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Abstract We demonstrate that probabilistically shaped modulations make the Constant Modulus
Algorithm unfit for State of Polarisation monitoring in coherent optical communications. Accordingly, we
study the potential of Variational AutoEncoders-inspired equalisers for this purpose. ©2024 The Authors

Introduction

The monitoring of physical parameters in coher-
ent optical networks have seen a growing inter-
est over the last decade. Among the other phys-
ical parameters to monitor, the State of Polarisa-
tion (SoP) has been investigated for the last 20
years[1]–[5]. To the best of our knowledge, the SoP
is currently extracted from the adaptive filter co-
efficients of the polarisation demultiplexing step
of the Digital Signal Processing (DSP) chain[6].
However, the conventional Constant Modulus Al-
gorithm (CMA) is known to face convergence is-
sues when transmitting Probabilistic Constellation
Shaped (PCS) modulations[7]. The latter is being
used more and more due to its ability to approach
Shannon’s capacity[8],[9]. In such scenarios, SoP
monitoring becomes a sensitive question. While
data-aided channel estimation can solve these is-
sues, it reduces the net data rate. Hence, the
quest for new blind adaptive filters continued. A
new kind of adaptive blind filters inspired by Vari-
ational AutoEncoders (VAEs) has been proposed
by[10] and extended for PCS by[7]. We will refer to
it as the VAE-Finite Impulse Response (FIR) filter.
In those works, the new loss (function that has to
be minimised by the equaliser), promises to be
convergent for PCS-Quadrature Amplitude Modu-
lation (QAM), allowing to decode the symbols as
well as providing SoP estimations and other opti-
cal channel parameters. In[7], a preliminary study
of SoP tracking using a linear SoP drift model and
uniform dual-polarisation (DP) QAM was done. In
this work, we investigate through simulations the
capability of the VAE-FIR for SoP monitoring in
scenarios that have not been explored yet. We
use two different SoP drift models. The first one
is based on a “polarisation linewidth” model sug-
gested by authors in[3] at typical SoP change rates
measured in field trials from dozens to dozens of
thousand hertz[1]–[5]. The second one is a linear
drift similar to the one in[7]. However, our study
considers PCS DP-QAM and shows estimation
errors of SoP.

We first shortly recall the fundamentals of the
VAE. Then, we describe the simulation setup and

the studied scenarios. Finally, we compare results
between the CMA and the VAE-FIR showing the
accuracy in SoP estimation and resilience to the
latter of the VAE-FIR while the CMA fails to con-
verge for PCS transmission.

Loss Function of Variational AutoEncoders for
Communications
We model optical propagation as successive
changes of SoP, quantified by angle shifts used in
the corresponding Jones rotation matrices, noted
Θh = {θk}k∈N with Polarisation Mode Dispersion
(PMD). Symbols at the channel input (X) become
samples detected at the receiver (Y ) then symbols
at receiver output after linear equalisation and deci-
sion (X̂). We note the similarity with the structure
of a VAE, which is a couple of two successive neu-
ral networks: the first (“encoder”) transforms ran-
dom variables from its input space to a so-called
latent space; and the second (“decoder”) converts
from latent space to output space. While we are
not using a VAE per se, we can use the VAE’s
loss function to update the weights of the linear
equaliser instead of using the losses traditionally
based on the moduli of the signals.

The appropriate loss, L, is then based on the
Kullback-Leibler Divergence (DKL) and a log-
likelihood[11] parameterised by a demapper, with a
probability density function denoted as pX̂|Y . The
loss is written as[7]:

L = DKL

[
pX̂|Y ||pX

]
− Ep

X̂|Y

[
ln(pY |X)

]
(1)

where E(•) (resp. p•) is the expectation (resp. the
probability density function) of the random vari-
able • and ln(•) is the natural logarithm. The
divergence part of the loss aims to obtain the
best estimation of the symbols, while the likeli-
hood gives more weight to the estimation of the
channel. For further details, we refer interested
readers to references[7],[10].

Simulation setup
We simulate a single-wavelength dual-polarisation
transmission over a linear optical channel with only
random polarisation state changes and 10 ps PMD.
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Fig. 1: (a) Evolution of the BER as a function of SNR for a polarisation linewidth fpol = 100π Hz. (b) Evolution of the BER as a
function of fpol at a SNR = 23 dB. (c) Evolution of the mean absolute error SoP estimation for the “polarisation linewidth” model

after 100 frames. The whisker lines give the the minimum and maximum values of the distribution. The points are the outliers.

Additive White Circular Normal (CN )/Gaussian
Noise is added at both ends of the communication
chain and as in[7], no laser phase noise is consid-
ered. At the transmitter side, we set, once for all, a
total noise power at −50 dBm accounting for mul-
tiple noise sources (quantisation, amplifiers, etc.).
The total signal power is also fixed at −5 dBm. The
noise power at the receiver side is varied to target
different Signal-to-Noise Ratios (SNRs). Conse-
quently, Y |X follows CN (h⊛ x, σ2 · I) where ⊛
is a matrix convolution operator, h (resp. I) is the
channel (resp. identity) matrix.

We consider a Gray-mapped Maxwell-
Boltzmann PCS-64QAM constellation with an
entropy of H = 5.72 bits corresponding to the case
where authors in[7] showed the convergence of the
CMA for a 3.16 ps PMD. Symbols are shaped with
a Root-Raised Cosine (RRC) filter of βroll = 0.1
roll-off and up-sampled at 2 samples per symbol.

As in[7], we partition symbols into “frames”, them-
selves sliced into “batches”. Over each frame,
the SoP is assumed to be constant. Each frame
(resp. batch) contains NSb/f (resp. NSb/b) sym-
bols. We simulate transmissions using two sym-
bol rates: {64; 128} GBd. To enable the VAE-
FIR convergence for these two symbol rates,
we need to adjust the frame and batch sizes
to: (NSb/f ; NSb/b) = (12, 800; 160) symbols for
64 GBd and to (17, 040; 213) symbols for 128 GBd.
Similarly, it requires respectively {20; 40or 50}
frames to converge for these two rates. Both
equalisers are initialised by a Dirac.

Unless otherwise specified, the learning rate,
the number of filter taps and the number of non
training frames are set constant for all the sce-
narios and for both equalisers to respectively
(ηlr; Ntaps; Nf) = (5 · 10−4; 13; 100). All parame-
ters of equalisers were set to: (1) account for the
memory effect of the channel induced by PMD,
(2) ensure an error rate with a confidence level
> 99% and (3) meet a trade-off between compu-
tational time and performance for the VAE-FIR.
Consequently, we will see that those parameters

may not be the most suited for CMA or even too
stringent for it to converge. We refer to[7] for an ex-
tensive study of the impact due to each parameter
on the performance (number of frames, learning
rate, etc.). We set a pre-Forward Error Correction
(FEC) Bit Error Rate (BER) threshold up to which
the errors can be corrected using Low-Density
Parity-Check (LDPC) codes at 2.8·10−2 as authors
in[12] showed to be enough to guarantee error-free
communication (post-FEC BER < 10−15).

Let us recall that the objective is to compare
the performance of both CMA and VAE-FIR over
a time-varying channel. To do so, we use the
following metrics: the BER, and the error in the
estimation of the SoP drifts. Two main directions
have been explored. In the first one, we study the
penalty under SoP drift models that we detail in the
next paragraph. We targeted Nr = 20 realisations
per SNR value in order to reduce estimation error.
However, as both algorithms can sometimes fail
to converge and because of the large computation
time, we choose to rely only on the realisations
that succeeded, which enable to estimate a failure
rate for both algorithms: > 25% (resp. < 5%) for
the CMA (resp. VAE-FIR).

The second direction is the robustness to SoP
changes and the ability to track them. We simu-
late two different models of SoP variations. One
is a Wiener process with a “polarisation linewidth”
fpol as suggested in[3]. The variance of the pro-
cess is given by σ2

pol = 2π · fpol/Rs with fpol ∈
π · {102; 103; 104} Hz. The second model is lin-
ear such as: θk = θstart + S · k, k ∈ J0,Nf,maxK.
The variations include different ranges that con-
tain the tricky rotation angle: 45 deg. Indeed,
this corresponds to an equal power distribution in
both received polarisation states leading to higher
probability of failure for the CMA. The values for
S and θstart are respectively {0.5; 1} deg/frame,
{5; 10; 11; 12; 13; 14; 15; 20} deg. One should
note that θstart is an angle offset accounting for a
sudden SoP drift. At 64 GBd, we increased the
learning rate to 1.1 · 10−3 and at 128 GBd we used
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Fig. 2: Evolution of the mean absolute error of SoP estimations when the SoP drift is linear, at SNR = 23 dB with 3 realisations, (a)
for different values of θstart; (b) for θstart = 20 deg along with time. Large error bars are due to the transient regime.

50 training frames.

Results
Figure 1(a) (resp. 1(b)) shows the evolution of
the BER versus SNR with a polarisation linewidth
fpol = 100π Hz (resp. the BER with respect to fpol
at SNR = 23 dB). We notice that, contrary to[7],
the CMA fails at converging as the SER values
stay way beyond the pre-FEC limit for all the pos-
sible (SNR, fpol) combinations. In[7], the authors
simulated a linear evolution for the SoP drift and
used twice as many filter taps along with longer
batches. This leads to a better performance of the
CMA at the cost of an increased complexity. On
the contrary, the VAE-FIR stays below the thresh-
old for all tested polarisation linewidth values as
long as SNR > 17 dB.

In figure 1(c), we show the errors of SoP drift
estimations with both equalisers. We also show
the expectation of the absolute value of SoP
changes after 100 frames that are given by[13]:
E(|θNf,max

− θstart|) = 2 ·
√
Nf,max · fpol/Rs. We

notice that tens of thousands of kilo-Hertz for
the polarisation linewidth gives SoP drifts below
5 · 10−2 deg. This may question the relevance of
such a model to test the tracking of the polarisation.
Authors in[1] measured a maximum of 25 deg shift
after 1 min for an aerial cable, which for our setup
and this model, requires fpol ≈ 40 mHz at both
rates. Besides, we clearly see that the CMA pro-
vides estimation errors of tens of degrees which
clearly shows its difficulty to track such low-speed
SoP changes. A similar comment can be made
for the VAE-FIR, even though the mean estimation
errors are always below 1 deg. Thus, we conclude
that, for the tested set of parameters, the VAE-FIR
does not provide accurate enough estimations for
small values of SoP changes, even though it still
out-performs the CMA by approximately 100 times.
Our second SoP drift test will show its ability to
track larger SoP variations. For this model, we did
not convey simulations with the CMA as we have
seen that the CMA fails even with θstart = 0 deg.

Figure 2(a) shows the mean estimation errors

and their 1σ-error bars (computed for all the frames
at once) for both baud rates and both slopes. We
superimposed a shaded area corresponding to an
error of ±5%. We notice that we have two regimes
delimited by θstart ≈ 13 deg. Before this value,
in all the scenarios, the VAE-FIR provides good
enough SoP estimations. Beyond, it is not the
case anymore. We conclude that while the SoP
changes are small enough, the errors on their esti-
mation is still acceptable. Finally, we explain the
significant error bars for higher sudden SoP off-
sets and specifically for 20 deg. We show, in figure
2(b), the evolution of both BER (left axis) and the
error of estimation of θk (right axis) at the end of
the training phase (frame 50) and in the beginning
of the tracking phase for different slopes. We dis-
play the worst case which is at 128 GBd. In the
training phase, we clearly see the convergence of
the VAE-FIR with the waterfall-like BER evolution.
Yet, in the second phase, right at the sudden SoP
change, we notice the drop of the performance.
However, we see that for both slopes, the VAE-FIR
can catch-up with the error of estimations after a
transient regime whose duration is shorter for a
smaller slope after a sudden large SoP change
occurs. This last result shows the resilience of the
VAE-FIR.

Conclusion
We investigated the ability of the VAE-FIR to track
the evolution of the SoP in DP transmission over
a time-varying channel, for scenarios triggering
failures of the CMA. We observed that the VAE-
FIR out-performs the CMA by almost 100 times
when using PCS-64QAM with an entropy H = 5.72
bits for slow SoP changes, using the “polarisation
linewidth” model of[3]. We have also showed the
ability of the VAE-FIR to track SoP changes even
when crossing the 45 deg angle corresponding
to the maximum polarisation cross-talk scenario,
at different approaching speeds within a 1 deg-
accuracy. Finally, we demonstrated the ability of
the VAE to catch up with the SoP changes after a
steep drift.
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