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Abstract—This paper deals with polarization-multiplexed op-
tical transmissions. It addresses the challenge of designing opti-
mal yet practical modulation codes for the 2 × 2 MIMO fiber
channel. This specific use case diverges from classical MIMO
models encountered, e.g., in the wireless literature as, here,
non-ergodicity and low-complexity are key. While rather simple
from a fundamental viewpoint, the proposed modulation schemes
appears to be optimal and geometrically pleasing as the second
minimum distance turns out to be the object of interest and the
associated vectors encode the basis of a regular tetrahedron in the
affine space. From an operational viewpoint, these new schemes
for single channel use form polarization codes that achieve unit
dB gains while exhibiting low implementation complexity.

I. INTRODUCTION

This work on optimal four-dimensional coding originates
from the challenges arising when designing coding and mod-
ulation schemes for state-of-the-art optical systems.

a) Background: Modeling the fiber channel [9] is a
tedious task and highly depends on the underlying tech-
nology. To date, modulation solutions that directly address
the fundamental non-linear nature of lightwave systems [4]
have yet to be developed for commercial products. Current
and next-generation technologies are based on Wavelength
Division Multiplexing (WDM) systems and use polarization-
multiplexing and single-mode fiber. Various impairments are
specific to optical transmissions, such as non-linearity [7], [8],
polarization mode dispersion (PMD), or polarization depen-
dent loss (PDL) to name but a few.1 Nevertheless, in terms
of digital system engineering, actual coding and modulation
schemes are designed for the simple one-dimensional Gaussian
model. The optical transceiver operating in the linear regime is
often a valid assumption. Considering an advanced yet linear
MIMO model permits to address the important issue of PDL.

b) State of the Art: Communication theory [1], [2] deals
with the proper modulation of information into electric wave-
forms. This paper is an exercise dealing with the peculiar
design of specific and efficient four-dimensional codes [5],
[17]–[19], [21], [22] targeted to optical applications. While
space-time codes have first been developed for wireless com-
munications, they have recently become a topic of interest
for polarization-multiplexed transmissions or multi-mode fiber,
see [10], [11], [13], [15]. The next-generation of optical
components (waveband selective switches, ultra wide-band

1The general frequency flat hypothesis with small PMD and lumped noise
is considered. The fiber linear regime is treated as operational model with
approximate Gaussian noise.

amplifiers) could require multi-dimensional modulation for
mitigating inherent PDL. Low-complexity schemes are can-
didates for implementation in high-speed VLSI. Polarization
codes on a single channel use are investigated in, e.g., [13] and
first remarkable insights on physical and non-physical four-
dimensional rotations adapted to optics are found in [6], [28].

c) Notations: Let us first collect some notations
found in this paper. The information source denoted
by S ∈ RM is encoded into X ∈ RM using
unitary precoding. We use S ∈ N -PAMM def

=

(2`+ 1)/
√
EN,M : ` ∈ {−N2 ,−

N
2 + 1, · · · , N2 − 2, N2 − 1}M ,

where N even and
√
EN,M =

√
(N−1)N(N+1)

3M is a
normalization power constant. For N = 2, the modulation
points form the vertices of a hypercube in RM . Recall that
the number of edges in the hypercube of dimension M is
M · 2M−1 and its number of vertices is 2M . For N = 2, the
modulation points are contained within the hypercube forming
a regular grid on which the minimal spacing between vertices
appear M ·NM−1 · (N −1) times. Transmissions occur via an
M/2-dimensional complex-valued discrete channel model. In
this paper, we use the special unitary and orthogonal groups

SUM = {A ∈ CM×M : det(A) = 1} ⊂ UM ,
and SOM = {A ∈ RM×M : det(A) = 1} ⊂ OM ,

respectively, for which the identity matrix IM is the neutral
element. Recall that elements of SUM have M2−1 parameters
or degrees of freedom, and elements of SOM have M(M−1)

2
parameters. A rotation in SO2 with angle θ ∈ [0, 2π) is rep-

resented by the matrix Rθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
∈ SO2.

II. PROBLEM STATEMENT

Consider the complex-valued 2× 2 MIMO model given by

Yt =
√
ρe
√
−1φVtD(

√
1 + γ,

√
1− γ)UtXt + Zt (1)

at the t-th channel use, where Vt, Ut are matrices from SU2,
Zt is a circularly-symmetric Gaussian random noise with zero
mean and unit covariance matrix [3] that is independent and
identically distributed over t, D(

√
1 + γ,

√
1− γ) with γ ∈

[0, 1) is a real-valued diagonal matrix with positive diagonal
elements such that ρ represents the normalized signal-to-noise



(SNR) ratio, and φ ∈ [0, 2π) is a random phase.2 This model
applies to polarization-multiplexed optical transmissions3 ex-
periencing non-unitary impairments (γ > 0). In standard prac-
tice, the channel input Xt is a complex-valued discrete random
vector with entries taking on values for example in square
N2-QAM or, equivalently, in N -PAM2. In this paper, we focus
on orthogonal codes, hence the channel inputs take on values
in F · (N -PAM4), where F ∈ SO4. The random matrices
Vt, Ut are picked uniformly at random from SU2 as well as
φt from [0, 2π). These parameters are very slowly changing
when compared to the operational blocklengths encountered
in optical networks. Hence the multiplicative factor may be
considered as constant over t and the channel resembles a
block-fading model up to rescaling. System and code perfor-
mance analysis shall be specifically tailored to these features.
More precisely, Ut represents the state of polarization (SOP),
and Dγ

def
= D(

√
1 + γ,

√
1− γ) represents the imbalance of

the electric field in a given direction of the polarization plane.
Optical links are examples of communication links that are
non-adaptive and for which no feedback is available. Therefore
transmissions occur in a block-wise manner using a pre-
defined coding and modulation scheme. As a result, because
the imbalance coefficient γ ∈ [0, 1) is (slowly) varying, it is at
first order not the ergodic channel behavior but rather its worst
case value that limits the transmission flow by determining
streaming outage.

The main objective of this paper is to construct a practical
linear modulation code (or precode) [17], [19] that transforms
a standard N -PAM-multiplexed source4 St into an imbalance-
resilient signal. For the sake of complexity reduction, we focus
on precoding over a single channel use (e.g., one time slot if
the degree of freedom t represents the time) as F : St 7→ Xt =
FSt. We then want to find the optimal orthogonal [18] code
F ∈ SO4 that minimizes the worst case error probability.

III. INVARIANCE AND FUNDAMENTAL LIMITS

a) Physical Model: Due to the noise circular symmetry,
SU2-rotational invariance makes that the statistical channel
model in Eq. 1 is equivalent to the model

Yt =
√
ρDγUtXt + Zt,

and further equivalent to

Y =
√
ρDγRαBβX + Z (2)

after skipping the indices t for simplicity and exploiting
the classical SU2 decomposition Ut = Bβ′RαBβ using a
product of 3 elementary single-parameter unitary matrices over
SU2, where α, β, β′ ∈ [0, 2π), see [13], [16]. In the context

2The set {e
√
−1φ, φ ∈ [0, 2π)}, when used for multiplying SU2, permits

to describe the entire group U2 = {A ∈ C2×2 : | det(A)| = 1}.
For presentation convenience, we simply consider channel matrices in SU2

instead of Vt, Ut ∈ U2 which, by invariance, describe the equivalent channel.
3A general channel with D(γ1, γ2, · · · , γM ) such that γi > 0,

∑
γ2i = 1

models forward-looking mode-multiplexed optical transmissions.
4The (N2-QAM)2 choice for the source alphabet is also motivated by

legacy and flexibility aspects of actual transceivers.

of optical communications, this decomposition of the SOP
has an operational meaning as Bβ represents a birefringence
matrix and Rα the polarization rotation. Because Bβ′ and Dγ

commute, rotational invariance gives the model equivalence.
b) Capacity and Polarization-Dependent Loss: In the

case of continuous alphabet with average power constraint,
the singular value decomposition leads to the classical MIMO
capacity formulae [3]. In short, if V DγU is fixed (known
by the receiver but unknown at the transmitter), then the
capacity is obtained by maximizing the mutual information
I(X; (Y,DγU)) = H(Y |DγU) − log(2πe) using X as a
Gaussian with covariance 1

2I . Then, it decomposes as

C(γ)
def
=2 log(1 + ρ/2) + log

(
1− γ2 ρ2

(2 + ρ)2

)
,

where the second term defines the so-called polarization-
dependent loss (PDL) from the viewpoint of information
theory. Observe that the continuous capacity only depends
on the imbalance parameter γ. It is generally given in dB
as Γ

def
= 10 log10( 1+γ

1−γ ), and does not depend on the particular
orientation defined by U .

c) Operational Information Rate and Directional Loss:
It is important to observe that, for practical discrete inputs such
as modulation formats defined on regular square lattices, the
information rate becomes highly sensitive to the orientation of
the underlying grid [12]. This is illustrated in Fig.1 where the
large 6dB PDL figure exemplifies an extreme worst case5 that
could be observed in next-gen systems. The code constructions

Fig. 1. Information rate as a function of the SNR for Γ = 6dB and standard
dual-polarized QAM. The achievable information also depends on the SOP
(in addition to the continuous PDL loss). For 16-QAM2 = 4-PAM4, up to
1.4dB SNR variation is reported and optical coding and modulation schemes
have to to address this worst case. Polarization coding aims at minimizing the
performance variation, hence effectively reducing the loss due to PDL.

presented in this paper aim at reducing the dependency on
the underlying angles of U ∈ SU2. Because optical system
are feed-forward communication systems characterized by a
quasi-zero failure rate, the performance measure of choice is
connected to the outage in capacity represented by the worst
case information rate.

5The worst 6dB PDL case corresponds to a 2dB average PDL and an outage
probability of 10−5 assuming a link with i.i.d. PDL elements.



IV. NON-PHYSICAL EQUIVALENCES USING
LEFT-ISOCLINIC ORTHONORMAL CODES

Let us now represent the transmission over the linear
2×2 polarization-multiplexed fiber channel model using four-
dimensional real-valued vectors. The equivalent random input
is X̂ ∈ N -PAM4 ⊂ R4 and is assumed to have normalized
power constraint E[X] = 1. From the previous section, we
see that the multiplicative non-unitary impairment can be
expressed using the linear map X̂ 7→ D̂γR̂αB̂βX̂ and real-
valued matrices of SO4 obtained from SU2 as

D̂γ
def
=

( √
γ + 1I2 0

0
√

1− γI2

)
, B̂β

def
=

(
Rβ 0
0 R−β

)
,

and R̂α
def
=


cos(α) 0 − sin(α) 0

0 cos(α) 0 − sin(α)
sin(α) 0 cos(α) 0

0 sin(α) 0 cos(α)

 .

The matrices respectively represent the polarization-
imbalance, the birefringence, and the polarization rotation.

The main purpose of this paper is to construct an or-
thogonal code using F ∈ SO4 : N -PAM4 → R4 that
maps S 7→ X̂ = FS. This (pre-)code is non-physical as
it cannot be obtained from physical optical components that
act directly on the two-dimensional complex-valued lightwave.
Instead, precoding using SO4 requires implementation in
digital signal processing [6]. The design criteria is to minimize
the probability of error (maximize the information rate) per
channel use while precoding data on a single channel use basis.
In the large SNR regime, Euclidean geometry arguments can
be used to characterize the information rate. Then, we want
to find the (not necessarily unique) code F that minimizes the
worst error probability across channel realizations,

F ∗ = argmaxF∈SO4

{
min
U∈SU2

{I(S; D̂γÛFS + Z)}
}
,

when ρ >> 1. Recall that SO4 is generally described by 6
parameters. The 6 degrees of freedom represent the 6 possible
combinations of elementary 1-parameter rotations describing
elements of SO4. It is explicit using the Van Elfrinkhof for-
mula or the connection to quaternions, see, e.g., [6], [16], it can
also be observed using Hopf coordinates. Therefore, the raw
optimization above would involve 6 parameters. Fortunately,
by equivalences, we will see that the number of degrees
of freedom reduces from 6 down to 2. In practice, those 2
remaining degrees of freedom are referred to as non-physical
in [6]. Notice that a numerical optimization is performed in
[20]. In this paper, we present a closed-form solution via an
analytical optimization over SO4 that is an optimality proof.

Let us now explain the optimization complexity reduction.
From classical linear algebra, see also [6], we know that
any matrix F ∈ SO4 can be written as the commutative
product F = LR where L ∈ SO4 is a left-isoclinic matrix
and R ∈ SO4 is a right-isoclinic matrix. The matrices R
and L are unique up to the multiplication by the central
inversion. The subgroups of both right-isoclinic and left-
isoclinic are both isomorphic to the manifold S3 iso

= SU2

(also isomorphic to the corresponding spinors or the unit
quaternions groups). More precisely, SO4 is a double cover
of SO3 × SO3 (i.e., SO3 × SO3

iso
= SO4/Z2) and SU2 is

a double cover of SO3
iso
= SU2/Z2. More operationally and

interestingly for us, the channel parameters from SU2 cover
the parameters associated with the right-isoclinic rotations.
Hence, if we decompose F = RL, then, by commutativity
of R and L, the code optimization for the four-dimensional
channel Ŷ = D̂γÛR(LS) + Ẑ is equivalently conveyed using
Ŷ = D̂γLS + Ẑ. Simple algebraic manipulations performed
with Hopf coordinates, see, e.g., [20], permit to express the 3
remaining degrees of freedom of L as

L =

(
sin(η)Rθ − cos(η)Sν
cos(η)Sν sin(η)Rθ

)
=

(
Rθ 0
0 Rθ

)
.

(
sin(η)I2 − cos(η)Sν
cos(η)Sν sin(η)I2

)
= R̂θFη,ν ,

where Rθ ∈ SO2 is a rotation and Sν =(
cos(ν) sin(ν)
sin(ν) − cos(ν)

)
/∈ SO2 is a reflection. The first

factor Rθ represents a phase change that is common to the
two physical complex-valued polarization entries. Hence, as
already mentioned in footnote, by rotational invariance, the
phase θ can be absorbed into an equivalent physical channel
Therefore, it is omitted in our running optimization problem
that reduces to the 2 physical parameters of the (non-physical)
transform F̂η,ν with

Fη,ν = sin(η)I4 + cos(η)

(
0 −Sν
Sν 0

)
.

This 2-parameter formulation suffices to define any unitary
(left-isoclinic) polarization coding of S ∈ R4 as S 7→ X̂ =
Fη,νS. It is now time to reformulate our optimization objective
in terms of Euclidean geometry. Under the technical large
SNR assumption, it can be shown that the optimization of
the distance profile dominates the information rate behavior
(alternatively, this could also be seen via union bounding tech-
niques on the probability of error). The optimal construction
nails down to an optimization using the parameter pair (η, ν)
of the distance profile of codes {S 7→ D̂γR̂αB̂βFη,νS}α,β .

V. OPTIMAL LEFT-ISOCLINIC POLARIZATION CODES

The code construction over SO4 and a single t-slot is
remarkable as the actual worst minimum distance value of
{D̂γÛFS : S ∈ N -PAM4} cannot be improved. We first state
our main theorem, then present geometric arguments.

a) Main Result: It is obtained as an optimization over
the distance distribution: the number of occurrences of the
minimum distance is reduced and the value of the second min-
imum distance is maximized. A detailed proof with coordinate
calculus is deferred to the appendix.

Theorem 1 (Optimal Construction over SO4): Using the
formalism of previous sections, and up to algebraic symmetry,
an orthonormal construction Fη,ν over N -PAM4 that, asymp-
totically in the signal-to-noise ratio, maximizes the information
rate for Γ = 10 log10

1+γ
1−γ << 1 is obtained for ν∗ = π

4



and η∗ = 1
2cos−1(

√
3
3 ). This construction is then optimal

as it optimizes the Euclidean distance distribution of the
32 · (N − 1) smallest minimum distances for Γ << 1. Up
to the original constellation power scaling E4,N , the smallest
minimum distance is achieved N3(N − 1) times in one of
the four basis directions as

√
1− γ and the second smallest

distance is achieved 3·N3(N−1) times in the complementary
space as

√
1 + γ/3.

This geometric construction is justified in two steps. The
N = 2 case provides the guidelines for the general proof.

First, as discussed in previous section, we consider small γ
values that deviates only slightly from 0. This is justified from
practice as typical extremal PDL values Γ = 10 log10

1+γ
1−γ

are observed to be lower than 5dB. See also [14] for more
complete considerations. Hence, the study of the deformation
of the edges of the hypercube is sufficient. The 4-dimensional
hypercube fundamentally defines the 4-dimensional square
lattice: it gets slightly distorted by the action of D̂γ and
contraction occurs in a two-dimensional subspace of R4. Focus
first on 2-PAM4. The hypercube edges define the minimum
distance of the modulation. Therefore, it suffices to study their
deformation via directional scaling to estimate the evolution
of the minimum distance. The code construction reduces to
the optimization of the distribution of the 4× 8 = 32 smallest
minimum distances6 (equi-distributed on the 4 orthogonal edge
directions). Hence we are interested in the image of each of
the 4 elementary basis vectors of R4 after the action of a fixed
Fη,ν left-multiplied by the action of a random U ∈ SU2. As
shown in Appendix A and Lemma 1, there is always one of
the 4 directions that will experience the worst contraction. This
means that the (worst) minimum distance scales as

√
1− γ.

Hence, as further discussed in Appendix A, this distance
can be encountered not less that 1 × 8 times for 2-PAM or
1×N3 · (N − 1) for the general N -PAM case.

Second, while the minimum distance is defined by
√

1− γ,
the second minimum distance may vary as a function of
(η, ν). In fact, Appendix B shows that the sum of the squared
distances observed of the 3 remaining axes scales as 1 + γ
and balances the minimum distance energy. Indeed, using
the properties of four-dimensional rotations and Lemma 1,
the (η, ν) optimization takes place in a three-dimensional
subspace that is orthogonal to the contracting dimension. In
this subspace, one direction is contracting while the remaining
two are expanding. The maximization of the second minimum
distance consists in orientating 3 orthonormal vectors in R3

in such a way that their orthogonal projections onto the
contracting axis have minimal norm. This is illustrated in Fig.
2. An optimal placing in the three-dimensional affine space
is achieved when the formed equilateral triangle becomes
perpendicular to the contracting direction (z-axis in Fig. 3).
Exact rotation angles are derived in Appendix B.

6The M · 2M−1 edges of the M -dimensional hypercube form 4× 8 = 32
edges for M = 4 and correspond to minimum distances for square 2-PAM4.
More generally, for squareN -PAMM , there areM ·NM−1·(N−1) minimum
distances, i.e., 4×N3 · (N − 1) for M = 4.

e1

e2

e3 e1

e2

e3

Fig. 2. Left: No precoding is performed. Right: Because there is always one
basis vector that gets aligned with one of the contracting directions and get
scaled (contracted) by

√
1− γ, the degrees of freedom of Fη,ν are used to

orientate the remaining 3 basis vectors (in this example, e1, e2, and e3) in
such a way that they experience the smallest possible contraction.

b) Discussion: Notice that the angle η∗ in Theorem 1
is exactly equal to 4 times the so-called tetrahedral angle.
Appendix B gives the coordinate system

M̃(η∗, ν∗) =

 −
√

2
3

1√
6

1√
6

0 1√
2
− 1√

2

− 1√
3
− 1√

3
− 1√

3

 ∈ SO3

that represents 3 orthonormal basis vectors of R3. It can be
regarded as the basis triangle of a family of tetrahedrons
with summits on the z-axis. In Fig. 3, the regular tetrahedron
associated with a 4-th point (0, 0,

√
3/3) is represented. The

construction has a physical interpretation using the normalized
sphere centered at the tetrahedron center O.
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Fig. 3. Left: Squared distance profile for different polarization codes over
2-PAM4 and Γ = 2dB. DP indicates dual-polarization (no polarization
code), SB refers to the simple spatially-balanced code in [14] (for which
the number of minimum distance occurrences reduces to the minimum of 8),
and NSB refers to new spatially-balanced that is the tetrahedral code (the
minimum distance occurs 8 times, but the value of the second minimum
distance that occurs 24 times is now maximized). Right: Representation
of the 3 orthonormal basis vectors as the basis of a regular tetrahedron
ABCD with fourth vertex (0, 0,

√
3/3). The coordinate origin is O′. The

tetrahedron center O is located on the z-axis at z = −
√

3/6. The 3 vectors
~O′A, ~O′B, ~O′C remain orthonormal in the three-dimensional Euclidean

space. Their joint orientation (up to reflection) maximizes the post-scaling
second minimum Euclidean distance.

VI. APPLICATIONS AND PERSPECTIVES

The presented polarization codes have been validated by
simulations for various N and lab experiments for N ∈ {2, 4}.
The results reported in [13], [20] show expected sensitivity
SNR gains in the [0.5 1] range (in dB) for 4-QAM2 or
16-QAM2 experimental transmissions. Therefore, the perfor-
mance in experiments that emulate next-generation WDM



systems validates these optimal constructions. Implementation
in high-speed transceivers should be facilitated by the low-
complexity of orthogonal coding over a single t-slot. Finally,
for the practice of next-generation optical transceivers in-
volving high-resolution A/D converters, notice that directional
gains from orthogonal polarization codes arise when the
modulation constellation is supported by an underlying cubic
lattice. The presented coding gains are naturally and efficiently
complemented by shaping gains obtained from probabilisti-
cally non-uniform signaling [23]–[27]. These aspects make the
presented optimal four-dimensional modulation schemes very
relevant for next-gen optical systems.

APPENDIX A
PRESERVATION OF THE MINIMUM OF d

(1)
MIN AFTER SCALING

Let B = {e1, e2, e3, e4} be the canonical basis of R4, i.e.,
ei ∈ R4 is a unitary column vector that has all but one entries
equal to zero, its non-zero entry being 1 at the i-th position.

Lemma 1: For any Fη,ν and any ei ∈ B, there are ej ∈ B
and U = U(ej , ei) ∈ SU2 such that ÛFη,νej = ei,
ÛFη,νspan(B \ {ej}) =span(B \ {ei}), and the submatrix
formed by all but the i-th row and the j-th column is
(ÛFη,ν)∼i,∼j ∈ SO3.

Proof 1: Without loss of generality, let us restrict
the proof to e2

def
= (0, 1, 0, 0)T . Then, for any Fη,ν ,

Fη,νe2 = (sin(η), 0, cos(η) cos(ν), cos(η) sin(ν))T . Setting
Û

def
= R̂π−η ˆexp(−iν/2)B̂ν/2 gives the result as ÛFη,νe2 =

e4
def
= (0, 0, 0, 1)T .

Now, consider the original discrete N -PAM4 signal points
in R4 and a given Fη,ν . We are interested in the minimum
Euclidean distance between any pair of points and, more pre-
cisely, in its minimum as a function of (η, ν). For sufficiently
small γ, continuity arguments show that the minimum distance
is supported by (some of) the edges of the distorted four-
dimensional hypercube grid that gets Û -rotated in one of the
two
√

1− γ-compression directions. When γ = 0, it is found
4 × 24−1 = 4 × 8 = 32 times in the 2-PAM case, and
4 × N3(N − 1) in the general PAM case. When γ > 0, the
non-zero scaling in certain directions modifies the profile of
the minimum distance and the multiplicity order. For γ > 0,
depending on uniquely Û and Fη,ν , the minimum distance
appears at least 1×N3(N − 1) times.

Corollary 1: For small γ > 0, the randomly distributed
U ∈ SU2 makes that the worst minimum Euclidean distance is
dmin = 2√

EN,4

√
1− γ, where 2√

EN ,4
is the normalized length

of the double-unit hypercube edge. I.e., in the distance profile,
dmin scales as

√
1− γ and is encountered at least 1× 8 times

for 2-PAM or, generally, 1×N3(N − 1) times.
Proof 2: Geometric alignment induces the maximal reduc-

tion in edge norm. This alignment can always be achieved as
shown in 1. Among the 4 sets of parallel edges of the grid
contained in the hypercube, 1 set is necessarily associated
with one given (contracting) direction. Hence the minimum
distance is achieved at least 8 times for 2-PAM or, generally,
1×N3(N − 1) times.

APPENDIX B
SECOND MINIMUM DISTANCE d

(2)
MIN OPTIMIZATION

Lemma 1 shows that there is at least one pair (α∗, β∗)
that aligns any SO4-transform of a hypercube edge with one
of the two contracting directions e3, e4 by left multiplication
by U∗ def

= U(α∗, β∗). The associated distances, obtained after
left multiplication by D̂γU

∗, give the minimum distance with
maximal contraction scaling

√
1− γ. It remains to choose η, ν

that maximize the second minimum distance. This can be done
by simple calculus using the sub-matrices from Lemma 1.
Without loss of generality, let us for instance consider

M(η, ν)
def
=

− sin(2η) 0 cos(2η) cos(ν) cos(2η) sin(ν)
0 0 sin(ν) − cos(ν)

− cos(2η) 0 − sin(2η) cos(ν) −2 sin(2η) sin(ν)
0 1 0 0

,
for which the basis vectors e1, e2, and e3 represent the 3
sets of remaining edges associated with the original hypercube
grid. Rotating this basis in R3 will permit us to maximize the
second minimum distance as compression in the remaining
R3 subspace occurs only in one direction. To do this, we
use the submatrix of M(η, ν) that lies in SO3. We are
interested in maxη,ν

{
mini∈{1,3,4}

{
||D̂γU

∗(η, ν)Fη,νei||
}}
.

For any i ∈ {1, 3, 4}, we have ||D̂γU
∗(η, ν)Fη,νei||2 =

(1 + γ)||di(η, ν)||2 + (1 − γ)||ai(η, ν)||2 = (1 + γ)(1 −
||ai(η, ν)||2) + (1 − γ)||ai(η, ν)||2, where di = di(η, ν) ∈
span(e1, e2) and ai = ai(η, ν) ∈ span(e3) are orthogo-
nal projections of the unit-norm vector U∗(η, ν)Fη,νei. A
key observation follows. Maximizing over η, ν any of the
3 distances ||D̂γU

∗(η, ν)Fη,νei|| is equivalent to minimiz-
ing |ai(η, ν)|2 over η, ν. Moreover, comparing the 3 dis-
tances ||D̂γU

∗(η, ν)Fη,νei|| to each other reduces to or-
dering the 3 values {|ai(η, ν)|}i∈{1,3,4}. We have |a1|2 =
cos(2η)2 = 1− sin(2η)2, |a3|2 = 4 cos(η)2 cos(ν)2 sin(η)2 =
cos(ν)2 sin(2η)2, and |a4|2 = 4 cos(η)2 sin(ν)2 sin(η)2 =
sin(ν)2 sin(2η)2, which, because

∑
i∈{1,3,4} |ai|2 = 1, shows

that
∑
i∈{1,3,4} ||D̂γU

∗(η, ν)Fη,νei||2 = 3 + γ, i.e., the sum
of the squared norm of the second minimum distance always
balances the squared norm of the first minimum distance.This
means that

√
1 + γ/3 is the largest possible scaling of the

second minimum distance, which is then encountered 3 times.
This maximum is achieved for ν∗ = π

4 and

η∗ =
1

2
cos−1

(
1√
3

)
=

1

4
cos−1

(
−1

3

)
=

1

2
tan−1(

√
2),

where 4 × η∗ is called tetrahedral angle in chemistry. We
see that the 3×N3(N − 1) second minimum distances scale
as
√

1 + γ/3 and the original unit quaternion matrix M
evaluated in η∗, ν∗ is

M(η∗, ν∗) =


−
√

2
3 0 1√

6
1√
6

0 0 1√
2
− 1√

2

− 1√
3

0 − 1√
3
− 1√

3

0 1 0 0

 .
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