term retention.  

In conclusion, embedding memory in a detailed surrounding or context should help remembering it 
later and the combination of different memory channels is likely to improve memorization. 

Physical Loci 

The Physical Loci technique is a practical implementation of the loci method for gestural invocation in 
the context of a smart home environment. The significant difference is that this technique uses 
physical objects for recall (e.g. the familiar objects in the living room) and does not require the 
creation and memorization of an imaginary place, which is a tedious operation. In other words, users 
do not have to memorize a virtual place; instead they use the physical space that is surrounding them.  

 

Figure	39:	Physical	Loci	

The user must first set up a mapping between a set of desired commands and loci in the room (Figure 
39, left). For each command, he must point to the corresponding locus with his arm and validate to 
store this mapping. Commands can then be activated just by pointing to the corresponding loci and 
performing a validating action (Figure 39, center). Depending on the available technology, the 
pointing action can be done through free-hand interaction or by using a gesture- and location-aware 
remote control [Wilson03]. There is little constraint on the choice of loci except that they should be 
reasonably distant from one another to avoid confusion and easily identifiable by the system when the 
user points to them. As novice-to-expert transition is of particular importance in gestural interfaces, we 
also provided a visual help, which is displayed on demand. This visual representation, which is 
typically displayed on a living room TV screen, shows the locations of the loci and the corresponding 
commands (Figure 39, right). 
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First experiment 

In a first experiment (within-subjects design, 12 participants), Physical Loci was compared with a 
mid-air version of MultiStroke Marking menus [Zhao04] with a vocabulary of 25 items divided into 
five categories of five items. The experiment consisted of three training blocks (in expert mode by 
default, but the user could trigger the novice mode) and one recall block. The experiment was 
conducted in a room emulating a home environment (with a sofa, a table, two cupboards and posters 
on the walls). In an initial "mapping" phase, the participants were asked to associate the 25 items with 
the Marking gestures or physical objects of their choice. A Kinect was used for detecting gestures. 
Participants significantly recalled more items with Physical Loci than with mid-air Marking menus 
(88% - 22.1 items vs. 65% - 16.4 items). 

Main experiment 

Considering the relatively large number of items that participants could recall, we performed a second 
experiment with 48 items (16 participants, only the loci technique was tested). Items were also divided 
into categories, but of different sizes (6 categories with 6, 8 or 10 items). We added a recall test on the 
following day and one week later to evaluate memory retention. Moreover, 11 of the (still available) 
16 participants performed an additional recall test about two months later.  

To avoid constraints and accuracy problems, we used a laser pointer and a Wizard-of-Oz approach. 
This made it possible to place several loci on smaller objects and/or at different locations of the same 
physical object, which was not possible in the previous experiment because of insufficient precision of 
the recognizing system. Another difference is that names were used instead of icons to identify the 
loci, to save space and avoid possible ambiguities. The novice mode was also slightly improved 
(Figure 38, right). It was displayed on a large TV when requested by participants in the learning 
phases. 

While the original loci method was developed for personal use, we wanted to see whether participants 
could efficiently use a mapping somebody else created. This also allows estimating to which extent 
using predefined mapping degrades performance (or, requires added effort) compared to user-defined 
gestures. We thus performed a between-subjects experiment with two groups: the active mapping 
group created their own mapping while the passive group used someone else’s. 

Results 

The results were surprisingly high, not only for the active group but also for the passive group: active 
participants could remember almost all items (M=47.5) already in the first recall block, and passive 
participants could achieve similar performance (M=47) in the second recall block (Figure 40 and 
Figure 41, on the left). 

Retention over time was also quite impressive as participants of both groups could remember almost 
all items after one day, and even after one week (Figure 40, left). Even more impressive, the 11 
remaining participants could still remember most of them after two months (45.5 items for the 4 active 
users and 43 for the 7 passive users). 

As memorization depends on time, we compared the overall time required to achieve a nearly perfect 
recall rate of 47 items or more in the first session. While participants of the passive group needed an 
additional training block to achieve this rate, they also spent less time in the initial phase, which only 
consisted of familiarizing themselves with the technique, as they had no mapping to perform. The 
overall time was similar for both groups (24.9 vs. 25.6 min for active vs. passive groups). Hence, 
contrary to our expectations and some previous results [Nacenta13], using user-defined gestures 
showed no or limited benefit for this technique. 
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Figure	40:	Recall	rates	and	completion	time		
(blue	=	active	vs.	red	=	passive	group;	T	=	training	vs.	R	=	recall	block)	

Moving objects 

As mentioned above, the method of loci is likely to rely on several memory components and, in 
particular, spatial memory. We were thus curious to see to which extent moving the objects would 
affect recall. We thus performed a last experiment with 9 participants were objects were moved in 
different ways. This experiment was divided into two sessions, with the spatial configuration of the 
room changing between sessions. The first session was as in the previous study. The second session 
consisted of a recall, training and recall block and it was performed the next day. 

Spatial memory may be involved either globally (absolute loci positions in the room help 
remembering the items) or locally (relative loci positions in a group help remembering the items).  We 
thus used five groups of five items, each group being moved in a different way between sessions: 

• Baseline group: unchanged 
• Global group: the set of loci is moved to another side of the room 
• Local group: only the positions of the loci within the set are changed (they are changed 

randomly, not using specific transformations as for instance in [Scarr14]).  
• Global+local group: both operations are performed 
• Scattered group: the loci are scattered and relocated haphazardly in the room. 

For the sake of brevity, we focus on the results of the second session (next day). There was no 
significant effect of loci reconfiguration on recall rate (p=.67) with a nearly perfect recall rate of 
99.3% (Figure 41, right). However, there was a significant main effect on recall time (about 26.3% 
slower than in the first session), with baseline being significantly faster than all other conditions 
except local.  

Hence, participants were able to find the correct locus in most cases, but this took them more time, 
except, as expected, in the baseline condition. Participants were somewhat puzzled when they 
discovered the new configuration, but they could gradually adapt as shown by the difference in time 
between the first and the second recall blocks (Figure 41, right). 

    

Figure	41:	Recall	rates	(Left:	main	experiment;	Right:	when	moving	objects)		
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Users' feedback and strategies 

Participants were surprised by their own results, especially those who had not previously heard about 
mnemonic devices and memory contests. This is not a surprising result as users tend to underestimate 
their memory capabilities [Baddeley13, Scarr13b].  

Although we did not give them specific cues, active participants used similar strategies in the initial 
mapping phase, such as placing related items in the same spatial areas or imagining semantic links 
between the items and the loci by making stories such as “the dog barks at the cat from the floor” or 
“the peach goes with the red door”. Passive participants used similar strategies and had no problem in 
reinterpreting the existing mappings by inventing completely different stories. These strategies are 
very similar to the ones observed in Section 7.1 for the Directions vs. positions study.  

Indeed, the participants' ability in creating stories, whatever the mapping, was quite stunning. Some of 
them were remarkably inventive and used complex associations of ideas, e.g., “the waiter goes with 
the coffee machine because waiters deal with coffee machines in real life, the professor with books, 
etc.”. Although simpler, these strategies are reminiscent of the mnemonic techniques used by the 
Russian mnemonist Shrereshveskskii, who had an amazing memory (he could virtually remember 
anything in any order) and was studied by the Russian psychologist A. R. Luria. For instance, Figure 
42 shows how he would remember a complex equation. 

 

Figure	42:	Shrereshveskskii's	way	of	remembering	equations	(from	[Baddeley13])	

Conclusions 

While mnemonic devices such as the method of loci has been use to achieve amazing performance in 
memory contexts, we were impressed by the results we obtained as our participants were not trained in 
using such techniques (in fact most participants had never heard about them). However, this is not so 
surprising because, as said above, previous experiments with non-expert users (e.g. students) have 
shown comparable results for learning lists of words.  

While the conditions of this experiment were particularly favorable (a room containing various objects 
and remarkable landmarks that were always visible) it shows that users can efficiently remember a 
rather large number of items provided that certain conditions are met. Considering that they could 
achieve nearly perfect recall of 48 items, it would be interesting to replicate this experiment with a 
larger number of items to see when performance starts to drop. 

Another outcome is the importance of semantic relationships and the ability of users to make stories 
for remembering command/gestures associations. We initially expected spatial memory to be the most 
important component involved in the loci technique but this may not be the case. As shown by our last 
experiment, participants were surprisingly efficient in retrieving items although they were not at the 
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same locations. This took them more time, which shows the impact of spatial memory, but still they 
could find them, which shows that they also used other memory components.  

Also, it is important to observe that, in many cases, users made use of several memory components 
simultaneously. For instance, stories almost always refer to a spatial cue, to one or several objects, or 
to both types of information. In further research, it would be interesting to investigate the individual 
and combined effects of these memory components. 

Finally, an interesting question is how to apply this type of technique to more conventional interfaces 
on PCs and mobile computers. Somehow, this is already partly the case with the MarkPad technique 
[Fruchard17] (with was presented in Section 5.2) as it relies on spatial, tactile and visual cues and on 
grouping strategies. However, it does not specifically encourage users to create stories and does not 
leverage object memory. Mobile devices touchscreens and computers equipped with a "screenpad" (as 
in Figure 23, right) could provide interesting opportunities. 

7.5 Interacting	with	the	body:	Body	loci	

Several studies have investigated the body as an input surface by pointing on body areas to trigger 
actions [Angeslevä03, Guerreiro08, Wagner13, Vo14] or store information [Chen12]. The body 
provides natural landmarks that should support spatial memory and provide semantic information that 
might help memorize commands (e.g. knuckles or birthmarks) [Weigel17, Bergstrom-Lehtovirta17]. 
Moreover, by leveraging proprioception, body-centric interfaces can allow eyes-free interaction, which 
is particularly interesting in contexts such as mobile interaction or virtual reality environments where 
the users do not see their own body. However, despite their possible benefits, few studies have 
investigated the use of on-body interaction to leverage command memorization and, to our knowledge, 
none have compared their memory performance to a conventional interaction technique. 

 

Figure	43:	BodyLoci	vs.	Marking	menus	
(a)	BodyLoci;	b)	Marking	menus;	c)	Setup;	d)	Background	images	for	both	techniques)	

This study, which was inspired by the work described in the previous subsection (Physical Loci), 
investigated whether the body could serve as a support for associating gestures to commands. It was 
conducted by Bruno Fruchard during his PhD (co-supervised by Olivier Chapuis). We first developed 
an on-body interaction technique, named BodyLoci (Figure 43-a), and then compared it to a mid-air 
variation of MultiStroke Marking menus (Figure 43-b), which was acting as a baseline. This study was 
performed in a Virtual Reality environment (Figure 43-c) in an attempt to support expert techniques in 
this context. Both techniques are well adapted to such environments because they do not require the 
user to see their hands when performing gestures in expert mode. 
As MultiStroke menus, the BodyLoci technique relies on hierarchical menus to provide a sufficient 
number of gestural shortcuts. Based on previous studies [Karrer11, Wagner13], we selected 12 areas 
of the body (Figure 44, left). An area is selected by moving the hand close to the desired body location 
and activating a trigger (a dedicated device was attached to the user forearm and a Kinect was used for 
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detecting gestures). A command is triggered when two areas are selected in sequence (to select a 
menu, then an item in this menu), as with Marking menus. Overall, a maximum of 12×12=144 
commands can be performed. Novice mode (Figure 44-right) is triggered if the user keeps hovering 
over a body location for at least one second. 

The mid-air MultiStroke menu technique works as expected, except that the user presses the dedicated 
trigger instead of a button of the mouse. We used successive straight marks rather than "zigzag" marks 
because the latter was shown to be less accurate in 2D [Zhao04] and may be even harder to perform 
accurately "in the air". 

        

Figure	44	Left:	Locations	of	the	areas	on	the	body;	Right:	Novice	mode	

First experiment: BodyLoci vs. Marking menus 

In a first experiment (24 participants, within-group design), we compared learning and retention for 
both techniques. We used two sessions separated by 24 hours (Figure 45). Trials started in expert 
mode in the learning blocks but participants could trigger the novice mode if needed. The first level of 
the hierarchy consisted of 8 menus/categories (4 that were actually used and 4 distractors). Each 
category contained 8 items semantically related to this category. The first session lasted approximately 
1 hour and the second session 30 minutes. 

Since the body provides spatial landmarks and associated semantics, we expected BodyLoci to provide 
better memorization performance than Marking menus, but rates were quite similar, with no 
significant difference except for the first recall block (Figure 45, left). Moreover, the average time of a 
trial in the learning phases was significantly higher for BodyLoci than Marking menus, except for the 
first learning phase (Figure 45, right). Marking menus were preferred by the participants (58.3% vs. 
20.8%), who also found them significantly better for comfort, fatigue, and perceived recall rate (a 
trend was also observed for mental demand (p = 0.06)). 

 

 

Figure	45:	Top:	learning	(L)	and	recall	(R)	blocks		
Bottom:	recall	rate	(left)	and	completion	time	in	learning	phase	(right)	
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Second experiment: semantic aids 

The method of loci does not only rely on spatial memory but also on remembering mental images and 
on making stories to enhance memorization. Thus, in a second experiment (24 other participants), we 
augmented both techniques with semantic aids. We used two different kinds of aids: Story making and 
Story making+Background images. In the first case, we instructed participants to create stories about 
the command/position pairs that they had to remember. In the second case, we gave them the same 
instructions but also added a background image to the graphical representations of the menus in novice 
mode (Figure 43-d) in order to provide more materials for users to create mnemonics. In other words, 
we re-run the first experiment, but with a between-group design, with half of the participants using the 
Story aids, and the other half using the Story+Images aids. 

Both conditions lead to very similar results, with not significant difference between conditions for 
recall rate or completion time. Hence, background images (used in addition to stories) did not 
significantly improve memorization. 

We thus merged both conditions and compared the resulting data set with the first experiment, then 
seen as a baseline of the second experiment. Completion time was similar but the overall recall rate 
was significantly higher for the second experiment (Figure 46), except for the first recall phase. 
Moreover there was an interaction effect with the technique, and the improvement was higher for 
Marking menus. These differences are large, e.g., an improvement of 18.3% for R3 (end of first 
session) and of 28.5% for R4 (retention). Thus, inciting users to create stories substantially improves 
memorization with Marking menus, and a (non significant) trend suggests that BodyLoci also benefits 
from this mnemonic aid. In accordance with this result, Marking menus performed better than 
BodyLoci in this second experiment (17.3% better retention). 

 

Figure	46:	Recall	rates	for	first	(Baseline)	and	second	(Semantics)	experiments	for	each	technique	

Conclusions 

The most compelling result of this study is that a simple instruction inviting users to create stories 
substantially improved memorization: up to 13.1% for BodyLoci and 28.5% for Marking menus. This 
confirms the effectiveness of verbal/semantic encoding, which we already suspected to play an 
important role in the previous study. Such methods do not require hard effort and they can even be 
seen as a sort of game. This suggests that encouraging users to leverage memorization strategies can 
have an important impact on user interfaces. For instance, providing hints or examples while using a 
graphical interface could help users master gestural techniques, and thus popularize such techniques. 

The memory performance of the BodyLoci technique did not meet our expectations and was 
somewhat disappointing. A likely reason, grounded in the subjective results and the participants' 
comments, is that the cognitive load was higher because they were not used to this kind of interaction. 
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Remembering loci on the body may not be as easy as expected. People do not see their own body, 
except when looking in a mirror, so that they may not have such a vivid visual mental representation 
of it. Moreover then can encounter symmetry problems (15% of our participants in this study), as 
already seen in Section 6.3. In contrast, spatial and iconic cues were always visible in the Physical 
Loci study. However, performance may improve with time, when the user acquires a better mental 
representation and when motor learning develops. As mentioned in [Cockburn07], automaticity only 
develops after extensive learning and it is unlikely to play a major role in short controlled experiments. 

Adding background images did not yield noticeable improvements. Uddin at al. [Uddin17] made a 
similar observation in a recent study and observed that some participants may not have been aware of 
the presence of images. In our study, over the 12 participants who performed under this condition, 7 of 
them said that they used images with the Marking menus, but only 2 of them with BodyLoci. 
Participants may have been overloaded with information in this latter case (see Figure 43-d). 

The smaller impact of Story (or Story+Images) aids on BodyLoci may be due to the fact that body 
parts involve semantic information that people use spontaneously, contrary to Marking menus that rely 
on abstract gestures. Moreover, the directional radial gestures of Marking menus provide a different 
type of information, and thus an additional way of memorizing. In other words, combining different 
types of cues is all the more efficient when these cues are of different natures [Miller56, Jones86, 
Pavio71]. This suggests that semantic aids are especially helpful for techniques that rely on "abstract" 
gestures, such as Marking menus. 

8 Conclusions	and	perspectives	
 
In this document we addressed two different questions: 1) Can gestural interaction provide sufficient 
expressivity for performing a large number of tasks; 2) Can gesture be efficiently learned and 
memorized for making these techniques actually useful. Below, we consider these two aspects by 
summarizing the outcome of the presented studies. 

8.1 Gesture	expressivity	

We first showed, in the Flower menu study, that using additional dimensions such as curvature could 
efficiently solve a major drawback of Marking menus, their limited breadth. Marking menus, and 
related techniques, are of special importance, because they provide a simple and 'natural' means for 
users to discover commands. By ‘natural’ we mean that their novice mode is similar to what users are 
accustomed to, which means that little effort is needed to learn using these techniques. Moreover, 
because gestures are similar in novice and expert modes, these techniques help users make a smooth 
transition from novice to expert.  

In both cases, familiarity, i.e., similarity with well-known techniques and similarity between the 
novice and expert modes, is a key aspect because users are not eager to adopt new techniques that 
involve learning new skills or lead to a decrease in performance. Contrary to the premises of classical 
economics, users are not "rational" [Goodwin18]. They tend to favor short-term solutions that 
optimize their immediate gains rather than make efforts that would be more beneficial in the long 
term. While this observation leads to a revisitation of mainstream economics theories (not to mention 
political implications), it also has practical implications in HCI, where it is known as the Paradox of 
the Active User [Carroll87]. As summarized by [Krisler08]: "once a user acquires a basic 
understanding of the operations required, she repeats those successful operations even when she 
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knows that more efficient execution methods probably exist". Moreover, as stated by Newell and 
Rosenbloom's law of practice [Newell93, Scar11], changing modalities actually results in a 
performance drop, with the risk that users will reject using technologies that require such a change. 
Marking menus brilliantly solve this problem, as users do not even notice that they use a different 
modality. 

Additional dimensions are the second key aspect that we want to emphasize. Many of the studies that 
we presented above rely on the idea of using several different perceptual dimensions or different types 
of information. Besides Flower and Leaf menus, BezelTap, MarkPad, Augmented Letters, Physical 
Loci and BodyLoci rely on this idea by using, respectively, bumps, visual/tactile marks, symbolic 
information, and different memory components. The same is true of CycloRoll gestures (speed and 
location), MTM (locations and directions) and Multi-Finger Chords (families of gestures). Many of 
these techniques allow performing a large number of gestures, especially MarkPad and Physical Loci, 
which can support tens or even hundreds of gestures. In accordance with Miller's statement on 
multidimensional judgments [Miller56], all these studies show that large numbers of gestures can be 
efficiently performed provided that several dimensions are used. 

In Sections 3.3 and 3.4, we have also shown that gestures cannot only be used for selecting commands 
by also for controlling their parameters. Control menus provide a simple way to control one or two 
continuous or discrete parameters. CycloRoll goes a step further by taking into account up to five 
degrees of freedom. FingerCount, which relies on the number of fingers, was also used in combination 
with scrolling gestures for controlling parameters in [Bailly12]. 

We also showed that gestures provide efficient ways of interacting with small and large devices. By 
using alternate dimensions, or gestures with a specific signature, these techniques avoid confusion 
with ordinary gestures. MicroRolls and JerkTilts respectively rely on rolling or self-delimiting 3D 
gestures, which can be distinguished from other gesture because of their specific shape or kinematic 
properties. BezelTap and FingerCount leverage an additional physical dimension, bumps or the 
number of fingers, for the same purpose. WatchIt and MarkPad rely on using an input surface (or a 
part of it) that is ordinarily not (or seldom) used for interacting: the border of the trackpad or the 
wristband. WatchIt avoids occlusion, enables performing gestures eyes-free, and depends on an 
accessory that is needed anyway to wear a watch. 

All these techniques were evaluated in controlled experiments and demonstrated good to high 
performance. Considering the many other studies that have been performed on this topic, we can thus 
safely conclude that gestural interaction does provide a large reservoir of possibilities and that well-
designed gestures can be efficiently used in various contexts with various devices (laptops, mobile 
devices, small and large displays, 3D interfaces, on-body interaction). 

8.2 Learning	and	memorization	

As stated in the introduction, gestural interaction will actually only become useful and gain popularity 
if it provides efficient ways of learning and memorizing gestures and gesture/command associations. 
As seen in Section 2, few commands elicit agreement about the associated gestures, especially if they 
are of an abstract nature, so that most gesture/command associations must be learned.  

When are gestures useful? Gestures are especially useful for performing operations that cannot be 
easily done otherwise. Except on small or large devices, because they do not provide hotkeys and 
make pointing uneasy in some situations, useful tasks tend to be more diverse and more complex than 
just triggering a predefined command. As mentioned in Section 2, tasks can involve performing an 
operation using 1) an application, 2) a command, 3) a document, 4) other elements such as a keyword, 
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a string to search for, etc., or various combinations of these elements. They can also involve chaining 
several operations so that the output of the first operation serves as input for the second operation, and 
so on.  

In other words, gestures are especially useful in the cases where current 'analogical' interfaces provide 
insufficient efficiency or comfort. Many of these cases involve some sort of syntax to allow combining 
different elements in a meaningful way. This point is likely to explain the recent popularity of speech-
based interface and suggests that gestural interfaces should be targeted at performing more 
sophisticated operations than just triggering simple commands. However, such operations are 
generally user- or application-dependent, which again highlights the fact that most gesture/command 
pairs need to be learned. Moreover, this diversity of tasks also suggests that some users may need to 
use a relatively large number of gestures, as pointed out in the MarkPad study. 

Directional radial gestures and overlearning. In Section 7.1, we first focused on directional radial 
gestures and on the fact that such gestures may be especially efficient because of prior learning and 
human directional abilities. As observed in this section, the memory performance of Marking menus 
has rarely been evaluated, and it would be interesting to compare them with other gestures, such as 
those proposed by Appert and Zhai [Appert09] (who compared their gestures with traditional hotkeys, 
but not with Marking menus).  

However, however efficient they may be, abstract directional gestures will necessarily require more 
learning than gestures that already convey a well-known meaning. Letters and digits are overlearned, 
which makes them especially useful for activating commands that have a straightforward semantic 
relationship with them, as shown in Section 7.2 (Augmented Letters). However, because they contain 
curves and corners, letters take more time to draw than straight gestures. While, in our experiment, 
longer execution time was compensated by shorter reaction time, this is unlikely to be true in the long 
term. Thus, although they require more learning, straight directional gestures should be favored for 
commands that are performed very frequently.  

Curved gestures offer another interesting alternative. While longer to draw than straight gestures, they 
still require less time than letters and most other symbols. Moreover, they can easily coexist with 
straight gestures in a menu system, as shown in the Flower menu technique. They were also shown to 
be efficient for memorization in Section 7.1. This may be an indirect consequence of Miller's law on 
multidimensional judgments [Miller56]. Because they rely on a combination of dimensions that each 
have a small number of values, Flower gestures are easy to distinguish, which is likely to help 
memorization. Moreover these dimensions (curves vs. directions) may be related to different memory 
components, which is another factor that enhances memorization, as will be discussed later. Finally, 
their layout emphasizes the semantic relationships between related commands. Grouping into 
categories also facilitates learning, as explained below. 

Positions vs. directions. We also compared the effect of using positions vs. directions on command 
memorization and observed intriguing differences. While these results need to be confirmed by further 
research, they seem to show an advantage in learning positions rather than directions, or, more exactly, 
in using pointing/clicking menu interactions rather than Marking menus. The most likely explanation 
is that Marking menus make the interaction slightly more difficult and that they do not provide as 
many graphical/spatial cues (corners, borders) as traditional menus. Alternate graphical 
representations may thus be more efficient, which is an interesting idea to investigate.  

However, the differences we observed may be caused by more fundamental reasons, i.e., that 
directions (which may be related to egocentric movement) and positions may not be encoded in the 
same way in memory. While navigating through environments and remembering object locations are 
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different classes of tasks involving different properties, it is not clear to which class directional 
gestures are related. Again, this is an interesting topic for future work. 

Structure and categories. Structure has been shown to improve memorability and participants 
intuitively used such strategies in several of our studies (Directions vs. Positions, Physical Loci, 
BodyLoci). The results of the Multi-Finger Chords study confirm that a structured mapping leads to 
less error-prone long-term memorization. Moreover, participants did not perform completely wrong 
gestures when a structured mapping was used, which may reduce the cost of errors (confusing related 
commands generally involves less serious consequences than confusing unrelated commands). 
Interestingly, in this study, the difference in memorization increased with time: recall rates were 
different from the first recall test but this difference became significant only after one week. This 
highlights the fact that long-time retention tests are needed to detect effects that are not immediately 
visible. 

Hierarchical menus. Another question is whether and to which extent hierarchical Marking menus 
degrade memory performance compared to a one-level representation (such as Flower menus). This is 
not an easy question because it involves various factors, such as the number of items to memorize, 
whether they appear on cardinal or intermediate directions, whether submenus correspond to obvious 
categories and what is the degree of semantic relationship between the items and these categories. 
Moreover, memorization may depend on the degree of abstraction of the commands. For instance, 
29% of the participants of the BodyLoci study reported having more trouble memorizing abstract items 
(e.g. items in the "Edit" menu), compared to more concrete items (e.g., items in the "Animals" menu). 
However, we did not observe noticeable differences in the results.  

Because of different settings, the results of different experiments are difficult to compare. We can 
however observe that, in the studies reported in Section 7, hierarchical Marking menus performed 
better when four submenus were used (no other item being used in the first level), and they were 
located on the cardinal directions, and the item/submenu relationships were obvious (i.e., in the 
Positions vs. Directions and BodyLoci studies). While this is not a surprising result, such an optimal 
configuration is unlikely to occur in real use. In real applications, more than four submenus are 
generally needed, they may not correspond to obvious well-separated categories, and related items 
may be spread in several menus because of limited menu breadth. Incidentally, this also suggests that 
the differences between positions and directions may be stronger in more realistic settings, and that the 
memory performance with BodyLoci and Marking menus might be different in such a case. 

Loci and multiple memory components. While we knew that the method of loci had been used to 
achieve amazing performance, we were impressed by the results we obtained. This study clearly 
shows that users can learn a relatively large number of items (48 in this experiment) in a short amount 
of time when proper conditions are met. They were able to remember them almost perfectly after one 
week, and could still remember most of them after three months. 

The ability to remember locations for a long period of time was already observed in the Data 
Mountain study [Czerwinski99]. In a different context (word-gesture keyboard), Zhai and Kristensson 
observed that participants could master 50 to 60 gestures in four test sessions [Zhai03, Zhai12]. 
Considering these results, we suspect that there is a tendency to underestimate the potential of human 
memorization in HCI studies, and that abstract gestures could be used in a much larger variety of cases 
than generally expected. 

Because the power of spatial memory has been demonstrated in various studies in psychology and in 
HCI, we started the Physical Loci study with the idea that location would play the most important role 
in making this method efficient. While this study cannot precisely account for the respective role of 
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the different memory components, it clearly shows that spatial memory is not the only factor. As 
shown by our last experiment, participants were able to retrieve almost all items although their 
locations had changed. This took them more time, but they could still find them. 

This study, as well as the Positions vs. Directions and the BodyLoci studies, clearly shows the role of 
semantic encoding. Participants were very creative in creating stories, they found it fun and they 
could easily remember these stories. The BodyLoci study also showed that just suggesting users to 
create stories can substantially improve memorization performance (up to 28.5% for Marking menus). 
This suggests that gestural techniques should provide ways of encouraging users to leverage such 
strategies. This is another interesting topic for future research. 

While object/image memory is also likely to play an important role, our results are mixed. 
Background images provided no discernible benefit in the BodyLoci study and a similar observation 
was made in [Uddin17]. Their impact is unknown in Physical Loci as this aspect was not specifically 
tested. As mentioned above, the presence of graphical cues (corners, borders; which are also spatial 
cues), may explain the differences that we observed in the Positions vs. Directions study. However, 
some participants may not have been aware of such cues, especially background images, because of 
selective attention or because they were overloaded with information. Maybe background images 
should be more "bizarre", as in the original loci method [Briggs70] in order to retain the user's 
attention. 

Finally, participants often make use of several memory components simultaneously, and their stories 
generally refer to spatial cues, objects or images. This is in accordance with Paivio's Dual Coding 
Theory [Paivio71], which states that verbal representations and mental images rely on different 
memory systems, so that associations between them improves memorization. In other words, "the 
chances that a memory will be retained and retrieved are much greater if it is stored in two distinct 
functional locations rather than in just one" [Plato-Stanford]. This idea is also present in the Working 
Memory model of Baddeley [Baddeley13] where visuospatial and verbal information rely on two 
different subsystems, the visuospatial sketchpad and the phonological loop. 

Leveraging appropriate combinations of memory components, and getting users to employ strategies 
that favor verbal/semantic encoding may thus be the key idea for making interaction techniques more 
efficient for learning and memorizing gestures, which opens various perspectives for future research. 

8.3 Perspectives	

My research perspectives are in line with my recent work, with a more specific focus on learning and 
memorization. Considering the outcome of the studies performed in the fields of psychology and HCI, 
and those I performed with my students and colleagues, I believe that interactive systems could be 
improved by exploiting human cognitive abilities more effectively. Who would not dream to be able to 
almost instantly trigger or access frequent commands and data items? This objective is not totally 
unrealistic but requires 1) to acquire a better understanding of the phenomena involved in the learning 
and memorization of gestures, and 2) to propose new interaction techniques that take these results into 
account. I already mentioned several directions for future research in the previous sections that I 
briefly summarize below. 

First, it would be interesting to investigate more precisely the individual and combined effects of the 
different memory components involved in gesture memorization and when and whether performance 
starts to drop. In the Physical Loci study, participants were in fact able to remember all items and did 
very few errors. Similarly, in an experiment conducted by Zhai and Kristensson, the participants’ 
capacity to memorize gestures seemed to be only limited by their speed of learning [Zhai03]. 
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One particular aspect is the use of images and other graphical cues, as they seemed to be less 
efficient than expected in some experiments. The effect of different types of images or graphical 
representations, or of their positioning in the user interface could be investigated, as well as the idea of 
using pictograms, animations or graphical effects [Baudisch06, Giannisakis17]. They could also be 
used in combination with graphical representations that inform the user about the benefits of using 
expert techniques, which appear to favor their use [Malacria13b]. As such cues may distract or disturb 
users, they could be represented on demand or differently according to user expertise.  

A similar problem occurs for getting users to leverage verbal/semantic encoding. As seen above, such 
strategies seem especially efficient but interaction techniques should not be intrusive or disturb users 
while they are focusing on a task. Again, the user interface could be adapted depending on user 
expertise or activity, or provide discreet hints such as interactive tooltips or small help widgets that 
users could trigger when they have idle time. As most users are skilled at creating stories, and enjoy 
doing so, this could also be presented to them as a game that will eventually enable them to improve 
their performance by playing.  

Another interesting subject is the difference between positions and directions. From a theoretical 
point of view, it would be interesting to know the actual reason of these differences. From a practical 
point of view, this could lead to a better graphical representation of Marking menus. It would also be 
worth knowing whether directional radial gestures actually have specific advantages compared to 
other categories of gestures, besides the fact that they are particularly fast to draw. Similarly, it would 
be useful to have better knowledge of the advantage and drawbacks of flat vs. hierarchical 
representations. 

We already mentioned that gestures are more useful for performing more complex tasks than just 
triggering simple commands. This raises the question of how to make it easy for users to create such 
gesture/complex command associations and of whether some sort of syntax for combining gestures 
could be useful. MarkPad, Augmented Letters or Control menus are first steps in these directions.  
These techniques could be expanded to take into account textual parameters, as for instance 
CommandBoard [Alvina17], which allows selecting an object by entering text, and a command that is 
applied to this object. Moreover, more work is needed to understand what kind of operations are 
actually useful and enable users to customize their working environment easily.  

Small and large devices raise specific problems that gestures can help address. Interacting with 
smartwatches and smaller objects (e.g. digital jewelry) still remains challenging while enabling many 
interesting application use cases, especially, but not only, for performing eyes-free interactions when 
the user is mobile. They provide interesting opportunities for developing new gestural techniques as 
well as wall-sized displays and AR and VR environments.  

Wall-sized displays require users to constantly walk and to perform large arm movements. They are 
particularly useful for collaborative interaction, which requires specific tools as seen in the CoReach 
study. AR devices present the same problems as small mobile devices except that they can display 
more information. How can the user easily and efficiently access all this data? VR environments allow 
displaying even more data but the users cannot see their hands. Gestural interaction is then especially 
appropriate for accessing data and triggering commands as it avoids manipulating long menus and 
performing tiring 3D gestures, as seen in the BodyLoci study.  

On-body or wearable interaction seems especially interesting in these three contexts. While on-body 
gestures were shown to provide good memorization performance in the BodyLoci study, many 
questions remain open. For instance, other types of gestures or graphical representations may be more 
appropriate in this context. Smaller gestures than the ones we used in the BodyLoci study could be 
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tested with a more accurate sensing technology. This would also make it possible to estimate the 
accuracy of on-body eyes-free gestures more precisely. Other questions such as confusion between 
directions because of the symmetry of the body (as observed in the Belly Gestures and BodyLoci 
studies) would also be worth investigating.  

Tactile feedback could also improve accuracy of memory performance. In the context of wearable 
interaction, the different parts of a garment could serve as tactile landmarks, and they could also be 
augmented to provide active tactile feedback. Visual feedback could serve the same purpose, by 
projecting data on the parts of the body (or of the garment) that are visible, such as the arms [Xiao18]. 
AR glasses could be used to provide permanent information to help novice users. Finally, new 
handheld devices could be developed to make interaction easier and more effective, especially when 
interacting with a VR environment or a wall-sized display. 

Gestural interaction is thus particularly promising in all these use cases, and we plan to continue 
working on them in the future. 

Other research topics 

This document only focuses on my work on gestural interaction. However, I have also worked on 
other topics such as cursive script recognition [Lecolinet90,91,93, Plessis93, Cote95,98, 
Ruiz-Pinales00,04,08], graphical toolkits and software architectures [Lecolinet96,98,99,02a,02b,03], 
information visualization [Robert98,01, Pook00b, Plenacoste01, Huot06,07, Blanch07, Cohé16], 
tangible interaction [Muhammad07,08a,08b, Teyssier17a], interactive paper [Malacria09,11], tactile 
feedback [Lecolinet05, Ziat07,14], augmented reality [Gacem15,16], target acquisition on small 
devices [Roudaut08], and on the advantages and drawbacks of wall-sized displays, in comparison with 
desktop monitors [Liu14] and for performing shared tasks [Liu16].  

I was also involved in the writing of several survey papers. The two most well-known are related to 
my former research area ([Casey98] on character segmentation, which has been widely cited, and 
[Lecolinet94] on handwriting recognition). I also participated in a survey on Visual menu techniques 
[Bailly16], and in several other French-speaking papers dedicated to literature reviews or design 
spaces [Bailly07b, Roudaut07, Malacria08, Baglioni09, Vo11, Gacem14, Jacob14, Teyssier17b].  

I still plan to work on some of these topics, for instance interaction techniques for wall-sized displays 
or virtual environments. Interacting with such systems still poses challenging problems and provides 
opportunities for adapting some of the techniques and ideas that were presented in this document. For 
instance, they could provide interesting solutions for data visualization in virtual reality.  

Graphical toolkits and software architectures is another domain that I am still interested in. Common 
graphical toolkits are amazingly cumbersome and using them is extremely time-consuming. I believe 
that most graphical user interfaces should be almost as easy to write as a standard Web page, at least 
for what concerns their presentation aspect. The specification of their interactions could also be greatly 
enhanced by using efficient tools (e.g., state machines [Appert08] or StateCharts) in combination with 
appropriate formalisms.  

Mathematical notation has a long story [Wolfram00] and considerably helps in understanding complex 
demonstrations, compared to long paragraphs written in natural language. As mentioned by Ben 
Shneiderman in [Shneiderman95], "Leibniz sought to make the form of a symbol reflect its content. 'In 
signs,' he wrote, 'one sees an advantage for discovery that is greatest when they express the exact 
nature of a thing briefly and, as it were, picture it; then, indeed, the labor of thought is sonderfully 
diminished.'" Similarly, I believe that a large part of the complexity of GUI programming comes from 
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the verbosity of programming languages and graphical toolkits APIs. I am thus interested in 
developing a dedicated language that, ideally, would be to GUIs what equations are to mathematics. 

Another key idea is to develop a generic model enabling a GUI toolkit to rely on small number of 
actually different widget classes. This idea is inspired by the HTML/DOM model, where all tags rely 
on the same DOM class, or the car industry where the same car platform can serve to produce many 
different models. This results in a great homogeneity as most objects rely the same actual classes and 
are thus programmed in the same way. A preliminary version of a toolkit experimenting these ideas 
has been implemented, using OpenGL, SDL and the C++11 language. 

Finally, I recently started working on a new research topic, Social touch. The goal is to examine how 
the sense of touch can be integrated into interactive systems to leverage communicative and emotional 
channels between humans and machines or between humans via machines. The sense of touch has 
been shown to increase trust, worthiness, warmth, politeness, and the sense of social presence and to 
trigger emotional attachment. However, this modality has been much less studied than vision or verbal 
communication and little research has been devoted to technologies that are specifically aimed at 
transmitting emotion. I thus plan to work on the design of novel techniques and devices for simulating 
human touch. 

 

Figure	47:	MobiLimb	

As a first example, MobiLimb (Figure 47), an innovative and intriguing device developed by Marc 
Teyssier (whose PhD is co-supervised by Catherine Pelachaud, Gilles Bailly and myself) was recently 
presented at the UIST 2018 conference [Teyssier18, MobiLimb]. This project, which is related to the 
fields of shape changing interfaces [Robinson16, Kim18] and micro-robots [Le Goc19], relies on the 
idea of augmenting mobile devices with a robotic device, instead of augmenting humans with robotics.  

MobiLimb is thus also related to gestures, except that these gestures are not performed by the user but 
by the robotic device. These gestures are not semaphoric, but deictic or manipulative [Karam05] or 
intend to convey emotion. This radically changes the nature of such a familiar object as a smartphone, 
which is supposed to be an inert object. Such a 'creature' does not even attempts to look human, as 
humanoid robots, which raises interesting questions about how humain see 'machines' and how 
'machines' could look like in the future. Hence, in 20*1, HAL may not be just a talking eye, but an 
even stranger creature... 
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Reading of City Names on Real Mail. In IAPR International Conference on Pattern Recognition 
(ICPR'90), IEEE (1990). 

E. Lecolinet, J.-V. Moreau. A New Sytem for Automatic Segmentation & Recognition of 
Unconstrained Handwritten Zip Codes. In IAPR Scandinavian Conference on Image Analysis 
(SCIA'89). IEEE (1989). 585-592. 

E. Lecolinet, J.-V. Moreau. Automatic Segmentation & Recognition of Zip Codes on Handwritten 
Real Mail. In International Conference on Image Processing and its Applications. IET (1989). 217-221. 

2.2 French-speaking conferences 
B. Fruchard, E. Lecolinet, O. Chapuis. Mémorisation de Commandes : Positions Spatiales versus 
Gestes Directionnels. In Conférence francophone sur l'Interaction Homme Machine (IHM'18), ACM 
(2018). To appear (Oct. 2018). 

M. Teyssier, G. Bailly, E. Lecolinet, C. Pelachaud. Revue et Perspectives du Toucher Social en 
IHM. In Conférence francophone sur l'Interaction Homme Machine (IHM'17), ACM (2017). 

Th. Jacob, G. Bailly, E. Lecolinet. Etude du controle du point de vue 3D à partir de la tête et des 
épaules. In Conférence francophone sur l'Interaction Homme Machine (IHM'15), ACM (2015) 4-* 

M. Berthellemy, E. Cayez, M. Ajem, G. Bailly, S. Malacria, E. Lecolinet. SpotPad, LociPad, 
ChordPad & InOutPad : Exploration de l'interaction gestuelle sur pavé tactile. In Conférence 
francophone sur l'Interaction Homme Machine (IHM'15), ACM (2015), 6 pages. 

Th. Jacob, G. Bailly, E. Lecolinet, R. Foulon, E. Corteel. A Design Space for Threedimensional 
Curve Edition. In Conférence francophone sur l'Interaction Homme Machine (IHM'14), ACM (2014) 
105-112. 

S. Gosh, G. Bailly, R. Despouys, E. Lecolinet, R. Sharrock. SuperVision : controler spatialement 
les objets connectés dans une maison intelligente. In Conférence francophone sur l'Interaction 
Homme Machine (IHM'14), ACM (2014). 201-206. 

H. Gacem, G. Bailly, J. Eagan, E. Lecolinet. A design space of guidance techniques for large and 
dense physical environments. In Conférence francophone sur l'Interaction Homme Machine 
(IHM'14), ACM (2014). 9-17. 

S. T. Perrault, G. Bailly, Y. Guiard, E. Lecolinet. Promesses et contraintes de la joaillerie 
numérique interactive : Un aperccu de l'état de l'art. In Conférence francophone sur l'Interaction 
Homme Machine (IHM'11), ACM (2011). 14-*. 

D.B. Vo, G. Bailly, E. Lecolinet, Y. Guiard. Un espace de caractérisation de la télécommande dans 
le contexte de la télévision interactive. In Conférence francophone sur l'Interaction Homme 
Machine (IHM'11), ACM (2011). 17-*. 

K. Adjanor, E. Lecolinet, Y. Guiard, M. Ribière. Visualisation interactive de données temporelles: 
un aperçu de l'état de l'art. In Conférence francophone sur l'Interaction Homme Machine (IHM'10), 
ACM Press (2010). 97-104. 

M. Baglioni, E. Lecolinet, Y. Guiard. Espace de Caractérisation des Interactions Gestuelles 
Physiques sur Dispositifs Mobiles. In Conférence francophone sur l'Interaction Homme Machine 
(IHM'09), ACM Press (2009). 203-2012. 

S. Malacria, E. Lecolinet. UNote : Classe augmentée et Stylo numérique. In Conférence 
francophone sur l'Interaction Homme Machine (IHM'09), ACM (2009). 255-258. 
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J. Francone, G. Bailly, L. Nigay, E. Lecolinet. Wavelet menu: une adaptation des marking menus 
pour les dispositifs mobiles. In Conférence francophone sur l'Interaction Homme Machine (IHM'09), 
ACM (2009). 367-370. 

G. Bailly, A. Roudaut, E. Lecolinet, L. Nigay. Menus Leaf : Enrichir les menus linéaires par des 
gestes. In Conférence francophone sur l'Interaction Homme Machine (IHM'08), ACM (2008). 169-172. 

G. Bailly, A. Demeure, E. Lecolinet, L. Nigay. MultiTouch Menu (MTM). In Conférence francophone 
sur l'Interaction Homme Machine (IHM'08), ACM (2008). 

S. Malacria, E. Lecolinet, Y. Guiard. Espace de Caractérisation du Stylo Numérique. In Conférence 
francophone sur l'Interaction Homme Machine (IHM'08), ACM (2008). 255-258. 

R. Blanch, E. Lecolinet. Treemaps Zoomables: Techniques d'Interaction Multi'Echelles pour les 
Treemaps. In Conférence francophone sur l'Interaction Homme Machine (IHM'07), ACM (2007). 131-
139. 

S. Huot, E. Lecolinet. ArchMenu et ThumbMenu : Controler son dispositif mobile "sur le pouce". 
In Conférence francophone sur l'Interaction Homme Machine (IHM'07), ACM (2007). 107-110. 

A. Roudaut, E. Lecolinet. Un espace de classification pour l'interaction sur dispositifs mobiles. 
In Conférence francophone sur l'Interaction Homme Machine (IHM'07), ACM (2007). 99-106. 

G. Bailly, E. Lecolinet, L. Nigay. Quinze Ans de Recherche sur les Menus : Critères et Propriétés 
des Techniques de Menus. In Conférence francophone sur l'Interaction Homme Machine (IHM'07), 
ACM (2007). 119-126. 

E. Lecolinet, G. Mouret. TACTIBALL,TACTIPEN,TACTITAB, ou comment `` toucher du doigt '' les 
données de son ordinateur. In Conférence francophone sur l'Interaction Homme Machine (IHM'05), 
ACM (2005). 

C. Faure, P. Benci, A. Danzart, E. Lecolinet. Conception de services mobiles pour étudiants. In 
Journées francophones Mobilité et Ubiquité, ACM (2006). 

E. Lecolinet, D. Nguyen. Représentation focus+contexte de listes hierarchiques zoomables. In 
Conférence francophone sur l'Interaction HommeMachine (IHM'06), ACM (2006). 

E. Lecolinet, C. Faure, I. Demeure, J. C. Moissinac, S. Pook. Augmentation de cours et de réunion 
dans un Campus. In Conférence Mobilité et Ubiquité (Ubimob'05), ACM (2005). 

E. Lecolinet, M. Nottale. Immersion d'interfaces 2D dans un espace 3D. In Conférence 
Francophone sur l'Interaction HommeMachine (IHM'04), ACM (2004). 

E. Lecolinet. Pointeurs multiples: étude et implémentation. In Conférence Francophones sur 
l'Interaction HommeMachine (IHM'03), ACM (2003). 134-141. 

A. Goye, G. Chollet, E. Lecolinet, S.S. Lin, X. Ding, C. Pelachaud, Y. Ni. Interfaces multimodales 
pour un assistant au voyage. In Conférence Francophones sur l'Interaction HommeMachine 
(IHM'03), ACM Press (2003). 244-247. 

P. Plenacoste, E. Lecolinet, S. Pook, C. Dumas, J.D. Fekete. Zoomable and 3D Representations for 
Digital Libraries. In Conférence francobritannique IHMHCI (Interaction HommeMachine / Human 
Computer Interaction), IOS Press (2001). 

S. Pook, E. Lecolinet, G. Vaysseix, E. Barillot. Des aides transparentes de navigation et un 
nouveau type de menu pour les interfaces zoomables. In Conférence Ergonomie et Interaction 
HommeMachine (ErgoIHM), Europia (2000). 170-177. 

L. Robert, E. Lecolinet. Techniques d'interaction et de visualisation pour l'accès à des 
documents numérisés. In Conférence Ergonomie et Interaction HommeMachine (ErgoIHM), Europia 
(2000). 178-185. 
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E. Lecolinet. Réification et duplication dans les interfaces graphiques. In Journées Francophones 
sur l'Interaction HommeMachine (IHM'99), Europia (1999). 

L. Robert, E. Lecolinet. Couplage de représentations globales et locales pour l'exploration 
d'hyperdocuments. In Journées Francophones sur l'Interaction HommeMachine (IHM'98), Europia 
(1998). 

L. LikformanSulem, L. Robert, E. Lecolinet, J.L. Lebrave. Edition hypertextuelle et consultation de 
manuscrits : le projet Philectre. In Conférence Internationale Hypertextes et Hypermédias, 
Réalisation, Outils et Méthodes (1997). 

E. Lecolinet. Une approche biunivoque pour la construction d'interfaces graphiques. In Journées 
Francophones sur l'Interaction HommeMachine (IHM'96), Europia (1996). 

E. Lecolinet. Création incrémentale d'interface graphiques par programmation visuelle avec 
équivalence textuelle. In Actes Conf. Interface des mondes réels et virtuels (1995). 479-488. 

Eric Lecolinet, Jean-Vincent Moreau. Lecture Automatique des Codes Postaux et des Noms de 
Villes Majuscules sur Courrier Manuscrit. In Conférence Reconnaissance des Formes et 
Intelligence Artificielle (RFIA'98). (1989). 975-988. 

3. Books chapters and editing 

E. Lecolinet, B. Defude (Eds.). Proceedings Ubimob'06. Journées francophones Mobilité et Ubiquité 
(Ubimob'06), ACM (2006).  

J.M. Robert, M. Desmarais, E. Lecolinet, B. David (Eds.). Proceedings IHM'06 : Nouveaux espaces 
d'interaction. Conférence Francophone sur l'Interaction HommeMachine (IHM'06), ACM (2006).  

J.D. Fekete, E. Lecolinet (Eds.) Coordination du numéro spécial "Visualisation pour les 
bibliothèques numériques". Document Numérique, 9, 2, Hermès (2006). 

P. Girard, T. Baudel, E. Lecolinet, D. Scapin (Eds) Proceedings IHM'02. Conférence francophone sur 
l'Interaction Homme Machine (IHM'02), ACM (2002). 

E. Lecolinet. A Visual+Textual Environment for Building Graphical User Interfaces. In Computer-
Aided Design of User Interfaces, Kluwer Academics (1999) 115126. 

C. Faure, E. Lecolinet. OCR Handwriting. In Joint ECUS Survey on the State of the Art in Human 
Language Techology. Chapter 3: written language recognition, Cambridge University Press & Giardini 
Editori (1997). 

M. Cote, E. Lecolinet, M. Cheriet, Y.C. Suen. Using Reading Models for Cursive Script 
Recognition. In Handwriting and Drawing Research: Basic and applied issues, M. Simner, C. 
Leedham, A. Thomassen (Eds.), IOS Press (1996). 299-314. 

E. Lecolinet. Cursive Script Recognition by Backward Matching. In Advances in Handwriting and 
Drawing: A Multidisciplinary Approach, Europia (1994). 117-135. 

E. Lecolinet, O. Baret. Cursive Word Recognition: Methods and Strategies. In Fundamentals in 
Handwriting Recognition, Springer Verlag (1994). 235-263. 

4. Workshops, demos, misc. 
E. Lecolinet. Bientôt de nouvelles façons d'interagir avec les machines. Interview IMT Tech 
(2018). https://blogrecherche.wp.imt.fr/2018/02/05/interactions-homme-machine 

B. Fruchard, E. Lecolinet, O. Chapuis. Démonstration de MarkPad : Augmentation du pavé tactile 
pour la sélection de commandes. In Conférence francophone sur l'Interaction Homme Machine 
(IHM'17), ACM (2017). 
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M. Teyssier, G. Bailly, E. Lecolinet. VersaPen: Exploring Multimodal Interactions with a 
Programmable Modular Pen. In CHI'17 Extended Abstracts (demonstration): ACM SIGCHI 
Conference on Human Factors in Computing Systems, ACM (2017). 377-380. 

E. Lecolinet. Interaction and command memorization for body-centric interfaces. Winter 
workshop on Embodied Interaction. Saarland University, Saarbrücken, Germany. January 2014. 

D. J.C. Matthies, S. T. Perrault, E. Lecolinet, S. Zhao. Peripheral Microinteraction For Wearable 
Computing. In CHI'14 Workshop on Peripheral Interaction: Shaping the Research and Design Space. 
May 2014. 

L. Sun, S. T. Perrault, E. Lecolinet. The Ring Ring: Drawing Attention through Light. Chinese CHI 
2014 Poster Session. May 2014. 1516. 

J. Eagan, C. Klokmose, E. Lecolinet. What are Applications in Multisurface Environments? In 
CHI'13 Workshop on Powerwall international workshop on interactive ultrahighresolution displays, May 
2013. 6-*. 

E. Lecolinet. Interaction miniature mobile / incarnée. Workshop ISN INTERCO. Paris. Mars 2013. 

S. T. Perrault, G. Hind, E. Lecolinet, Y. Guiard. Augmenting digital jewelry with advanced display 
capacities. In CHI'13 Workshop "Display take new Shapes". May 2013. 4-*. 

E. Lecolinet. L'interaction gestuelle, un gisement de ressources pour l'interaction mobile. Forum 
sur l'Interaction Tactile et Gestuelle (FITG’12). Lille. November 2012. 

S. T. Perrault, S. Malacria, Y. Guiard, E. Lecolinet. WatchIt: Simple Gestures for Interacting with a 
Watchstrap. In CHI Extended Abstracts: ACM Conference on Human Factors in Computing Systems, 
ACM. May 2012, 14671468. 

Th. Pietrzak, S. Malacria, A. Tabard, E. Lecolinet. What do UNote? An Augmented Note Taking 
System for the Classroom. In Ubicomp’10 workshop : PaperComp: International Workshop on Paper 
Computing. October 2010. 

T. Muhammad, G. Bailly, E. Lecolinet, G. Mouret. Categorization, Analysis and Properties of 
Tactile Patterns. In Conference Chi NL'09. Leiden, The Netherlands. June 2009. 

T. Muhammad, G. Bailly, Y. Guiard, E. Lecolinet. Tactile Assistance for Selecting List Favorites 
with a Bifocal Absolute and Relative Representation. In Conference Chi NL'09. Leiden, The 
Netherlands. June 2009. 

R. Blanch, E. Lecolinet. Navigation Techniques for Zoomable Treemaps. In Adj. Proc.: Demos of 
ACM UIST'06. Montreux, Switzerland (2006). 

E. Lecolinet. Nouvelles techniques de visualisation et d'interaction. Course at Ecole Franco-
Vietnamienne de Recherche Do Son, Multimédia 2005, CNRS/MICA. Vietnam. Nov. 2005. 

E. Lecolinet. Techniques de visualisation. Course at Ecole Jeune Chercheur Interaction et 
Visualisation de l'Information. Cap Ferret, France, Septembre 2004. 

E. Lecolinet. Contexte et interaction dans les interfaces zoomables. Séminaire de la revue I3, 
Universite Pierre & Marie Curie, Paris. Mars 2004.  

E. Lecolinet. Context in Zoomables interfaces. Workshop on the Visualization of Relational Data 
(WVDR'2002), Université de Montpellier, France. January 2002. 

E. Lecolinet. The Ubit graphical toolkit: An atomic architecture for GUIs. IFIP WG 2.7/13.4 
workshop. Paris. October 2002. 

E. Lecolinet, S. Pook. Zoomable interfaces: the Zomit toolkit. IFIP WG 2.7/13.4 workshop. Paris. 
October 2002. 

E. Lecolinet, J.D. Fekete, S. Pook. Bibliothèques : comparaisons entre le réel et le virtuel en 3D, 
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2D zoomable et 2D arborescent. In Conférence ASTI 2001, Cité des Sciences et de l'Industrie, 
(2001), 2425. 

J.L. Lebrave, B. Cerquiglini, E. Lecolinet. Digitizing Medieval Manuscripts: Creating a Scholarly 
Resource. Invitational Colloquium of The Johns Hopkins University. Baltimore, Maryland. November 
1998. 

E. Lecolinet. Nouvelles techniques de visualisation des espaces d'information. Colloque « Retour 
vers le futur : supports anciens et modernes de la connaissance à l'aube du XXIe siècle », Fondation 
des Treilles, Tourtour, 2000. 

S. Pook, E. Lecolinet, G. Vaysseix, E. Barillot. Contexte et Interaction dans les Interfaces 
Zoomables. In RJC IHM 2000. June 2000. 5760. 

M. Cote, M. Cheriet, E. Lecolinet, C. Suen. Détection des lignes de base de mots cursifs à l'aide 
de l'entropie. Congrès de l'association canadiennefranccaise pour l'avancement de la science  
(AFCAS'96). 1996. 

M. Cote, E. Lecolinet, M. Cheriet, C. Suen. Lecture automatique d'écriture cursive utilisant des 
concepts perceptuels. Congrès de l'association canadiennefranccaise pour l'avancement de la 
science (AFCAS'96). 1996. 

C. Faure, E. Lecolinet. Interactions hommemachine : trois études. Rapport 96C005, ENST (1995). 

L. Likforman, E. Lecolinet. Handwriting Analysis: Segmentation and Recognition. IEE European 
Workshop on Handwriting Analysis and Recognition. 1994. 17/117/8. 

5. Dissemination 
Public presentations and demonstrations at Télécom ParisTech for various events: inauguration of the 
Télécom Fab lab (2016), inauguration of the DIGISCOPE platform (2014), solemn reception of 
academic year 2013 (with the French minister of industry), « Futur et ruptures » day (2012), 
« Multimedia contents and services » day (2008 and 2004), etc. 

Demonstrations at « Futur en Seine », a popular public event devoted to science and technology. 
Paris. June 2013. 

Demonstrations at the Alcatel-Lucent Open Days in June 2009 and June 2011.  

Public presentation of the UBIMEDIA common lab between Alcatel-Lucent Bell labs and Institut Mines-
Télécom. Bibliothèque Nationale, Paris. December 2011. 

Public demonstrations for the QUAERO (Rennes, 2010) and CONNEXION (Chatou, 2015) 
collaborative projects.  

6. PhD thesis 
E. Lecolinet. Segmentation d'images de mots manuscrits : application à la lecture de chaînes de 
caractères majuscules alphanumériques et à la lecture de l'écriture cursive. Université Pierre et 
Marie Curie (Paris VI). 1990. 

7. Patents 
M. Teyssier, G. Bailly, C. Pelachaud, E. Lecolinet. MobiLimb - Actuated robotic arm for mobile 
device. Patent pending FR 1858553, 09-20-2018. 

J. Robinson, M. Ribière, M. Baglioni, E. Lecolinet, J. Daigremont. Servers, display devices, scrolling 
methods and methods of generating heatmaps. Patent number: 8994755. March 31, 2015. 
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M. Serrano, E. Lecolinet. Génération perfectionnée de commandes dans un équipement à écran 
tactile. Submission PCT/FR2013/050794. 

8. Software 
https://perso.telecom-paristech.fr/elc/ 

MarkPad: Augmenting Touchpads for Command Selection 

Bibtoweb: A tool for generating HTML bibliographies in HTML from BibTex files. 

MacMote: A tool for controlling multimedia software and devices using 2D and 3D interfaces. 

Ubit GUI Toolkit and Mouse server: A Molecular Architecture for Building GUIs. 

XXL / XlBuild / XlSketch: Visual+Textual Equivalence for Building GUIs and for Designing GUIs by 
Sketch Drawing. 
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11 	Curriculum	vitæ	
 

Eric Lecolinet 
Télécom ParisTech / LTCI Laboratory   
INFRES Department, DIVA Team (team leader). 
 
E-mail: eric.lecolinet@telecom-paristech.fr  
Tel: + 33 1 45 81 78 87 
Personal web site: http://www.telecom-paristech.fr/~elc 
DIVA web site: https://diva.telecom-paristech.fr/ 
Postal address: Télécom ParisTech / 46 rue Barrault / 75013 Paris / France. 
 
1. Employment  
− Since May 2015: Maître de conférences hors classe at Télécom ParisTech. 
− May 1994 - April 2015: Maître de conférences (associate professor) at Télécom ParisTech. 
− February 1992 - April 1994: Enseignant-chercheur (assistant professor) at Télécom ParisTech. 
− October 1990 - January 1992: Post-Doc at IBM Almaden Research Center, San José, CA, USA. 
− April 1990 - September 1990: Post-Doc at INRIA (SYNTIM project),  Rocquencourt, France. 
− September 1986 - August 1987: Military service. 
− September 1985 - August 1986: Assistant professor at Institut National Agronomique Paris-

Grignon (INAPG), Paris. 

2. Education  
− September 1987 - March 1990: PhD Thesis in computer science at University Pierre & Marie Curie 

(Paris VI), Paris and Matra MS2I, Velizy, France. Mention très honorable (high honors). 
Title : « Segmentation d'images de mots manuscrits : application à la lecture de chaînes de 
caractères majuscules alphanumériques et à la lecture de l'écriture cursive » 
Supervisor: J-C. Simon.  
Jury: J-P Crettez, G. Lorette, G. Stamon, M. Lucas, J-P. Haton, J-C Simon, G. Gaillat, C. Roche. 

− October 1984 - September 1985: DEA (M. Sc.) in computer science at University Pierre & Marie 
Curie (Paris VI), Paris.  Mention très bien (high honors). 

3. Teaching 

Since my recruitment at Télécom ParisTech I have been involved in the conception and the 
coordination of two study tracks in HCI and of various teaching units in computer science, in HCI and 
(formerly) in pattern recognition at Télécom ParisTech. I am also responsible of a teaching unit at 
University Pierre & Marie Curie (Paris VI) and at University Paris-Saclay and I act as a local 
coordinator for the corresponding Master’s programs (ANDROIDE Computer Science Master at Paris 
VI, HCI Master at Paris-Saclay). My current responsibilities are detailed below: 

− Co-supervisor (with Tamy Boubekeur) of the IGR study track (2 year track) on Human Computer 
Interaction and Computer Graphics at Telecom ParisTech. 

− Advisor of the following teaching units at Telecom ParisTech: 
• IGR201: Interactive Application Development (48h, ~30 students) 
• IGR203: Human-Computer Interaction (48h, ~30 students) 
• INF224: Programming Paradigms: Theory and Practice (2x24h, ~150 students) 
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• INF720: C Language Programming (24h, ~30 students) 

− Advisor of the following teaching units at universities Paris VI and Paris-Saclay: 
• Human-Computer Interaction (60h, ~30 students) - Master in Computer Science, 

ANDROIDE specialty - University Pierre et Marie Curie (Paris VI) 
• Gestural and Mobile Interaction (21h, ~15 students) - Human Computer Interaction (HCI) 

Master - University Paris-Saclay. 

− Former responsibilities: 
• Co-supervisor of the IWG track (1 year study track) at Télécom ParisTech 
• HCI courses at ENSTA (2007-2010) and Paris VI (DEA IARFA then Master IAD, since 

1998)  
• Courses in computer science at Télécom ParisTech (since 1992) 
• Courses in pattern recognition at Télécom ParisTech and Paris VI (before 2002) 

− Summer schools: 
• HCI course at the Do Son summer school, Vietnam, 2005. 
• Course on interaction & information visualization, Cap Ferret summer school, France, 2005. 

4. Research 

Since my PhD, I have been working in two different research fields: first in Pattern Recognition (more 
precisely on handwriting recognition), then in Human-Computer Interaction (HCI). My current 
research interests focus on 1) gestural interaction for command selection, 2) the learning and the 
memorization of gestures, and 3) user interaction with small and large devices. I have also been 
working on haptic/tactile feedback, data visualization and user interface engineering. 

From an institutional point of view, I have been involved in the coordination of several projects or 
teams aiming at developing HCI research at Télécom ParisTech and Institut Mines-Télécom (which is 
the academic institution Télécom ParisTech belongs to). I am now in charge of coordinating the DIVA 
team 10 of the Computer Science and Networks (INFRES) department of Télécom ParisTech, which is 
dedicated to human-computer interaction, interactive visualization and design. 

I have also been involved in working towards the same goal at the national level, as a board member,  
then president of AFIHM, the French research association in HCI (and as a member of its steering 
committee). I have also been a member of the National Committee of CNRS (French National Center 
for Scientific Research), which is in charge of the recruitment and the evaluation of CNRS researchers 
nationwide.  

4.1 Publications 
Google Scholar (July 2018): 3596 citations, H-Index 28. 

• International journals: 9 
• French-speaking journals: 7 
• ACM CHI, ACM UIST full papers: 15 
• Other international conferences: 52 
• French-speaking conferences: 38 
• Book chapters: 5 
• Editing: 4 
• Workshops and demos: 20 

                                                        
10 DIVA Web Site: https://diva.telecom-paristech.fr/ 
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• Patents: 2 

 
4.2 Student supervision 

PhD theses 

I have been supervising 17 PhD theses (15 already defended) either as a director or a secondary 
advisor: 

• Marc Teyssier (Since Jan. 2017) 
Comprendre, concevoir et évaluer la modalité tactile dans les interactions homme-machine 
sociales.  
Supervision: 35% (PhD director). Co-supervised by Gilles Bailly (ISIR) and Catherine 
Pelachaud (ISIR)  

• Bruno Fruchard (Since October 2016 - defense in December 2018) 
Techniques d’interaction exploitant la mémoire spatiale pour faciliter l’accès rapide aux 
commandes et aux données.  
Supervision: 60% (PhD director). Co-supervised by Olivier Chapuis (CNRS/LRI) 

Defended theses: 
• Thibaut Jacob (September 2017) 

Edition et visualisation de signaux spatiaux-temporels, application au son 3D. 
Supervision: 40% (PhD director). Co-supervised by G. Bailly (CNRS/Télécom ParisTech).  

• Hind Gacem (April 2016) 
Intégration du numérique dans l'analogique : augmentation d'objets tangibles.  
Supervision: 50% (PhD director). Co-supervised by James Eagan (Télécom ParisTech).  
Currently: HCI engineer at TechViz, Paris. 

• Quentin Roy (December 2015) 
Manipulation et analyse d'images médicales 3D via des interactions gestuelles sur surfaces 
tactiles. 
Supervision: 60%. Co-supervised by Yves Guiard (PhD director, CNRS/Telecom ParisTech). 
Currently: Post-doc researcher at the University of Waterloo. 

• Can Liu (December 2015) 
Embodied Interaction for Data Manipulation Tasks on a Wall-Sized Display. 
Supervision: 30%. Co-supervised by Michel Beaudouin-Lafon (PhD director, LRI) and 
Olivier Chapuis (CNRS/LRI).  
Currently: Faculty position in the School of Creative Media at City University in Hong Kong. 

• Dong-Bach Vo (September 2013) 
Supervision: 60%. Co-supervised by Yves Guiard (PhD director, CNRS/Telecom ParisTech). 
Conception et évaluation de nouvelles techniques d’interaction pour la télévision interactive.  
Currently: Post-doct at Glasgow University, UK. 

• Simon Perrault (April 2013). 
Supervision: 40%. Co-supervised by Yves Guiard (PhD director, CNRS/Telecom ParisTech).  
Techniques d'interaction pour les dispositifs miniaturisés de l'informatique mobile. 
Currently: Assistant Professor à Yale-NUS College, Singapore.   

• Mathias Baglioni (April 2012) 
Interactions Physiques sur Dispositifs Mobiles. 
Supervision: 60%. Co-supervised Yves Guiard (PhD director, CNRS/Télécom ParisTech). 
Currently: Technical and development director at Acretion, France 

• Sylvain Malacria (May 2011) 
Conception et Evaluation de Techniques d’Interaction pour Surfaces Tactiles et Papier 
Interactif.  
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Supervision: 100% (PhD director). 
Currently: Researcher (CR2) at INRIA Lille Nord-Europe, France. 

• Anne Roudaut (February 2010) 
Conception et Evaluation de techniques d'interaction pour dispositifs mobiles.  
Supervision: 100% (PhD director). 
Currently: Leverhulme Research Fellow, Interaction & Graphic group, University of Bristol, 
UK. 

• Muhammad Tahir (September 2001)  
Tangible and Tactile InteractionTechniques for Multimedia Systems.  
Supervision: 100% (PhD director). 
Currently: Assistant Professor at FCIT, University of Jeddah, Saudi Arabia. 

• Gilles Bailly (May 2009). 
Techniques de menus : Caracterisation, Conception et Evaluation.  
Supervision: 50% (PhD director). Co-supervised by Laurence Nigay (PhD director, Grenoble 
University 1).  
Currently: Researcher (CR2) at CNRS. 

• José Pinalès (December 2001) 
Reconnaissance hors-ligne de l'écriture cursive par l'utilisation de modèles perceptifs et 
neuronaux.  
Supervision: 100% (PhD director). 
Currently at Universidad de Guanajuato, Mexico. 

• Laurent Robert (June 2001) 
Annotation et visualisation interactives de documents hypermédia.  
Supervision: 100% (PhD director). 
Currently: Technical director at Orsys, Paris. 

• Stuart Pook (June 2001) 
Interaction and context in zoomables user interfaces.  
Supervision: 100% (PhD director). 
Currently: Senior software engineer at Criteo, Paris. 

• Myriam Côté (June 1997) 
Utilisation d'un modèle d'accès lexical et de concepts perceptifs pour la reconnaissance 
d'images de mots cursifs.  
Supervision: 50% (PhD director). Co-supervised by M. Cheriet (PhD director, ETS, 
Montréal).  

Post-docs and research engineers 

I have supervised 11 post-docs and 3 research engineers: 
• Bastien Liutkus (research engineer, 2014/15). Currently: software engineer at à Quematech, 

Paris. 
• Aurélie Cohé (2014/2015). Currently: UX engineer at Renault Technocenter, Guyancourt. 
• Minzhi Luo (research engineer, 2013). Currently: Software engineer at Soldata, Paris. 
• Simon Perrault (2013). Currently: Assistant Professor à Yale-NUS College, Singapour. 
• Julie Wagner (2012/2013). Universität München, then senior UX researcher à Fujitsu 

Enabling Software Technology GmbH, Munich. 
• Marcos Serrano (2011/2012). Currently: Assistant professor at Université de Toulouse (IRIT), 

Toulouse. 
• James Eagan (2011). Currently: Assistant professor at Télécom ParisTech (LTCI), Paris. 
• Thomas Pietrzak (2010). Currently: Assistant professor at Université de Lille 1 (Cristal), Lille. 
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• Gilles Bailly (2009). Currently: Researcher (CR CNRS) à Télécom ParisTech (LTCI), Paris. 
• Aurélien Tabard (2009). Currently: Assistant professor at Université Lyon 1 (LIRIS), Lyon. 
• Karim-Pierre Maalej (research engineer, 2008). Currently: Software engineer at Kypselia. 
• Stéphane Huot (2006). Currently: Senior researcher (DR INRIA) at Inria Lille Nord-Europe 

(Cristal), Lille. 
• Renaud Blanch (2005). Currently: Assistant professor at Université Joseph-Fourier (LIG), 

Grenoble. 
• Stuart Pook (2001-2002). Currently: Senior software engineer at Criteo, Paris. 

Master and engineering internships 

I have also supervised 17 Master (or equivalent) internships and about 50 engineering internships. 

4.3 PhD defense committees 
I have participated to 29 defense committees: 

• Jessalyn Alvina (12/2017) 
Increasing The Expressive Power of Gesture-based Interaction on Mobile Devices  
Université Paris-Saclay 
Supervisor : Wendy E. Mackay 

• Maxime Guillon (11/2017) 
Expansion de cibles pour le pointage et la selection  
Université de Grenoble 
Supervisors : Laurence Nigay and François Leitner 

• Alix Goguey (10/2016) 
Comprendre et concevoir l'interaction tactile avec identification des doigts 
Université de Lille 
Supervisor: Géry Casiez 

• Sébastien Pelurson (9/2016) 
Navigation multimodale dans une vue bifocale sur dispositifs mobiles 
Université de Grenoble 
Supervisor: Laurence Nigay 

• Bin Yang (06/2015) 
Memory Island: Visualizing Hierarchical Knowledge as Insightful Islands. 
Université Pierre et Marie Curie (Paris 6), spécialité informatique. 
Supervisor: J-G. Ganascia. 

• Yosra Rekik (12/2014) 
Comprendre, Modéliser et Concevoir l’Interaction Gestuelle Tactile. 
Université Lille 1, spécialité informatique. 
Supervisors: L. Grisoni et N. Roussel. 

• Joey Scarr (06/2014) 
Understanding and Exploiting Spatial Memory in the Design of Efficient Command Selection 
Interfaces. 
University of Canterbury, New Zealand. 
Supervisor: A. Cockburn. 

• Huiyuan Cao (11/2013) 
Design of a Turn-Taking Control System Based on Tactile in Multi-user, Synchronous Remote 
Communication. 
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Université de Technologie de Compiègne, specialité Sciences et Technologies Cognitives 
Supervisor: O. Gapenne. 

• Adriano Scoditti (09/2011) 
Gestural interaction techniques for handheld devices combining accelerometers and 
multipoint touch screens. 
Université de Grenoble, spécialité informatique. 
Supervisors: R. Blanch et J. Coutaz. 

• Dimitri Voilmy (06/2011) 
Les arrangements de l'attention conjointe : interactions en situations d'apprentissage équipées 
de tableaux augmentés. 
Télécom ParisTech (Ecole doctorale EDITE), spécialité sociologie. 
Supervisors: C. Licoppe et B. Conein. 

• Marcos Serrano (06/2010) 
Interaction multimodale en entrée : conception et prototypage. 
Université de Grenoble, specialité informatique. 
Supervisor: L. Nigay. 

• Fabien Pfander (06/2009) 
Spatialisation de l'information. 
Université de Technologie de Compiègne, spécialités : Science de l'information et 
Informatique. 
Supervisors: C. Lenay et F. Ghitalla. 

• Qing Pan (12/2008) 
Isotonic elastic hybrid interaction for 2D and 3D navigation / manipulation. 
Université de Lille, specialité informatique. 
Supervisors: C. Chaillou et G. Casiez. 

• Sawsan Alshattnawi (11/2008) 
Concurrence et Conscience de Groupe dans l'Édition Collaborative sur Réseaux Pair-à-Pair. 
Université Henri Poincaré, Nancy 1, spécialité informatique. 
Supervisor: G. Canals. 

• Nathalie Henry (07/2008) 
Exploring large social networks with matrix-based representations. 
Université Paris Sud - University of Sydney, spécialité informatique.  
Supervisors: J-D. Fekete et P. Eades. 

• Alexandre Demeure (10/2007)  
Modèles et outils pour la conception et l'exécution d'interfaces homme-machine plastiques. 
Université Joseph Fourier - Grenoble 1, spécialité informatique. 
Supervisors: J. Coutaz et G. Calvary. 

• Caroline Appert (03/2007) 
Modélisation, évaluation et génération de techniques d'interaction. 
Université Paris-Sud, spécialité informatique. 
Supervisor: M. Beaudouin-Lafon. 

• Mounia Ziat (11/2006) 
Conception et implémentation d'une fonction zoom haptique sur PDAs. Expérimentations et 
usages. 
Université de Technologie de Compiègne. 
Supervisor: O. Gapenne. 

• Maxime Collomb (12/2006) 
Vers des systèmes de fenêtrage distribués : l'évolution du drag-and-drop. 
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Université Montpellier II - Sciences et Techniques du Languedoc, spécialité informatique. 
Supervisor: M. Hascoet. 

• Jérome Darbon (10/2005) 
Composants logiciels et algorithmes de minimisation exacte d'énergies dédiées au traitement 
des images. 
Ecole Nationale Supérieure des Télécommunications, spécialité informatique et réseaux. 
Supervisors: P. Bellot et T. Geraud. 

• Renaud Blanch (09/2005)  
Architectures logicielles et outils pour les interfaces hommes-machines graphiques avancées. 
Université Paris-Sud, spécialité informatique . 
Supervisor: M. Beaudouin-Lafon. 

• Suzanne Kieffer (07/2005) 
Assistance multimodale à l'exploration de visualisations 2D interactives. 
Université Henri Poincaré - Nancy 1, spécialité informatique. 
Supervisor: N. Carbonell. 

• Christophe Lachenal (2004) 
Modèle et infrastructure logicielle pour l'interaction multi-instrument multisurface. 
Université Joseph Fourier - Grenoble 1, spécialité informatique. 
Supervisor: J. Coutaz. 

• Chaouki Daassi (07/2003) 
Techniques d’interaction avec un espace de données temporelles. 
Université Joseph Fourier, spécialité informatique. 
Supervisor: L. Nigay. 

• Pierre Abel (06/2001) 
Supervision d’informations dynamiques et distribuées à l’aide de mondes 3D interactifs : 
Application à la gestion de réseaux. 
Ecole Polytechnique Fédérale de Lausanne.  
Supervisor: D. Thalmann. 

• Frédéric Vernier (02/2001) 
La multimodalité en sortie et son application à la visualisation de grandes quantités 
d'information. 
Université Joseph Fourier, spécialité informatique. 
Supervisor: L. Nigay. 

• Christophe Bruley (06/1999) 
Analyse des représentations graphiques de l'information - extension aux représentations 
tridimensionnelles. 
Université Joseph Fourier, spécialité informatique. 
Supervisors: J. Lemordant et P. Genoud. 

• David Price (1996)  
Classification probabiliste par réseaux de neurones ; application à la reconnaissance de 
l'écriture manuscrite. 
Université Pierre et Marie Curie. 
Supervisor: G. Dreyfus. 

• Romel Moradkhan (1993) 
Détection des points critiques d'une forme : application à la reconnaissance de caractères 
manuscrits. 
Université Paris Dauphine, spécialité : informatique des organisations. 
Supervisor: Alain Chécroun. 
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4.4 Contractual projects 
I have been responsible or co-responsible for Télécom ParisTech (unless otherwise stated) of the 
following projects and have been involved in their conception: 

• DIGISCOPE National Equipex (2011-2020) and DIGIPODS twin project (funded by Région 
Ile de France). DIGISCOPE is a network of high-performance platforms for interactive 
visualization of large datasets and complex computation. 

• ANR SocialTouch (2017-2022). Understanding, modeling and evaluating social touch in 
human-machine interaction. Project leader. 

• ANR Edison3D (2014-2017). Editing and Rendering for next generation of 3D sound. Also 
responsible of a subproject. 

• FUI PresAge (2015-2017). PRospEctives Statistiques liées à l’Age. 

• DIGITEO DigiZoom (2012-2015) and MemSpace (2015-2018) projects, funding the PhD 
theses of Can Liu and Bruno Fruchard. 

• BGLE CONNEXION (2012-2016). COntrôle Commande Nucléaire Numérique pour l’EXport 
et la rénovatION. Local responsible of a subtask of this project.   

• CIFRE contract with GE Heathcare funding the PhD thesis of Quentin Roy (2012-2015). 

• ITEA TWIRL (2012-2014). Twinning virtual World Information with Real world data 
sources. Also responsible of a work package. 

• FUI Quatro 2 (2010-2011). Interaction pour tablettes à vocation domotique. Also responsible 
of a work package. 

• Bilateral NIU project (2009-2011) which was part of the UBIMEDIA Common Lab between 
Alcatel Lucent Bell Labs and Institut-Mines-Télécom. 

• QUAERO PVAA (2009-2013). Interaction pour la télévision interactive.  Local responsible 
of a subpart of this project.   

• DGE/IDF ENEIDE project (2007-2010). e-Education et Formation, classe numérique. Also 
responsible of a work package. 

• ANR XWiki Concerto project (2008-2009). Travail collaboratif pair-à-pair en situation de 
mobilité. 

• Bilateral MOBA et MOBA2 projects with Alcatel Lucent Bell Labs (2005-2008). Interaction 
mobile. 

• Responsible of a project funded by Région Ile de France (2006). Visualisation et interaction 
pour l’accès aux masses d’information. 

• CNRS TCAN project (2004-2005). Interfaces mobiles à retour tactile. 

• RNRT INFRADIO project (2003-2006). Services et interfaces mobiles. Responsible of a 
subtask. 

• Action Innovante « Campus Mobile », an internal multi-site project funded by Institut Mines-
Télécom (then named GET). (2002-2005). Conception, réalisation, évaluation de services 
nomades pour un campus universitaire. 

• Bilateral INFOVISE project with France Télécom (1999-2001). Interfaces zoomables.  

4.5 Collaborations 
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• Local collaborations with C. Faure, I. Demeure, R. Sharock, G. Mouret, J-C Moissinac, G. 
Chollet, C. Pelachaud, O. Rioul,  F. Detienne, B. Cahour, A. Gentes, I. Guiard, G. Bailly, J 
Eagan. Various publications or common projects. 

• Collaboration with M. Cheriet (ETS) and Y. Suen (Concordia University), Canada. PhD thesis 
of Myriam Côté. Several publications in 1995-1998. 

• Collaboration with R. Casey, IBM Almaden Research Center, USA. Publication IEEE PAMI 
1998. 

• Collaboration with J.-L. Lebrave and F. Role, ITEM, CNRS. Publications in 1997 and 1998. 

• Collaboration with G. Vaysseix and E. Barillot, Infobiogen. PhD thesis of of S. Pook. Several 
publications in 2000-2003. 

• Collaboration with J-D. Fekete, INRIA Saclay. Publications in 2001 and 2006.  

• Collaboration with O. Gapenne et C. Lenay, Université de Compiègne. Publications in 2007 
and 2014. 

• Collaboration with L. Nigay, LIG, Université de Grenoble. PhD thesis of Gilles Bailly. 
Several publications in 2007-2010. 

• Collaboration with M. Ribière, Alcatel-Lucent Bell labs. Publication in 2010. 

• Collaboration with T. Selker, UC Berkeley. Publication at ACM CHI 2014. 

• Collaboration with S. Zhao, National University of Singapore. Publications in 2014 and at 
ACM CHI 2015. 

• Collaboration with O. Chapuis and M. Beaudouin-Lafon, LRI. PhD thesis of Can Liu. 
Publications at ACM CHI 2014 (with W. Mackay) and ACM CHI 2016. 

4.6 Administrative duties 

− Leader of the DIVA team (Design, Interaction, Visualization & Applications)  at LTCI - Télécom 
ParisTech. 

− Former responsible of the « Campus Mobile » and « VIA » (Advanced Interaction and 
Visualisation) projects at Télécom -ParisTech and Institut Mines-Télécom (then called GET). 

− Member of the section 7 of the CNRS National Commitee (2013-2016). This committee is in 
charge of the recruitment and the evaluation of CNRS researchers nationwide. Sections 6 and 7 are 
devoted to Computer Science. 

− Vice-chair (2010-2012), then chair (2012-2014) of the ACM SIGCHI Paris Local chapter. 

− Member of the LTCI council 

− Member of the steering committee of the RT4 thematic network « Content, knowledge and 
Interaction » of Institut Mines-Télécom. 

− Member of the steering  committee of the DIGISCOPE Equipex. 

− Scientific responsible of the Télécom ParisTech Fab lab. 

− Member of the Research and Innovation Committee of Paris-Saclay DigiCosme Labex and of 
Interaction and Robotics working group of the STIC Department. 

− Observer member of IFIP WG 2.7/13.4 group in 2002- 2005. 

− Member of recruiting committees (LRI 2010, Télécom ParisTech 2008, 2011, LIG 2018). 

− Project expertises (ANR, PACA Labs, Futur et Ruptures, etc.) 



 103 

4.7 Organization and committees 
− Current president of AFIHM (Association Française d’Interaction Homme-Machine) and board 

member in 1999-2003 and 2006-2010. 

− Former member of AFIHM steering committee of (CPPMS) in 2007-2017. 

− Regular member of the reading committees of the main medias in HCI (almost each year for the 
last ten years: ACM CHI, ACM UIST, INTERACT, IHM) 

− Member of the program or scientific committees of INTERACT 2017, IHM 2016, IHM 2011, IHM 
2010, IHM 2007, INTERACT 2007, IHM 2004, UIST 2003. 

− Program co-chair of the IHM 2015, IHM 2006, IHM 2002, Ubimob 2006 conferences. 

− Member of the scientific board of Annals of Telecommunications in 2002-2007. 

− Co-editor of the special number « Visualisation pour les bibliothèques numériques » of the 
Document Numérique journal in December 2006. 

− Local organization of the program committee of ACM CHI 2013 (+200 people), participation to 
the organization of ACM UIST 2002, local organization of  the IFIP WG 2.7/13.4 meeting, 
October 2002. 

− Member of the steering commitee of CNRS GDR I3 and responsible of the ALF working group in 
2002-2006. 

− Member of the board of GRCE (Groupe de Recheche en Communication Ecrite) in 1996-2002. 
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