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Abstract: Building upon recent works on PDL-resilience, we show how to derive optimal
and practically-efficient low-complexity multidimensional signaling. Analytic arguments
provide optimized unitary transforms of multiplexed square QAM as a function of the PDL.
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1. Next-Generation Optical Systems, Polarization-Multiplexed Model, and PDL-Resilient Signaling

Polarization Dependent Loss (PDL) is a non-unitary impairment expected to significantly impact next-generation
optical technologies [1, 2]. For example, current WSSs experience up to 0.6dB of PDL, which translates onto an
average PDL exceeding 2dB for typical links including 16 spans with two WSSs per node. In practice, in order
to guarantee a 10−5 system outage probability, one optimizes the worst-case performance given by 3 times the
average PDL, e.g., 6dB. PDL-resilience can be obtained from specific modulations. Single-carrier Spatially Bal-
anced (SB) signaling [2] has been proposed in order to universally increase the information rate. It improves upon
previously investigated Silver code [3] that appears to be prohibitively complex. SB signaling exploits subchan-
nel independence which could as well implemented in the spectral or temporal domain. The principle consists
in averaging or balancing mutual information profiles. In [2], it is numerically achieved using a rotation of an-
gle π/4. In this work, we use the fact that the mutual information is well-described by the associated minimum
Euclidean distance for typical SNRs. This enables us to maximize the minimum distance and therefore to obtain
analytic design criteria of the SB signaling. We see that the angle π/4 is not the optimal angle over the full range
of PDL. It is however satisfying when addressing current systems. The method importantly extends to the design
of bit-parametrized coding and multi-dimensional modulation schemes (involving, e.g., MDL).

Linear Model: The PDL channel can be simplified as a 2× 2-MIMO polarization-multiplexed system Y =
HX +Z, where X and Y are the respective channel input and output, Z is a non-correlated AWGN complex-valued
noise, H factorizes as the block-random Hγ,α =Dγ Rα with Dγ = diag

{√
1+ γ,

√
1− γ

}
and Rα the rotation matrix

with α ∈ [0,2π). PDL is given by λ = (1+ γ)/(1− γ) or Λ = 10log10(λ ) in dB. It is shown in [2] that, in addition
to the capacity limiting γ > 0, the discrete-input capacity may further deteriorate as a function of α .

PDL-Resilience: The previous observation led us in [2] to construct SB signaling that leverages the perfor-
mance of square M-QAM modulation by improving the worst-case capacity. A key construction ingredient is to
consider two independent channels ℜY = DRα ℜX +ℜZ and ℑY = DRα ℑX +ℑZ, where ℜA and ℑA represent
the respective real and imaginary part of A. Then, SB encoding consists in rotating real and imaginary parts of
the M-QAM2 constellation to get an offset angle η between the two rotated M-QAM-like square lattices. In [2],
η = π/4 is found based on numerical evaluation of the information rate of the respective complex parts.

2. Optimization of PDL-Resilient Signaling

We now build further upon [2] and provide a general framework to analyze the optimal η in practical cases.
Euclidean Distance Analysis: The simplified PDL channel model enables the study on either the real

or the imaginary part. For a given PDL value and for any Ai j ∈ M-PAM2 = {Ai j = (2i− 1,2 j − 1)T |i, j ∈
Z,−M/2 ≤ i, j ≤M/2}, let the corresponding symbol after multiplicative PDL-impairment be Ãi j ∈ C (λ ,α) =
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Fig. 1: Left: Square distances d2 in C (λ ,α) as a function of the angle α for Λ = 6dB. The lower envelop indicates d2
min. It achieves its max in

α∗ ≈ 0.65. Right: Optimal angle α∗ as a function of Λ. For 4-PAM2 and 2-PAM2
α∗ is lower-bounded by the respective dashed asymptotes.
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Fig. 2: CM, B-CM, and d2
min variation for α ∈ [π/8,π/4] and 16-QAM2 at 0.9 coding rate, 15dB PDL (left, SNR=23.1dB) and for 6dB PDL

(middle, SNR=15dB). Values for optimal SB angle are reported in the table (right) for CM and B-CM information rates (0.9 coding rate).{
Ãi j = Hγ,α Ai j|Ai j ∈M-PAM2}. Let dmin(C (λ ,α)) define the minimum distance associated with the codebook

C (λ ,α). We are interested in the angle α∗(λ ) = argmaxα dmin(C (λ ,α)) that defines the diversity phase offset
for SB signaling. For symmetric square constellations, it is sufficient to consider α ∈ [0,π/4] by π/2-periodicity
and evenness. While the presented concepts extend to any order QAM, Fig. 1 (left) illustrates them using the
particular case of 4-PAM2. Notice that this case is also found in [4] in the context of space-time codes and wire-
less communications. In contrast, our work originates from optical communications with polarization and mode
multiplexing. Hence, it extends [4] and generalizes to any square lattice scaling. We demonstrate that different
types of regime are to be considered for large PDL/MDL levels. Geometric considerations show indeed that, when
the imbalance increases, the distance profile evolves and the minimum distance continuously decreases due to
α-directional scaling of the lattice. In the general case of square two-dimensional lattices M-PAM2 and small
imbalance, the sides of the fundamental polytope give the minimum distance and α∗ = π/4. The first transition
corresponds to the equality between d2(Ãi j, Ãi+1, j+1) = (1+γ)(2cosα−2sinα)2+(1−γ)(2cosα+2sinα)2 and
d2(Ãi j, Ãi+1, j) = 4(1+γ)sin2

α+4(1−γ)2 cos2 α . It appears at λ0 = 3 or Λ0≈ 4.77dB. For λ < λ0, α∗(λ ) = π/4.
Above λ0, π/4 is no longer optimal in terms of Euclidean distance. While dmin is continuous in λ , α∗ = α∗(λ ) is
a piece-wise continuous function that is fully analytically characterized and presents discontinuous phase transi-
tions. For example, assuming M > 2, the second transition appears at λ1 = (29+8

√
13)/3 or Λ1 ≈ 12.85dB and

α∗(λ ) becomes α∗(λ ) = arctan(λ −1−
√

(λ −1)2−λ ) for λ0 < λ < λ1. The function α∗ is represented up to
Λ = 28.7dB in Fig. 1 (right). The values λk at subsequent α∗ transitions are obtained from the equality of corre-
sponding distances in C (λ ,α). Notice that additional geometric observations follow such as α∗→ arctan(1/M).

Information Rate Maximization: We will now further refine the distance-based observations for optimizing
SB signaling by studying the actual information rate for PDL-impaired systems. Recall that fundamental commu-
nication limits are measured by the mutual information. Let us call coded-modulation (CM) rate the information
rate I(X ;Y ) achieved for a discrete input symbol alphabet. Let us further call bit-decoding (B-CM) rate the infor-
mation rate associated with a bit-labeled alphabet and (mismatched) bit-parametrized decoding. For sufficiently
large SNR, the information rate becomes a function of dmin. As shown in Fig. 2 (left) the CM rate is not always
maximal for α = π/4. This is directly explained by our dmin investigations. Moreover the case of B-CM rate is
even more insightful. When using Gray mapping, at high spectral efficiency, the non-optimality of π/4 becomes
critical. This is exemplified in Fig. 2 (middle and right table) where the SB signaling is further numerically opti-
mized using information rates. As expected, for finite SNR, this slightly differs from Euclidean distance results.

3. Conclusion

For channels presenting a gain imbalance between signal tributaries, special attention should be paid in order
to raise the capacity associated with discrete imbalance-resilient modulation. Euclidean distance considerations
demonstrate that the optimal SB angle is not universally equal to π/4 but depends on the imbalance value, the
SNR, and/or the modulation order. For practical targeted PDL-impaired systems however, provided that the PDL
is Λ < 4.77dB, SB signaling with π/4 as in [2] appears to be satisfying even for large SNR. This is confirmed
using information rate consideration. Interestingly, the same method applies to the operational B-CM metric.
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2. A. Dumenil, E. Awwad and C. Méasson, “Low-Complexity Polarization Coding for PDL-Resilience,” 2018 European Conference on

Optical Communication (ECOC), Rome, 2018, pp. 1-3.
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